

ANSWER SHEET 6

Assignment 1. (a) The Neyman–Pearson most powerful test is given by the rejection region

$$\frac{(\sqrt{2\pi}\sigma_1)^{-n} \exp\{-\sum_{i=1}^n X_i^2/(2\sigma_1^2)\}}{(\sqrt{2\pi}\sigma_0)^{-n} \exp\{-\sum_{i=1}^n X_i^2/(2\sigma_0^2)\}} > k$$

which is equivalent to

$$\sum_{i=1}^n X_i^2 < c$$

since $\sigma_1^2 < \sigma_0^2$.

To determine the critical value c it is enough to realize that the $\sum_{i=1}^n X_i^2/\sigma_0^2 \sim \chi_n^2$ under H_0 . Denote the α -quantile of the χ_n^2 distribution by c_α , i.e., $c_\alpha = H_n^{-1}(\alpha)$, where H_n is the cdf of the χ_n^2 distribution. Therefore, the critical value is $c = \sigma_0^2 c_\alpha$.

No, the critical value of the test does not depend on σ_1^2 .

(b) The power against $\sigma_1^2 < \sigma_0^2$ equals

$$P_{\sigma_1^2} \left(\frac{\sum_{i=1}^n X_i^2}{\sigma_0^2} < c_\alpha \right) = P_{\sigma_1^2} \left(\frac{\sum_{i=1}^n X_i^2}{\sigma_1^2} < c_\alpha \frac{\sigma_0^2}{\sigma_1^2} \right) = H_n \left(c_\alpha \frac{\sigma_0^2}{\sigma_1^2} \right).$$

(c) The minimal sample size needed to reject H_0 with probability β when the true variance is σ_1^2 is given implicitly as the solution to

$$H_n \left(c_\alpha \frac{\sigma_0^2}{\sigma_1^2} \right) \geq \beta.$$

Assignment 2. (a) The Neyman–Pearson test rejects for

$$\frac{p_1^T (1-p_1)^{n-T}}{p_0^T (1-p_0)^{n-T}} > k,$$

where $T = \sum_{i=1}^n X_i$. Equivalently, it rejects for

$$\left[\frac{p_1 (1-p_0)}{p_0 (1-p_1)} \right]^T \left[\frac{1-p_1}{1-p_0} \right]^n > k.$$

Since $\frac{p_1 (1-p_0)}{p_0 (1-p_1)} > 1$ (because $p_1 > p_0$), the critical region can be further simplified to $T > c$. Under H_0 , the statistic $T = \sum_{i=1}^n X_i \sim \text{Bin}(n, p_0)$. Let $c = c_{1-\alpha}$ be the $(1-\alpha)$ -quantile of this distribution, i.e., $c_{1-\alpha} = \inf\{x : G_{n,p_0}(x) \geq 1-\alpha\} = G_{n,p_0}^-(1-\alpha)$, where G_{n,p_0} denotes the cdf of the $\text{Bin}(n, p_0)$ distribution. If $1 - G_{n,p_0}(c_{1-\alpha}) = \alpha$, then the test $T > c_{1-\alpha}$ is the most powerful test of significance level α of the test. Otherwise, when

$$\mathbb{P}_{H_0}(T > c_{1-\alpha}) < \alpha < \mathbb{P}_{H_0}(T \geq c_{1-\alpha}),$$

we do not get a most powerful test.

No, when a most powerful test exists, the critical value of the test does not depend on p_1 .

(b) For $p_0 = \frac{3}{10}$, $n = 3$, we have $P(T = 3) = \binom{3}{3} \left(\frac{3}{10}\right)^3 = \frac{27}{1000}$, $P(T = 2) = \binom{3}{2} \left(\frac{3}{10}\right)^2 \left(1 - \frac{3}{10}\right) = \frac{189}{1000}$. Thus, rejecting for $T > 2$ would give level 0.027 while rejecting for $T > 1$ would give

level $0.027 + 0.189 = 0.216$. Therefore, there does not exist a most powerful test at significance level $\alpha = 0.05$.

