
Statistics for Data Science Rajita Chandak and Myrto Limnios

Answer sheet 7

Assignment 1. (a) We have X ∼ N(µ, 1/n).
(b) Under H0,

√
nX ∼ N(0, 1). Letting Φ denote the Gaussian distribution function, we

obtain the equation

1− α = P(−vα ≤ X ≤ vα) = P(−
√
nvα ≤

√
nX ≤

√
nvα) = Φ(

√
nvα)− Φ(−

√
nvα).

By symmetry the right hand-side equals 2Φ(
√
nvα)− 1. Thus 1− α/2 = Φ(

√
nvα) and vα =

n−1/2Φ−1(1− α/2) = n−1/2z1−α/2.
(c) The p-value is the infimum of the α’s for which we reject,

p = p(X1, . . . , Xn) = inf{α : |X| > vα} = inf{α : |X| > n−1/2z1−α/2}.

Since z1−α/2 is continuous and decreasing in α, the infimum is attained when |X| equals the
threshold

|X| = n−1/2z1−p/2 = n−1/2Φ−1(1− p/2) =⇒ p(X1, . . . , Xn) = 2(1− Φ(
√
n|X|)).

(d) The code below carries out the simulation :

set.seed(25102017)

mu <- 0

n <- 11

REP <- 1000

p <- numeric(REP)

for(i in 1:REP)

{

X <- rnorm(n, mean = mu, sd = 1)

p[i] <- 2 - 2 * pnorm(sqrt(n) * abs(mean(X)))

}

hist(p)

The resulting histrogram suggests that p-value is uniformly distributed when H0 holds ; in fact
this can be shown to hold true in the continuous case by means of the probability transform.
If µ is different than zero, than the histogram is concentrated around zero ; the concentration
increases with n and with |µ|.

Assignment 2. Observe that

Λ(θ0) =
supθ Π

n
j=1 exp[−1

2(θ −Xj)
2]

supθ=θ0 Π
n
j=1 exp[−

1
2(θ −Xj)2]

=
Πn

j=1 exp[−1
2(X −Xj)

2]

Πn
j=1 exp[−

1
2(θ0 −Xj)2]

a
= exp{−1

2

n∑
j=1

[(X2
j −X

2
)− (X2

j − θ0Xj + θ20)]} = exp{−1

2

n∑
j=1

[−X
2
+ 2θ0Xj − θ20)]}

= exp{n
2
(X − θ0)

2}

Where a is because
∑n

j=1(X − Xj)
2 =

∑n
j=1X

2 − 2XXj + X2
j = nX

2 − 2X
∑n

j=1Xj +∑n
j=1X

2
j =

∑n
j=1[X

2
j −X

2
]. Now,

P0{Λ(θ0) > cα} = P0{
√
n|X − θ0| > q1−α/2} = P0{n(X − θ0)

2 > χ2
1,1−α} = α
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(a) (i) In this case In(θ) = n, which is free of the parameter θ. Hence, the Wald test is given
by 1(n(X − θ0)

2 > χ2
1,1−α). So, the associated 100(1− α)% confidence interval for θ is given

by

{θ : n(X − θ)2 ≤ χ2
1,1−α} =

[
X −

√
χ2
1,1−α/n, X +

√
χ2
1,1−α/n

]
.

(ii) The likelihood ratio test for testing H0 : θ = θ0 versus H1 : θ ̸= θ0 is given by 1(
√
n|X −

θ0| > q1−α/2). So, the associated 100(1− α)% confidence interval for θ is given by

{θ :
√
n|X − θ| ≤ q1−α/2} =

[
X − q1−α/2/

√
n, X + q1−α/2/

√
n
]
.

(iii) However, observe that
√
χ2
1,1−α = q1−α/2 because of the following reason. Let Z ∼ N(0, 1)

and c be such that P (|Z| > c) = α ⇔ c = q1−α/2 > 0 since α < 1. However, this is the same

as saying P (Z2 > c2) = α ⇔ c2 = χ2
1,1−α. So,

√
χ2
1,1−α = q1−α/2. Thus, the two confidence

intervals are the same.
(b) (i) For testing H0 : p = p0 versus H1 : p ̸= p0, Wilks’ theorem applied to the likelihood
ratio statistic yields the test 1(2nX log(X/p0) + 2(n− nX) log{(1−X)/(1− p0)} > χ2

1,1−α).
So, the associated 100(1− α)% confidence interval for p is given by

{p : 2nX log(X/p) + 2(n− nX) log{(1−X)/(1− p)} ≤ χ2
1,1−α}.

