
Statistics for Data Science Rajita Chandak and Myrto Limnios

Answer sheet 8

Assignment 1. (i). Let XI be the proportion of the sample points (X1, . . . , Xn) that are in
I. This is an average of a sample of Bernoulli random variables with success probability
pI = P(X ∈ I). A confidence interval for pI is

{p : n(p−XI)
2 ≤ XI(1−XI)χ

2
1,1−α}.

(ii). Let F be the distribution function. Since h is small, we have

f(x) ≈ F (x+ h)− F (x)

h
=

pI
h
.

(iii). The approximate confidence interval for f(x) is the rescaling of that of pI , namely

{p/h : n(p−XI)
2 ≤ XI(1−XI)χ

2
1,1−α}.

The density estimator is constant at each bin, so the confidence interval of f(y), y ∈ I
is the same as that of f(x). Now, since f is assumed continuous, its values do not vary
much in I, so this is sensible.

(iv). There are (B − A)/h bins. More precisely, the number of bins is the smallest integer
≥ (B −A)/h.

(v). The Bonferroni correction entails dividing α by the number of bins m ≈ (B − A)/h.
The confidence region is therefore the product set

{p/h : n(p−XIj )
2 ≤ XIj (1−XIj )χ

2
1,1−α/m}, j = 1, . . . ,m.

Assignment 2. (i). data("faithful", package = "datasets")

x <- faithful$waiting

(ii). plot(density(x))

The default kernel used by density is Gaussian.

(iii). hist(x, xlab = "Waiting times", ylab = "Frequency",

probability = TRUE, main = "Gaussian kernel",border = "gray")

lines(density(x, width = 12), lwd = 2)

(iv). hist(x, xlab = "Waiting times)", ylab = "Frequency",

probability = TRUE, main = "Rect. kernel",border = "gray")

lines(density(x, width = 12,window = "rectangular"), lwd = 2)

rug(x)

hist(x, xlab = "Waiting times", ylab = "Frequency",

probability = TRUE, main = "Triang. kernel",border = "gray")

lines(density(x, width = 12, window ="triangular"), lwd = 2)

(v). Different kernels, same bandwidth.
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(vi). hist(x, xlab = "Waiting times", ylab = "Frequency",

probability = TRUE, main = "Manual bw selection, Gaussian kernel"

,border = "gray")

bandwidth <- 1:10

for(i in bandwidth)

lines(density(x, width = 12, bw=i), lwd = 2, col=i)

legend("topright",legend=bandwidth,

col=seq(bandwidth),lty=1)

We could chose 3 or 4 ?

(vii). The normal reference rule chooses a bandwidth of 4.7, CV a bandwidth of 2.66, manual
selection here is 3. Here the comparison plot.

hist(x, xlab = "Waiting times", ylab = "Frequency",

probability = TRUE, main = "Manual bw selection,

Gaussian kernel", border = "gray")

bandwidth <- c(’manual’,’nrd0’ , ’ucv’)

lines(density(x,bw=3),col=1)

for(i in 2:length(bandwidth))

lines(density(x,bw=bandwidth[i]),col=i)

legend("topright",legend=bandwidth,

col=seq(bandwidth),lty=1)

Assignment 3. (a) (AB)ik =
∑m

j=1 aijbjk thus

tr(AB) =
n∑

i=1

(AB)ii =
n∑

i=1

n∑
j=1

aijbji =
n∑

j=1

n∑
i=1

bjiaij = tr(BA).

(b) This follows from (a) with A′ = A and B′ = BC.
(c) By linearity of the expected value, E(tr(A)) = E

∑n
i=1 aii =

∑n
i=1 E(aii) = tr(E(A)).

Assignment 4. (a) Let v ∈ Rp \ {0} such that Pv = λv. Then

λv = Pv = PPv = Pλv = λPv = λ2v.

As v ̸= 0 this implies λ = λ2 ; equivalently λ ∈ {0, 1}.
(b) There exists u ∈ Rp such that v = Pu = PPu = Pv.
(c) We have (Pw)Tx = wTP Tx = wT (Px) = 0 because w ∈ W must be orthogonal to
Px ∈ V . This means that Pw is orthogonal to everything and hence equals 0.
(d) Each x ∈ Rp can be written (uniquely) as v+w, v ∈ V , w ∈ V ⊥. Since P and Q agree on
V and V ⊥, they must agree throughout Rp.