(c) However, there exists a most powerful test at the significance level $\alpha = 0.027$. It is given by $\delta(X_1, X_2, \dots, X_n) = \mathbf{1}(T > 2)$.

(d) The statistic

$$\frac{T - np_0}{\sqrt{np_0(1 - p_0)}}$$

is asymptotically standard normal under H_0 . Hence, the asymptotic significance level- α test rejects when this statistic exceeds the $(1 - \alpha)$ -quantile of the $N(0, 1)$ distribution.

Assignment 3. (a) The likelihood ratio is

$$\Lambda(X_1, \dots, X_n) = \frac{5^n e^{-5 \sum X_i}}{4^n e^{-4 \sum X_i}} = \exp(n \log(5/4) - \sum X_i).$$

We reject H_0 if $\Lambda(X_1, \dots, X_n)$ is large; equivalently, if $T(X_1, \dots, X_n) = \sum X_i$ is small. The test function is therefore $\delta(X_1, \dots, X_n) = 1$ if $T \leq q$ and 0 otherwise, where q is such that $\mathbb{P}(\sum X_i \leq q) = \alpha$.

(b) The moment generating function of the sum is

$$\prod_{i=1}^n \frac{\lambda}{\lambda - t} = \left(\frac{\lambda}{\lambda - t} \right)^n$$

which is the moment generating function of a $Gamma(n, \lambda)$ random variable.

(c) The test function is the same for all $\lambda_1 > 4$. This test can be shown to be uniformly optimal. (If $\lambda_1 < 4$, we would reject when $\sum X_i$ is large.)

(d) Under H_0 , $T \sim Gamma(n, 4)$. Therefore q is the α -quantile of the $Gamma(n, 4)$ distribution. This is a continuous distribution, so q exists, and it is unique because the density is positive on $[0, \infty)$.

(e)–(g) We may use the following code :

```
set.seed(18102017)
lambda <- 4
n <- 17
REP <- 1000
alpha <- 0.05
rej <- logical(REP)
q <- qgamma(alpha, shape = n, rate = 4)
for(i in 1:REP)
{
  X <- rexp(n, rate = lambda)
  rej[i] <- (sum(X) <= q) #### returns 1 if the condition is satisfied, 0 otherwise
}
mean(rej)
```

(h) When $\lambda = 4$, we indeed reject approximately 50 times, namely 5%. When $\lambda = 3$ we reject less; the test is conservative and the type I error is smaller than 5%. When $\lambda = 5$ we reject more (209 times in this particular example), so the power is approximately 0.209; as λ

becomes larger we reject more and more and the power increases and approaches one. These two phenomena (increase of power and decrease of type I error) occur more rapidly the larger n is.

Assignment 4. (i) The likelihood function for the sample is the joint probability function of all x_i 's and y_i 's and is given by

$$L(\theta_1, \theta_2) = \prod_{i=1}^n \frac{\theta_1^{x_i} e^{-\theta_1}}{x_i!} \prod_{i=1}^n \frac{\theta_2^{y_i} e^{-\theta_2}}{y_i!} = \left(\frac{1}{k}\right) \theta_1^{\sum_{i=1}^n x_i} e^{-n\theta_1} \theta_2^{\sum_{i=1}^n y_i} e^{-n\theta_2}$$

where $k = x_1! \dots x_n! y_1! \dots y_n!$ and $n = 100$.

We can see that $L(\theta_1, \theta_2)$ is maximised when both θ_1 and θ_2 are equal to their m.l.e. $\theta_1 = \bar{x}$ and $\theta_2 = \bar{y}$.

Moreover under H_0 the likelihood is

$$L(\theta) = \left(\frac{1}{k}\right) \theta^{\sum_{i=1}^n x_i + \sum_{i=1}^n y_i} e^{-2n\theta},$$

a function of only one parameter $\theta = \theta_1 = \theta_2$ maximised in

$$\hat{\theta} = \frac{1}{2n} \left(\sum_{i=1}^n x_i + \sum_{i=1}^n y_i \right) = \frac{1}{2}(\bar{x} + \bar{y}).$$

In this example the parameter space is $\Theta = \{(\theta_1, \theta_2) : \theta_1 > 0, \theta_2 > 0\}$, and we can write the likelihood ratio as

$$\Lambda = \frac{L(\hat{\theta})}{L(\theta_0)} = \frac{\bar{x}^{\bar{x}} \bar{y}^{\bar{y}}}{\hat{\theta}^{\bar{x} + \bar{y}}}.$$

(ii) We will actually need only the value of $\log \Lambda$, which is easier to compute $\log(\Lambda) = 4.76$. Note that straightforward evaluation of Λ e.g. in R results in NaN.