Observe that the above inequation does not in general yield a closed form expression of the
confidence interval.
(ii)The likelihood ratio test for testing H0 : θ = θ0 versus H1 : θ ̸= θ0 is given by 1(

√
n|X −

θ0| > q1−α/2). So, the associated 100(1− α)% confidence interval for θ is given by

{θ :
√
n|X − θ| ≤ q1−α/2} =

[
X − q1−α/2/

√
n, X + q1−α/2/

√
n
]
.

(ii) In this case In(p) = n/(p(1− p)). Hence, the Wald test is given by 1(n(X − p0)
2/(X(1−

X)) > χ2
1,1−α). So, the associated 100(1− α)% confidence interval for p is given by

{p : n(X − p)2/(X(1−X)) ≤ χ2
1,1−α}.

The above inequation can be solved explicitly (being a quadratic) to obtain a confidence
interval for p.
(iii) The asymptotic test using the convergence in distribution as given is 1(

√
n|X − p0| >

q1−α/2

√
p0(1− p0)). So, the associated 100(1− α)% confidence interval for p is given by

{p :
√
n|X − p| ≤ q1−α/2

√
p(1− p)} = {p : n(X − p)2 ≤ q21−α/2p(1− p)}.

Once again, the above inequation can be solved explicitly (being a quadratic) to obtain a
confidence interval for p.
(iv) No, these confidence intervals are not the same. Note that obtaining an explicit formula
for the intervals is easy in the case of (ii), not so easy in the case of (iii) (this confidence
interval is sometimes referred to as Wilson’s confidence interval), and very hard in the case
of (i).
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Assignment 3. (a) Note that∫ ∞

−∞
HistX1,X2,...,Xn(x)dx =

∑
j∈Z

∫
Ij

HistX1,X2,...,Xn(x)dx

=
∑
j∈Z

∫
Ij

1

nh

n∑
i=1

1(Xi ∈ Ij)dx

=
∑
j∈Z

1

nh

n∑
i=1

1(Xi ∈ Ij)

∫
Ij

dx

=
∑
j∈Z

1

nh

n∑
i=1

1(Xi ∈ Ij)× h

=
1

n

n∑
i=1

∑
j∈Z

1(Xi ∈ Ij) = 1

since
∑

j∈Z 1(Xi ∈ Ij) = 1 for each i as {Ij} is a partition of R.
(b) Fix any x ∈ R. Then there exists a unique j such that x ∈ Ij . Then, nhHistX1,X2,...,Xn(x) =∑n

i=1 1(Xi ∈ Ij) ∼ Bin(n, pj), where pj = P[X1 ∈ Ij ].
So, E[nhHistX1,X2,...,Xn(x)] = npj and Var(nhHistX1,X2,...,Xn(x)) = npj(1− pj).
(c) Note that

E[HistX1,X2,...,Xn(x)] =
pj
h

= h−1P[X1 ∈ Ij ] =
1

h

∫
Ij

f(y)dy → f(x)

as h → 0 by the continuity of f .
(d) Now,

E{[HistX1,X2,...,Xn(x)− f(x)]2} = (nh)−2 E{[nhHistX1,X2,...,Xn(x)− nhf(x)]2}
= (nh)−2

{
Var(nhHistX1,X2,...,Xn(x)) + [npj − nhf(x)]2}

}
= (nh)−2

{
npj(1− pj) + (nh)2[(pj/h)− f(x)]2

}
= (nh)−1(pj/h)(1− pj) + [(pj/h)− f(x)]2.

