STATISTICS FOR DATA SCIENCE RaAJiTA CHANDAK AND MYRTO LIMNIOS

ANSWER SHEET 10

Assignment 1. The matrix X is of full rank, hence invertible. We obtain
B=X'X)"'Xly=X"Yy, G=XB=y, e=y-5=0, d>=n"}e>=0.

We see that the errors are 0 and the fit of the model is perfect (R3 = R? = 1). The unbiased
estimator of the variance S? = |le||?/(n—p) = 0/0 is not defined and H = X (X'X)"1 Xt = I,,.
The column space of X is M(X) = R".

If p = 0, then we don’t have parameters, not even the costant, and we project on the space
span(()) = {0}. In particular H = 0 and § = 0, e = y and S? = 52 = ||y[|?/n. The model
assumes that y; are iid and of zero mean. This is why the unbiased estimator for the variance
is ||y||*> = > 1, v? and not Y., (y; — ¥)? and we divide by n and not by n — 1.

If p = 1 then X is just a vector, so 8 = X'y /| X||?. In the special case where X is a vector of
ones, B =7, J=7ln, ¢; = y; — 7 and 52 = |le|?/(n — 1) = Y (y; — §)%/(n — 1). This is just
estimating the mean of a distribution from a sample of size n.

Assignment 2.

a) We know that e and ¥y are independent and that the standardized residuals follow ap-
proximatively a standard normal (basically, the standardized residuals need to take
values between —2 and 2 independently on the values of g;). The hyphotesis are respec-
tively (e ~ N(0,021), ...).

— Picture A : the fit seems good.

— Picture B : there is an outlier r; < —2.

— Picture C : The fitted values and the standardized residuals are dependent. It seems
that there is a quadratic relation between the two and that we might need to add a
quadratic term to the model. It could be useful to plot r» and each of the column of
X to see if there are really quadratic relations.

— Picture D : the hyphotesis of homoskedasticity is not satisfied because the variance
of the residuals is not constant. A possibly way to deal with heteroskedasticity is to
use weighted regression.

b) Is the distribution of the covariates has the left tail heavier than the Normal, the empi-
rical quantiles on the left of the picture will be below the diagonal on the QQ plot. In
this case indeed, G(z) > F(x) whenever x — —o0, where G represents the c.d.f. of the
covariates and F the normal law. For alpha > 0 small, z = F~!(a), then G(z) > «,
hence G~!(a) < z, and this means that the quantiles are below the diagonal line. On
the contrary, if the left tail is lighter, then the empirical quantiles will be above the
diagonal line.

In the same way, a heavy tail on the right implies 1 — G(z) > 1 — F(z) when x — oo,
hence for a close to 1, G~!(a) > F~1(a) and the empirical quantiles on the right of the
picture as going to be above the line.

— Pic A : lighter tail on the right and heavier on the left : negative skewness.

— Pic B : tails less heavy than the ones of a gaussian.

— Pic C : tails heavier than gaussian.

— Pic D : lighter tail on the left and heavier on the right : positive skewness.

Assignment 3. a) The covariance matrix of § is 02(X7X)~1. Since we don’t know o2, we

estimate the latter by varf = (X7 X)~!. Denote v;; = (XTX)1)ij, i =0,1,2,3, j =
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0,1,2,3 (the indexing starts at 0). Then the i-th standard error is estimated by @(Bz) =
\/W@i = +/S%v;;. For the correlation, we have
[WB]Z] SQUU

(G By) = . i
VT Sy, | VoS

b) The prediction is
gy =213
and so

Gy = Bo + Prz1 + Boxo + B3,

In comparison with the case 1 = 9 = x3 = 1, the expectation will increase by 451 =
4 x1.70 =6.80 if x1 = 5, and by 462 = 4 x 0.66 = 2.64 if x5 = 5. More explicitly,

T =x0o=x3=1 = G = Bo—+ 1+ B2 = 48.19 + 1.70 4 0.66 + 0.25 = 50.80
21 =z =523 =1 => §, =48.194 1.70 x 5+ 0.66 x 5 + 0.25 = 60.24

c) For the i-th coordinate of 3, the confidence interval is
Bi £ v/ S?viitn_p(1 — a/2) = B; £ SE(By) tn_p(1 — /2), i=0,1,2,3.
Here n =13, p = 4, a = 0.05, t9(0.975) = 2.262, so the intervals are
(30.34,57.04], [1.236,2.164], [0.5605,0.7595], [—0.1685,0.6685].

More generally, if ¢ € RP, the confidence interval for ¢! 3 is

B+ b1 — f2)y/S2T(XTX) !
In the specific case of the question, the relevant choice for ¢ is ¢ = (0,0, 1, —1)T. This gives
/' S20901/.52
m v

= (SB(5) ) (SE( >) — 26011 (Ba, B3) SE(B2) SE(Bs)
= 0.044% + 0.185% — 2- (—0.089) - 0.044 - 0.185

SQCT(XTX) c= 521}22 + 52 v33 — 2

We get the following confidence interval for 5o — 3 at level 0.90 :
0.66 — 0.25 & {0.044% 4 0.185% — 2 0.044 - 0.185 - (—0.089) }"/* £4(0.95) = [0.055,0.765].