Assignment 5. (a) For each u = (u1, . . . , up) ∈ Rp we have Xu = u1x1 + · · · + upxp, and
these constitute precisely the elements of V .
(b) If XTXv = 0, then

∥Xv∥2 = vTXTXv = 0,
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which means that Xv = 0. By part (a), Xv is a linear combination of the columns of X. Since
these are independent, it must be that v = 0. As the p× p matrix XTX is injective, it must
be invertible.
(c) To see that H is a projection simply note that

H2 = X(XTX)−1XTX(XTX)−1XT = X(XTX)−1XT = H,

and

HT = (X(XTX)−1XT )T = (XT )T [(XTX)−1]TXT = X([XTX]T )−1XT = X(XTX)−1XT = H.

Clearly Hy = X[(XTX)−1XT y] ∈ V , and so M(H) ⊆ V . Conversely, if y ∈ V then y = Xu
for some u ∈ Rp and then Hy = HXu = Xu = y, so y ∈ M(H). This completes the proof.

Assignment 6. (a) Otherwise, we can remove a subset of them without changing the span,
and do so repeatedly until we have an independent set.
(b) This is so because Hy must belong to the column space of X, hence equal Xv for some
v. Since everything is linear v should be a linear function X, v = My, and then H = XM .
(c) For any y ∈ V ⊥, Hy = 0, which means that XT

i y has to be zero. These are precisely
the coordinates of the p-dimensional vector XT y, which then should be zero. Conversely, if
y /∈ V ⊥, then XT

i y will be nonzero for some i, and so XT y will not be zero. Thus XT is the
“minimal” matrix with kernel V ⊥ .
(d) We know that Hxi = xi for all i, and using the hint

Xei = xi = Hxi = XBXTxi = XBXTXei.

Since X is injective, this means that BXTXei = ei. This holds for all i, which means that
BXTX is the identity and then B = (XTX)−1.

Assignment 7. Let Ω = UΛUT be the spectral decomposition of Ω, and let λi = Λii be the
eigenvalues of Ω (in an arbitrary order). Then for any v ∈ Rp we have

vTΩv =

p∑
i=1

[Uv]2iλi.

If all the λi’s are (strictly) positive, then this is (strictly) positive for all v ̸= 0 (because U is
injective, so Uv ̸= 0). If one λi < 0 then choosing [Uv]j to be 0 for j ̸= i and 1 for j = i gives
vTΩv < 0. Such a choice is possible since U is surjective.

Assignment 8. Clearly such Q is symmetric, and by orthonormality

Q2 =
k∑

i=1

k∑
j=1

viv
T
i vjv

T
j =

k∑
i=1

viv
T
i viv

T
i =

k∑
i=1

viv
T
i = Q.

Since Qvi = vi for all i and Qv = 0 for all v ∈ [span(v1, . . . , vk)]
⊥, Q is the projection on this

span and hence of rank k.
Conversely, if Q is a projection, we can let v1, . . . , vk be an orthonormal basis of M(Q). Let
V be a matrix with columns v1, . . . , vk. Then we know that Q = V (V TV )−1V T = V V T , and
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it remains to show that this is the same matrix as Q′ =
∑k

i=1 viv
T
i . Since vj = V ej for the

unit vector ej and the vi’s are orthogonal,

Qvj = V V TV ej = V ej =
k∑

i=1

viv
T
i vj = Q′vj .

Hence Q and Q′ agree on the basis ofM(Q) and thus on the wholeM(Q). On the complement,
we have vT vj = 0 for all j, then clearly Qv = 0 = Q′v. Thus Q = Q′.

Assignment 9. (a) If U is orthogonal, then W = UZ ∼ N(0, UIUT ) = N(0, I). Let H =
UΛUT be a spectral decomposition of H with the first r elements of Λ equal to one and the
rest equal to zero (in view of a previous assignment). Then

ZTHZ = W TΛW =

r∑
i=1

W 2
i ∼ χ2

r .

(We used the fact that the marginal law of (W1, . . . ,Wr) is N(0r, Ir×r).
(b) Define Z = Ω−1/2(Y − µ) ∼ N(0,Ω−1/2ΩΩ−1/2) = N(0p, Ip×p). Then

(Y − µ)TΩ−1(Y − µ) = ZTZ ∼ χ2
p.
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