

ASSIGNMENT SHEET 10

Spring 2025

Assignment 1 (Extreme cases $p \in \{0, n\}$). Consider a linear model $y = X\beta + \varepsilon$ where $X_{n \times p}$ is full column-rank and $\varepsilon \sim N_n(0, \sigma^2 I)$. Assume $n = p$. What are the estimators for β et σ^2 , the errors and the fitted values? Comment on it. Do the same for the cases $p = 0$ and $p = 1$.

Assignment 2 (Diagnostic). a) Figure 1 represents the the standardized residuals plotted against the fitted values for 4 different set of x_i 's. For every case, discuss the fit of the model and explain briefly how you could fix mis-fits, if any are present.

b) Figure 2 represents 4 gaussian Q-Q plots. In every case, the covariates do not come from a Gaussian distribution. Actually, they are generated from distributions with

- i) tails heavier than gaussian ;
- ii) tails lighter than gaussian ;
- iii) positive *skewness* ;
- iv) negative skewness.

Match each case i)–iv) with a Q-Q plot from Figure 2 and comment.

Assignment 3 (confidence and prediction intervals). The following table gives the estimators, the standard errors and the correlations for the model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$ fitted to $n = 13$ cement values from the example given in the course.

	Estimate	SE	Correlations of Estimates		
			(Intercept)	x1	x2
(Intercept)	48.19	3.913			
x1	1.70	0.205	x1	-0.736	
x2	0.66	0.044	x2	-0.416	-0.203
x3	0.25	0.185	x3	-0.828	0.822 -0.089

- Explain how R calculates the standard errors and the correlations that appear in the above table.
- What is the prediction, under this model, of y when $x_1 = x_2 = x_3 = 1$? By how much it will change if instead $x_1 = 5$? And if $x_1 = x_2 = 5$?
- Using only the above information and the following quantiles $t_9(0.975) = 2.262$, $t_9(0.95) = 1.833$ of the student distribution with 9 degrees of freedom, calculate under this model the confidence intervals for β_0 , β_1 , β_2 et β_3 at significance level $\alpha = 0.95$. Calculate a 0.9 confidence interval for $\beta_2 - \beta_3$.

Assignment 4. We fit the model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$ to the cement dataset from the course ($n = 13$). R gives the following table :

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	48.19363	3.91330	12.315	6.17e-07 ***
x1	1.69589	0.20458	8.290	1.66e-05 ***
x2	0.65691	0.04423	14.851	1.23e-07 ***
x3	0.25002	0.18471	1.354	0.209

