

ANSWER SHEET 8

Assignment 1. (i). Let \bar{X}_I be the proportion of the sample points (X_1, \dots, X_n) that are in I . This is an average of a sample of Bernoulli random variables with success probability $p_I = \mathbb{P}(X \in I)$. A confidence interval for p_I is

$$\{p : n(p - \bar{X}_I)^2 \leq \bar{X}_I(1 - \bar{X}_I)\chi^2_{1,1-\alpha}\}.$$

(ii). Let F be the distribution function. Since h is small, we have

$$f(x) \approx \frac{F(x+h) - F(x)}{h} = \frac{p_I}{h}.$$

(iii). The approximate confidence interval for $f(x)$ is the rescaling of that of p_I , namely

$$\{p/h : n(p - \bar{X}_I)^2 \leq \bar{X}_I(1 - \bar{X}_I)\chi^2_{1,1-\alpha}\}.$$

The density estimator is constant at each bin, so the confidence interval of $f(y)$, $y \in I$ is the same as that of $f(x)$. Now, since f is assumed continuous, its values do not vary much in I , so this is sensible.

(iv). There are $(B - A)/h$ bins. More precisely, the number of bins is the smallest integer $\geq (B - A)/h$.

(v). The Bonferroni correction entails dividing α by the number of bins $m \approx (B - A)/h$. The confidence region is therefore the product set

$$\{p/h : n(p - \bar{X}_{I_j})^2 \leq \bar{X}_{I_j}(1 - \bar{X}_{I_j})\chi^2_{1,1-\alpha/m}\}, \quad j = 1, \dots, m.$$

Assignment 2. (i).

```
data("faithful", package = "datasets")
x <- faithful$waiting
```

(ii).

```
plot(density(x))
```

The default kernel used by `density` is Gaussian.

(iii).

```
hist(x, xlab = "Waiting times", ylab = "Frequency",
probability = TRUE, main = "Gaussian kernel", border = "gray")
lines(density(x, width = 12), lwd = 2)
```

(iv).

```
hist(x, xlab = "Waiting times", ylab = "Frequency",
probability = TRUE, main = "Rect. kernel", border = "gray")
lines(density(x, width = 12, window = "rectangular"), lwd = 2)
rug(x)
hist(x, xlab = "Waiting times", ylab = "Frequency",
probability = TRUE, main = "Triang. kernel", border = "gray")
lines(density(x, width = 12, window = "triangular"), lwd = 2)
```

(v). Different kernels, same bandwidth.

```
(vi).  hist(x, xlab = "Waiting times", ylab = "Frequency",
           probability = TRUE, main = "Manual bw selection, Gaussian kernel"
           ,border = "gray")
           bandwidth <- 1:10
           for(i in bandwidth)
             lines(density(x, width = 12, bw=i), lwd = 2, col=i)
           legend("topright",legend=bandwidth,
           col=seq(bandwidth),lty=1)
```

We could chose 3 or 4?

(vii). The normal reference rule chooses a bandwidth of 4.7, CV a bandwidth of 2.66, manual selection here is 3. Here the comparison plot.

```
hist(x, xlab = "Waiting times", ylab = "Frequency",
      probability = TRUE, main = "Manual bw selection,
      Gaussian kernel", border = "gray")
      bandwidth <- c('manual','nrd0' , 'ucv')
      lines(density(x,bw=3),col=1)
      for(i in 2:length(bandwidth))
        lines(density(x,bw=bandwidth[i]),col=i)
      legend("topright",legend=bandwidth,
      col=seq(bandwidth),lty=1)
```

Assignment 3. (a) $(AB)_{ik} = \sum_{j=1}^m a_{ij}b_{jk}$ thus

$$\text{tr}(AB) = \sum_{i=1}^n (AB)_{ii} = \sum_{i=1}^n \sum_{j=1}^m a_{ij}b_{ji} = \sum_{j=1}^n \sum_{i=1}^m b_{ji}a_{ij} = \text{tr}(BA).$$

(b) This follows from (a) with $A' = A$ and $B' = BC$.

(c) By linearity of the expected value, $\mathbb{E}(\text{tr}(A)) = \mathbb{E} \sum_{i=1}^n a_{ii} = \sum_{i=1}^n \mathbb{E}(a_{ii}) = \text{tr}(\mathbb{E}(A))$.

Assignment 4. (a) Let $v \in \mathbb{R}^p \setminus \{0\}$ such that $Pv = \lambda v$. Then

$$\lambda v = Pv = PPv = P\lambda v = \lambda Pv = \lambda^2 v.$$

As $v \neq 0$ this implies $\lambda = \lambda^2$; equivalently $\lambda \in \{0, 1\}$.

(b) There exists $u \in \mathbb{R}^p$ such that $v = Pu = PPu = Pv$.

(c) We have $(Pw)^T x = w^T P^T x = w^T (Px) = 0$ because $w \in W$ must be orthogonal to $Px \in V$. This means that Pw is orthogonal to everything and hence equals 0.

(d) Each $x \in \mathbb{R}^p$ can be written (uniquely) as $v + w$, $v \in V$, $w \in V^\perp$. Since P and Q agree on V and V^\perp , they must agree throughout \mathbb{R}^p .