(e) We have seen in part (c) that if h → 0 then pj/h → f(x). So, pj → 0 as h → ∞. Thus,
if h → 0 and nh → ∞, it follows from the above expression that E{[HistX1,X2,...,Xn(x) −
f(x)]2} → 0.
(f) The limit h → 0 implies that the we need to choose smaller and smaller values of the
bin-width for the mean squared error to converge to zero.
The limit nh → ∞ implies that the bin-width should not converge to zero arbitrarily fast – its
rate of decay should not be slower than n−1. Note that E[

∑n
i=1 1(Xi ∈ Ij)] = npj ≈ nhf(x)

for small enough h. So, the previous condition will also guarantee that even if we take a very
small bin-width h for Ij , the average/expected number of observations in Ij grows to infinity
(provided f(x) > 0 ⇔ x is in the support of f), i.e., we still have enough sample points in
that bin to be able to accurately estimate f(x).
(g) By Chebyshev’s inequality, for any ϵ > 0, we have

P[|HistX1,X2,...,Xn(x)− f(x)| > ϵ] ≤
E{[HistX1,X2,...,Xn(x)− f(x)]2}

ϵ2
→ 0
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as h → 0 and nh → ∞. Thus, under these conditions, it follows that HistX1,X2,...,Xn(x) is
consistent for f(x).

Assignment 4. (a) The 100(1− α)% confidence intervals for µ and σ2 are

R1,α(X) =

[
X −

q1−α
2
σ

√
n

,X +
q1−α

2
σ

√
n

]
and R2,α(X) =

[
(n− 1)S2

χ2
(n−1),(1−α

2
)

,
(n− 1)S2

χ2
(n−1),α

2

]
,

where qγ is the γ quantile of the N(0, 1) distribution.
(b) No. This is because the independence of X and S2 implies that P[R1,α(X) ∋ µ,R2,α(X) ∋
σ2] = P[R1,α(X) ∋ µ]P[R2,α(X) ∋ σ2] = (1− α)2 < (1− α). The last inequality follows from
the fact that 1− α ∈ (0, 1).
Using the Bonferroni method, we have

P[R1,β(X) ∋ µ,R2,β(X) ∋ σ2] ≥ P[R1,β(X) ∋ µ] + P[R2,β(X) ∋ σ2]− 1 = (2− 2β)− 1.

Thus, we need β to satisfy 1−2β = 1−α ⇔ β = α/2. So, the Bonferroni corrected 100(1−α)%
confidence region for (µ, σ2)⊤ is R1,α/2(X)×R2,α/2(X).
(c) Note that P[R1,β(X) ∋ µ,R2,β(X) ∋ σ2] = P[R1,β(X) ∋ µ]P[R2,β(X) ∋ σ2] = (1 − β)2.
So, we need (1− β)2 = 1− α ⇔ β = 1−

√
1− α. Thus, a 100(1− α)% confidence region for

(µ, σ2)⊤ is R1,(1−
√
1−α)(X)×R2,(1−

√
1−α)(X).

(d) The confidence region in part (c) is preferable since it is exact, i.e., the coverage probability
is equal to (1− α) for all values of n. Further, the Bonferroni corrected confidence interval is
conservative.
(e) The likelihood ratio test statistic for testing H0 : µ = µ0, σ

2 = σ2
0 vs H1 : µ ̸= µ0, σ

2 ̸= σ2
0

is given by

ln =

(
σ̂2

σ2
0

)n/2

exp

[
1

2σ̂2

n∑
i=1

(Xi −X)2 − 1

2σ2
0

n∑
i=1

(Xi − µ0)
2

]
,

where σ̂2 = (n− 1)S2/n.
(f) Wilks’ theorem says that under the null hypothesis, −2 log ln converges in distribution to
the χ2

2 distribution as n → ∞. Now,

−2 log ln = n{log σ2
0 − log(n− 1) + log n− logS2} − n+

(n− 1)S2

σ2
0

+
n(X − µ0)

2

σ2
0

,

Thus, a 100(1− α)% confidence region for (µ, σ2)⊤ is given by{
(µ, σ2) : n{log σ2 − log(n− 1) + log n− logS2} − n

2
+

(n− 1)S2

σ2
+

n(X − µ)2

σ2
≤ χ2

2,1−α

}
.

(g) Using the continuous mapping theorem, it follows that the asymptotic distribution of Un

is χ2
2 as n → ∞.