Signif. codes:	0	***	0.001 **	0.01 *
			0.05 .	0.1 ' '
			1	

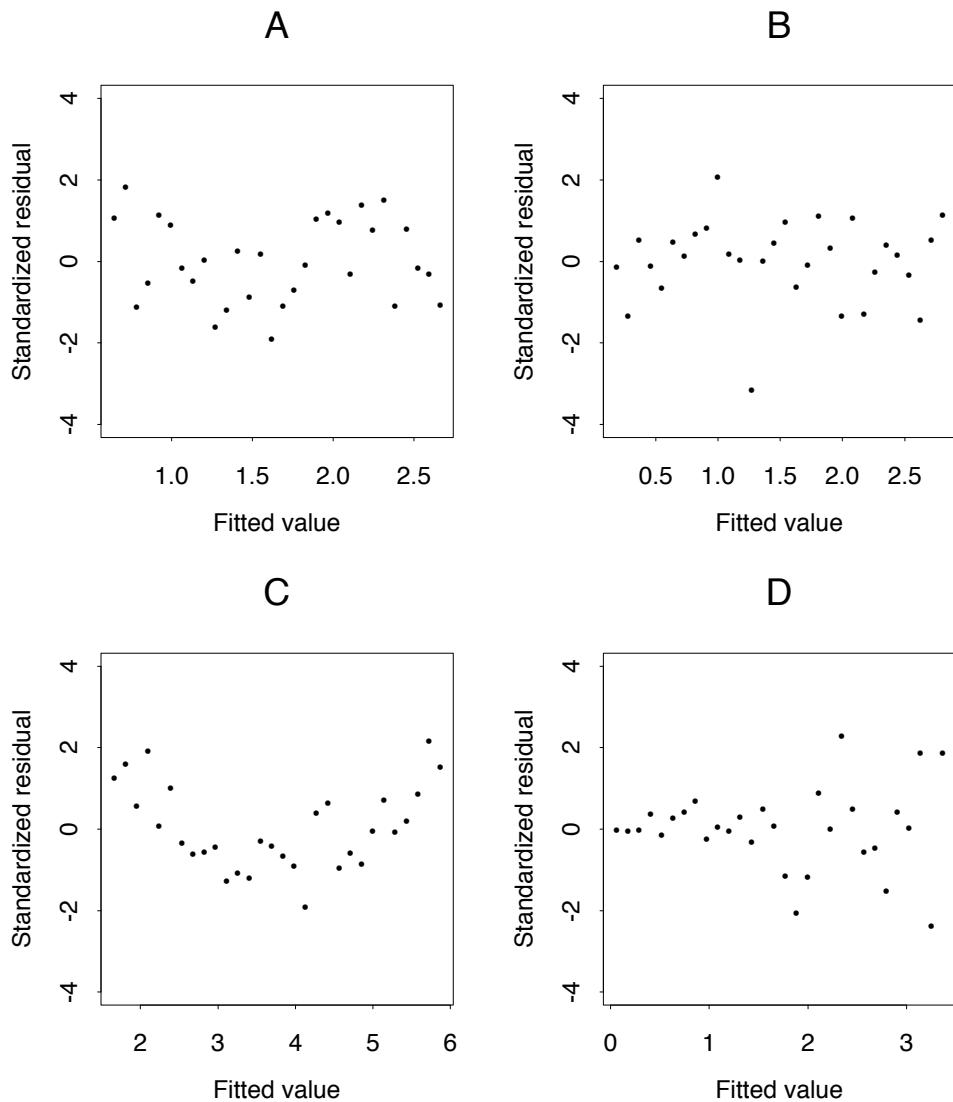


FIGURE 1 – Standardised residuals vs fitted values, Gaussian models

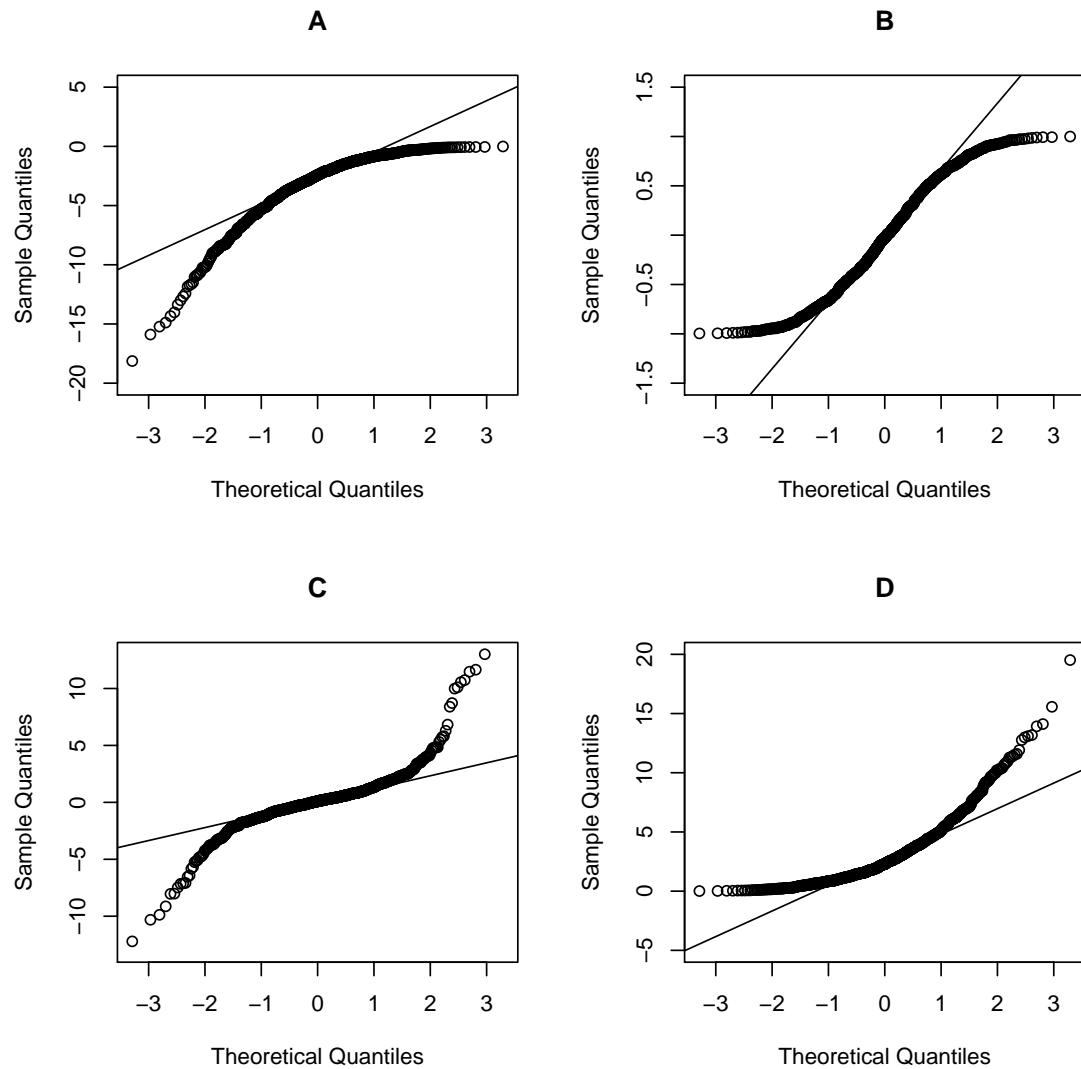


FIGURE 2 – Normal Q-Q plots for non Normal covariates.

- a) Explain in detail how R calculates the values in the columns “t value” and “Pr(>|t|)”. What do these values mean? Comment the observed numbers in the table.
- b) Knowing that $\widehat{\text{corr}}(\hat{\beta}_2, \hat{\beta}_3) = -0.08911$, what is the p -value for the null hypothesis $\beta_2 - \beta_3 = 0$? For a 0.05 test, can we reject the null hypothesis?

Assignment 5 (best design). Consider the linear model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, \dots, n,$$

where $\beta_0, \beta_1 \in \mathbb{R}$, $\mathbb{E}[\epsilon] = 0$ and $\text{Var } \epsilon = \sigma^2 I_n$ (and $n \geq 2$). This is called *simple linear regression*.

- (i). Write down the design matrix for this model and give a necessary and sufficient condition for it to be of full rank.
- (ii). Find the covariance matrix of the least squares estimator $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1)^T$.
- (iii). Suppose that you can choose all the x_1, \dots, x_n as you wish, but constrained to be in $[-1, 1]$. How would you choose them in order to minimise the variance of $\hat{\beta}_1$?