The R Commands

library (MASS)
fit<-1lm(y~1+x1+x2+x3, data=cement)
confint (fit)

give the following as confidence intervals for each coordinate of S :
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2.5 % 97.5 %
(Intercept) 39.3411244 57.0461442
x1 1.2330935 2.1586869
x2 0.5568501 0.7569797
x3 -0.1678276 0.6678628

Assignment 4. a) The column “t value” gives the t-statistics for the null hypothesis 8; =
0. These are defined as

o bk _ &
i = — == A

VS%vi;  SE(5)
where v;; is the i-th diagonal element of (X7 X)~!. When the null hypothesis 3; = 0 is
true, T; ~ t,—, and we reject the hypothesis when the observed value of |T;| is large.

The column “Pr(>|t|)” gives the p-values for the bilateral ¢-tests of the preceding para-
graph. Denote the observed value of T; by T; o,s. The the p-value for the i-th test is

Di = P(|T‘z| > ‘Ti,obs’) = 2(1 - Fn—p(u—‘i,obsD) = 2Fn—p(_‘Ti,obS’)>a

where Fj,_, is the distribution function of a ¢,,_, random variable. If p; < 0.05 we reject
the i-th null hypothesis at significance level 5%. In this case, at 5%, we reject the null
hypothesis 5; = 0 for ¢ = 0,1, 2, but not for i = 3.

b) In this case, the T statistic is
T = il
V82T (XTX) e

for ¢ =[0,0,1, —1]T. Since

N N P
2T (XT X ) Le = (SE(,BQ)) n (SE(ﬁg)) — 201, B3) SE(B2) SE(3s)
= 0.04423% + 0.18471% — 2 - (—0.08911) - 0.04423 - 0.18471 = 0.03753

we get that
~0.65691 — 0.25002

v/0.03753

T = 2.10033,

and find the corresponding p-value
p=2-Fi3-4(—2.10033) = 0.06508.

We cannot therefore reject the null hypothesis at 5%.

Assignment 5. (i). The design matrix X has dimension nx2, and X7 = <$1 xl o xl ) .
1 T2 ... ITnp
The columns of X (rows of XT) are dependent if and only if 1 = - - - = x,, (which always

happens when n = 1).

(ii). The covariance matrix we seek is 02A~!, with

A=xTx = (ani %;615) = (n@c gi?) '

3
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(ii).

To find the inverse of A we look for a matrix B = (Z b) such that BA = Iy. This

d
gives four linear equations in 4 variables that is easy to solve, and we get

2 2 — n n
2/ vTy\—1_ O Y.z —nT _ 2 2| _ =2
(X X)) = - (—m: N ), SM—Z(JUZ T)* = <lel) nz-.

i=1

Note that S, = 0 if and only if 1 = --- = z,, if and only if XT X is not invertible.

The variance of Bl is 02/ Sz, where 02 does not depend on z. Minimising this variance is
equivalent to maximising S, over [—1, 1]", and this can be done by elementary methods.
For all j

0 0 >0 z;>7T

%SM =2z — 27’@6—%@ =2(z; — ) {< 0 xj .

The stationary point x; = Z gives a mimimum and not a maximum. It follows that the
maximum is attained at the boundary ; x; = £1. This is true for all j. Thus we need to
choose k of z;’s to be 1 and the others —1. For such choice Y 2 = n (indpendently of k)
and T = 2k/n — 1. We need to minimise 2 with respect to k, which consequently must
be as closed as possible to n/2. If n is odd, we choose k = n/2; otherwise k = (n+1)/2
or (n—1)/2.
Intuition. With this choice of z, we have very good estimators for Ely|z = 1] and
Ely|lz = —1], and we estimate E[Y |z = x| with the corresponding line. This gives the
best estimator in terms of the variance of 8. However, this choice leaves us with no
information whatsoever on the distribution of y when |z| < 1. If linearity breaks down,
we will not be able to detect it with the diagnostic tools!

Remark. One can argue alternatively that S;, : R” — Ry is convex. Indeed, it is a
quadratic form with Hessian matrix

2-2/n =2/n  —=2/n —2/n 1 p »p p

—-2/n 2-2/n =2/n —2/n p 1 p P

—2/n =2/n 2-2/n —2/n | = (2—2> pp P p| = <

n

—-2/n —=2/n —-2/n 2—-2/n pp ... p 1
where p = —1/(n — 1). Let us find the eigenvalues and eigenvectors of A. If v =
(v1,...,v,) then

v; + (1 —p)v
2> ( P 1+ (n—1)pv v=-=0v,
Av = : =
’ (1-pv > v =0.

p2_vi+ (1 =pug

We see that A has two eigenvalues : 1 + (n — 1)p with multiplicity 1 and 1 — p with
multiplicity n — 1. This matrix is nonnegative definite if and only if —1/(n—1) < p <1,
which holds (just barely) in our setup p = —1/(n — 1). Thus S, is convex and the
maximum is attained in the boundary.

Matrices of the form of A appear in statistics in random effects models.