(iii) $2 \log \Lambda$ is an approximate χ_1^2 distribution, therefore we would reject the null hypothesis for value of $2 \log \Lambda$ larger than the $k = 3.841$, where k is such that $\mathbb{P}_0[\Lambda \geq k] = \alpha$. In our case $2 \log \Lambda = 9.52$ hence we reject the null hypothesis $\theta_1 = \theta_2$.

Assignment 5. (a) We know that $\sqrt{n}(\hat{\theta}_n - \theta) \rightarrow N(0, 1/I_1(\theta))$. The asymptotic variance is therefore $v(\theta) = 1/(nI_1(\theta))$.

(b) We have

$$T = nI_1(\hat{\theta})(\hat{\theta} - \theta_0)^2.$$

(c) Since v is continuous $v(\hat{\theta})/v(\theta) \rightarrow 1$ in probability. By Slutsky's theorem

$$T = nI_1(\theta)(\hat{\theta} - \theta_0)^2 \frac{v(\theta)}{v(\hat{\theta})} = \left(\sqrt{nI_1(\theta)}(\hat{\theta} - \theta_0) \right)^2 \frac{v(\theta)}{v(\hat{\theta})} \rightarrow \chi_1^2.$$

(d) Write $\theta = \sigma^2$ to avoid differentiation errors. The log likelihood and its derivatives are

$$\begin{aligned} \ell(x_1, \dots, x_n; \theta) &= -\frac{n}{2} \ln(2\pi\theta) - \frac{\sum_{i=1}^n x_i^2}{2\theta} \\ \ell'(x_1, \dots, x_n; \theta) &= \frac{\sum x_i^2}{2\theta^2} - \frac{n}{2\theta} \quad \Rightarrow \quad \hat{\theta} = \frac{1}{n} \sum_{i=1}^n x_i^2. \\ \ell''(x_1, \dots, x_n; \theta) &= \frac{n}{2\theta^2} - \frac{\sum x_i^2}{\theta^3} \quad \Rightarrow \quad \ell''(\hat{\theta}) = -\frac{n}{2\hat{\theta}^2} < 0, \end{aligned}$$

so $\hat{\theta}$ is a maximizer and $nI_1(\hat{\theta}) = I_n(\hat{\theta}) = -\mathbb{E}\ell''(\hat{\theta}) = n/2\hat{\theta}^2$. We obtain the Wald test statistic

$$T = \frac{n}{2\hat{\theta}^2}(\hat{\theta} - \theta_0)^2 = \frac{n}{2} \left(1 - \frac{\sigma_0^2}{\hat{\sigma}^2}\right)^2, \quad \hat{\sigma}^2 = \hat{\theta}.$$

Since T is asymptotically χ_1^2 , the approximate Wald test rejects H_0 if T is larger than the $(1 - \alpha)$ -quantile of the χ_1^2 distribution, $\chi_{1,1-\alpha}^2$.

Remark. The distribution of $\sum x_i^2/\sigma_0^2$ is χ_n^2 , so we can get an exact Wald test, but it will not have an explicit form.

(e) The likelihood ratio is

$$\Lambda = \left(\frac{\sigma_0^2}{\hat{\sigma}^2}\right)^{n/2} \exp\left(\frac{n\hat{\sigma}^2}{2\sigma_0^2}\right) \exp\left(-\frac{n}{2}\right).$$

and twice its logarithm is asymptotically χ_1^2 . The asymptotic test rejects therefore when

$$n \left[\frac{\hat{\sigma}^2}{\sigma_0^2} - \log \frac{\hat{\sigma}^2}{\sigma_0^2} - 1 \right] > \chi_{1,1-\alpha}^2.$$

The tests are not the same, but can be shown (by a Taylor expansion, essentially) to be rather close to each other.