Assignment 5. (a) For each $u = (u_1, \dots, u_p) \in \mathbb{R}^p$ we have $Xu = u_1x_1 + \dots + u_p x_p$, and these constitute precisely the elements of V .

(b) If $X^T X v = 0$, then

$$\|Xv\|^2 = v^T X^T X v = 0,$$

which means that $Xv = 0$. By part (a), Xv is a linear combination of the columns of X . Since these are independent, it must be that $v = 0$. As the $p \times p$ matrix $X^T X$ is injective, it must be invertible.

(c) To see that H is a projection simply note that

$$H^2 = X(X^T X)^{-1} X^T X (X^T X)^{-1} X^T = X(X^T X)^{-1} X^T = H,$$

and

$$H^T = (X(X^T X)^{-1} X^T)^T = (X^T)^T [(X^T X)^{-1}]^T X^T = X([X^T X]^T)^{-1} X^T = X(X^T X)^{-1} X^T = H.$$

Clearly $Hy = X[(X^T X)^{-1} X^T y] \in V$, and so $M(H) \subseteq V$. Conversely, if $y \in V$ then $y = Xu$ for some $u \in \mathbb{R}^p$ and then $Hy = HXu = Xu = y$, so $y \in M(H)$. This completes the proof.

Assignment 6. (a) Otherwise, we can remove a subset of them without changing the span, and do so repeatedly until we have an independent set.

(b) This is so because Hy must belong to the column space of X , hence equal Xv for some v . Since everything is linear v should be a linear function X , $v = My$, and then $H = XM$.

(c) For any $y \in V^\perp$, $Hy = 0$, which means that $X_i^T y$ has to be zero. These are precisely the coordinates of the p -dimensional vector $X^T y$, which then should be zero. Conversely, if $y \notin V^\perp$, then $X_i^T y$ will be nonzero for some i , and so $X^T y$ will not be zero. Thus X^T is the “minimal” matrix with kernel V^\perp .

(d) We know that $Hx_i = x_i$ for all i , and using the hint

$$Xe_i = x_i = Hx_i = XBX^T x_i = XBX^T Xe_i.$$

Since X is injective, this means that $BX^T Xe_i = e_i$. This holds for all i , which means that $BX^T X$ is the identity and then $B = (X^T X)^{-1}$.

Assignment 7. Let $\Omega = U\Lambda U^T$ be the spectral decomposition of Ω , and let $\lambda_i = \Lambda_{ii}$ be the eigenvalues of Ω (in an arbitrary order). Then for any $v \in \mathbb{R}^p$ we have

$$v^T \Omega v = \sum_{i=1}^p [Uv]_i^2 \lambda_i.$$

If all the λ_i 's are (strictly) positive, then this is (strictly) positive for all $v \neq 0$ (because U is injective, so $Uv \neq 0$). If one $\lambda_i < 0$ then choosing $[Uv]_j$ to be 0 for $j \neq i$ and 1 for $j = i$ gives $v^T \Omega v < 0$. Such a choice is possible since U is surjective.

Assignment 8. Clearly such Q is symmetric, and by orthonormality

$$Q^2 = \sum_{i=1}^k \sum_{j=1}^k v_i v_i^T v_j v_j^T = \sum_{i=1}^k v_i v_i^T v_i v_i^T = \sum_{i=1}^k v_i v_i^T = Q.$$

Since $Qv_i = v_i$ for all i and $Qv = 0$ for all $v \in [span(v_1, \dots, v_k)]^\perp$, Q is the projection on this span and hence of rank k .

Conversely, if Q is a projection, we can let v_1, \dots, v_k be an orthonormal basis of $M(Q)$. Let V be a matrix with columns v_1, \dots, v_k . Then we know that $Q = V(V^T V)^{-1} V^T = VV^T$, and

it remains to show that this is the same matrix as $Q' = \sum_{i=1}^k v_i v_i^T$. Since $v_j = V e_j$ for the unit vector e_j and the v_i 's are orthogonal,

$$Qv_j = VV^T V e_j = V e_j = \sum_{i=1}^k v_i v_i^T v_j = Q' v_j.$$

Hence Q and Q' agree on the basis of $M(Q)$ and thus on the whole $M(Q)$. On the complement, we have $v^T v_j = 0$ for all j , then clearly $Qv = 0 = Q'v$. Thus $Q = Q'$.

Assignment 9. (a) If U is orthogonal, then $W = UZ \sim N(0, UIU^T) = N(0, I)$. Let $H = U\Lambda U^T$ be a spectral decomposition of H with the first r elements of Λ equal to one and the rest equal to zero (in view of a previous assignment). Then

$$Z^T H Z = W^T \Lambda W = \sum_{i=1}^r W_i^2 \sim \chi_r^2.$$

(We used the fact that the marginal law of (W_1, \dots, W_r) is $N(0_r, I_{r \times r})$.

(b) Define $Z = \Omega^{-1/2}(Y - \mu) \sim N(0, \Omega^{-1/2}\Omega\Omega^{-1/2}) = N(0_p, I_{p \times p})$. Then

$$(Y - \mu)^T \Omega^{-1}(Y - \mu) = Z^T Z \sim \chi_p^2.$$