(h) A 100(1− α)% confidence region for (µ, σ2)⊤ is given by{
(µ, σ2) :

n(X − µ)2

σ2
+

n(S2 − σ2)2

2σ4
≤ χ2

2,1−α

}
.
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(i) Since S2 converges in probability to σ2 as n → ∞, it follows from Slutsky’s theorem and
part (g) that Vn converges in distribution to the χ2

2 distribution as n → ∞.
(j) A 100(1− α)% confidence region for (µ, σ2)⊤ is given by{

(µ, σ2) :
n(X − µ)2

S2
+

n(S2 − σ2)2

2S4
≤ χ2

2,1−α

}
.

(k) It is easy to see that each of RB(X), RC(X) and RD(X) can be written in the form
{(µ, σ2) : H(µ, σ2) ≤ h} for a real valued function H and a real number h. To write RA(X)
in this form, note that

RA(X) =

{
(µ, σ2) : X −

q1−α
2
σ

√
n

≤ µ ≤ X +
q1−α

2
σ

√
n

,
(n− 1)S2

χ2
(n−1),(1−α

2
)

≤ σ2 ≤ (n− 1)S2

χ2
(n−1),α

2

}

=

{
(µ, σ2) : |X − µ| −

q1−α
2
σ

√
n

≤ 0,

(
(n− 1)S2

χ2
(n−1),(1−α

2
)

− σ2

)(
(n− 1)S2

χ2
(n−1),α

2

− σ2

)
≤ 0

}

=

{
(µ, σ2) : max

(
|X − µ| −

q1−α
2
σ

√
n

,

[
(n− 1)S2

χ2
(n−1),(1−α

2
)

− σ2

][
(n− 1)S2

χ2
(n−1),α

2

− σ2

])
≤ 0

}
.

Using the information given, we have the following simplified expressions :

RA(X) =

{
(µ, σ2) : max

(
|µ| − q0.975σ√

10
,

[
9

χ2
9,0.975

− σ2

][
9

χ2
9,0.025

− σ2

])
≤ 0

}

RB(X) =

{
(µ, σ2) : 10(log σ2 − log 0.9)− 10 +

9

σ2
+

10µ2

σ2
≤ χ2

2,0.95

}
RC(X) =

{
(µ, σ2) :

10µ2

σ2
+

5(1− σ2)2

σ4
≤ χ2

2,0.95

}
and

RD(X) =
{
(µ, σ2) : 10µ2 + 5(1− σ2)2 ≤ χ2

2,0.95

}
.

The four confidence regions are displayed in the plots below (see Figures 1-3) with the x-axis
for µ and the y-axis for σ2.
It is observed that as the sample size grows, the confidence regions become more concentrated
around the true value of µ and σ2, namely, µ = 0 and σ2 = 1. The shapes of the three large
sample confidence regions (in particular RB and RD) are quite similar when the sample size
is large indicating that they will have similar properties (e.g., coverage probability, area etc.).
The exact confidence region is always trapezoidal in shape.
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Figure 1 – Plots for n = 10
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Figure 2 – Plots for n = 25
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Figure 3 – Plots for n = 100 (note the change of scale of axes)

Assignment 5. (i). # We are generating 100 binimials with n=trials and p=true.p,

feed it to prop.test and get the p-values.

# The experiment is repeated nexp times.

p <- matrix(replicate(positions*nrep,prop.test(rbinom(1,trials,true.p),

trials,true.p)$p.value),nrep)

# Every row contains the 100 p-values

dim(p)

[1] 1000 100

# Take the minimum of each p-value and test if it’s significant

mean(apply(p,1,min)<alpha)

[1] 0.482

We have a significant result in nearly half of the cases, while under H0 we expect to
have water in only 5% of the sites.

(ii). When we increase α the probability of having a false positive is nearly 1.

alpha=0.05

mean(apply(p,1,min)<alpha)

[1] 0.973

(iii). For α = 0.01 the adjusted p-values will be 0.015, while for α = 0.04 they will be 0.04.
Here the code

pa <- apply(p,1,p.adjust,method="bonferroni")

mean(apply(pa,2,min)<alpha)
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pa <- apply(p,1,p.adjust,method="holm")

mean(apply(pa,2,min)<alpha)

pa <- apply(p,1,p.adjust,method="hochberg")

mean(apply(pa,2,min)<alpha)

(iv). prop.test is using the normal approximation. It will give you warning when true.p×trials
is less than 5 (because of the Chi.square test). To overcome it, you could use binom.test

(v). To smile, look here https ://xkcd.com/882/
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