Assignment 6. (a) The model

$$\begin{aligned} X_i &\sim N(\mu, \sigma^2) && \text{for every } i \in \{1, \dots, 12\}, \\ X_1, \dots, X_{12} & \text{independent,} \\ \text{the parameters } \mu \text{ and } \sigma^2 & \text{ unknown.} \end{aligned}$$

The null and the alternative hypothesis are :

$$H_0 : \mu = 12.2, \quad H_1 : \mu \neq 12.2.$$

(b) As seen in class, you can pick the statistics

$$T = \sqrt{n} \frac{\bar{X}_n - \mu_0}{S_n},$$

where μ_0 is the value under H_0 , here $\mu_0 = 12.2$.

We can see that T is “small” if H_0 is true, and “large” if H_1 is true. We note as well that \bar{X}_n is an estimator of the true value of μ . So if H_0 is true we expect that $\bar{X}_n \approx \mu_0$ and $T \approx 0$. On the other hand if H_1 is true we expect that $\bar{X}_n \approx \mu \neq \mu_0$ and $T \gg 0$ or $T \ll 0$.

We could also consider $|T|$ as a test statistics and expect small values under H_0 and large under H_1 .

(c) Extreme values correspond to a very large $|T|$, that is for $|T| > c$, where c is a critical value.

To find c remember that we want the probability of the type I error (reject H_0 when it's true) to be equal to α . In our case

$$\alpha = \mathbb{P}_{H_0}(\{T < -c\} \cup \{T > c\}) = 1 - \mathbb{P}_{\mu=\mu_0}(-c \leq T \leq c). \quad (1)$$

We know that

$$\sqrt{n} \frac{\bar{X}_n - \mu}{S_n} \sim t_{n-1}.$$

If H_0 is true, $\mu = \mu_0$, so $T \sim t_{n-1}$. Hence to satisfy the condition of (1) we can take $c = t_{n-1}(1 - \alpha/2)$.

(d) $\alpha = 0.05$, so we reject H_0 in favour of H_1 if

$$\left| \sqrt{12} \frac{\bar{X}_n - 12.2}{S_n} \right| > t_{11}(0.975).$$

$$\sqrt{12} \frac{\bar{X}_n - 12.2}{S_n} = 2.002 \quad \text{and } t_{11}(0.975) = 2.20,$$

and we do not have enough evidence to reject H_0 .

(Which doesn't mean that we "accept" H_0 !).

(e) For $\alpha = 0.10$ we reject H_0 in favour of H_1 if

$$\left| \sqrt{12} \frac{\bar{X}_n - 12.2}{S_n} \right| > t_{11}(0.95).$$

$$\sqrt{12} \frac{\bar{X}_n - 12.2}{S_n} = 2.002 \quad \text{and } t_{11}(0.975) = 1.80,$$

and this time we do reject H_0 .

The difference w.r.t. part (d) is that if we allow a bigger type I error we are satisfied with less evidence to make a decision against H_0 .

(f)

$$p_{obs} = \mathbb{P}_{H_0}(\{T < -2.002\} \cup \{T > 2.002\}) = 1 - \mathbb{P}_{\mu=\mu_0}(-2.002 \leq T \leq 2.002).$$

If H_0 is true $T \sim t_{11}$, so

$$p_{obs} = 1 - (F_{t_{11}}(2.002) - F_{t_{11}}(-2.002)),$$

where $F_{t_{11}}$ is the cdf of the t_{11} law. Exploiting the symmetry of this distribution around 0 we obtain that

$$p_{obs} = 2(1 - F_{t_{11}}(2.002)) = 2(1 - 0.9647) = 0.071.$$

(g) $p_{obs} > 0.05$, so we do not reject H_0 in favour of H_1 at a 5% level, while $p_{obs} < 0.10$, thus we do reject H_0 at a 10% significance level.

We could say that p_{obs} is the smallest level for which we would reject H_0 in favour of H_1 .