STATISTICS FOR DATA SCIENCE RaAJiTA CHANDAK AND MYRTO LIMNIOS

ANSWER SHEET 6

Assignment 1. (a) The Neyman—Pearson most powerful test is given by the rejection region

(V2mo1) "exp{— 31, X?/(201)}
(V2mao)mexp{— 7Ly X7/(208)}

>k

which is equivalent to
n
Z X?<ec
i=1

since 0% < 03.

To determine the critical value c it is enough to realize that the > I | X?/o3 ~ x2 under Hy.
Denote the a-quantile of the x2 distribution by ca, i.e., co = H,, *(a), where H,, is the cdf of
the x2 distribution. Therefore, the critical value is ¢ = 03cq.

No, the critical value of the test does not depend on o3.

(b) The power against 02 < o equals
X2 X2 2 2
(B ) <y (B <) (o B),
o o1 o1 o

(¢) The minimal sample size needed to reject Hy with probability 8 when the true variance

is 0 is given implicitly as the solution to

2
of
Hy (Cao_g> > B.
1
Assignment 2. (a) The Neyman-Pearson test rejects for
pi(d—p)""

>k,
pg (1 —po)» T

where T' =Y "' | X;. Equivalently, it rejects for

R

Since g;ﬁ:if; > 1 (because p; > pp), the critical region can be further simplified to 7' > c.

Under Hy, the statistic T = Y1 ; X; ~ Bin(n,py). Let ¢ = ¢i_o be the (1 — a)-quantile of
this distribution, i.e., c1—o = inf{z : Gppy(z) > 1 —a} =G, , (1 — a), where G, denotes

the cdf of the Bin(n,po) distribution. If 1 — G, p,(c1—a) = «, then the test T' > ¢;_, is the
most powerful test of significance level a of the test. Otherwise, when

IP)HO(T > lea) <oa< PHO(T > lea),

we do not get a most powerful test.
No, when a most powerful test exists, the critical value of the test does not depend on pj.

(138)9 For pg = 1—30, n =3, we have P(T = 3) = (g)(%)?’ = %, P(T=2)= (g)(f’—o)Q(l — %) =

1000- Lhus, rejecting for 7' > 2 would give level 0.027 while rejecting for 7' > 1 would give
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level 0.02740.189 = 0.216. Therefore, there does not exist a most powerful test at significance
level o = 0.05.
(c) However, there exists a most powerful test at the significance level o = 0.027. It is given
by 5(X1,X2, cee Xn) = 1(T > 2).
(d) The statistic

T —npg

npo(1 — po)
is asymptotically standard normal under Hy. Hence, the asymptotic significance level-a test
rejects when this statistic exceeds the (1 — a)-quantile of the N(0,1) distribution.

Assignment 3. (a) The likelihood ratio is

5n€f5ZX
A(Xl,...,Xn):W—eXp nlog 5/4 ZX

We reject Hy if A(X1,...,X,) is large; equivalently, if T'(Xq,...,X,) = > X; is small. The
test function is therefore 6(X1,...,X,) = 1 if T' < g and 0 otherwise, where ¢ is such that
P(Y Xi <) = o

(b) The moment generating function of the sum is

Y AP YA
izlA—t_ A—t

which is the moment generating function of a Gamma(n, \) random variable.

(c) The test function is the same for all A\; > 4. This test can be shown to be uniformly
optimal. (If A; < 4, we would reject when ) X, is large.)

(d) Under Hy, T' ~ Gamma(n,4). Therefore ¢ is the a-quantile of the Gamma(n,4) distri-
bution. This is a continuous distribution, so ¢ exists, and it is unique because the density is
positive on [0, 00).

(e)—(g) We may use the following code :

set.seed(18102017)

lambda <- 4
n <- 17
REP <- 1000

alpha <- 0.05
rej <- logical(REP)
q <- gqgamma(alpha, shape = n, rate = 4)
for(i in 1:REP)
{
X <- rexp(n, rate = lambda)
rejli] <- (sum(X) <= q) #### returns 1 if the condition is satisfied, O otherwise
}

mean(rej)

(h) When A = 4, we indeed reject approximately 50 times, namely 5%. When A\ = 3 we
reject less; the test is conservative and the type I error is smaller than 5%. When A\ = 5 we
reject more (209 times in this particular example), so the power is approximately 0.209 ; as A
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becomes larger we reject more and more and the power increases and approaches one. These
two phenomena (increase of power and decrease of type I error) occur more rapidly the larger
n is.

Assignment 4. (i) The likelihood function for the sample is the joint probability function
of all x;’s and y;’s and is given by

n . n .

PTie—01 §Yio—02 1 n v n .

L(61,02) = H 1;.1 H 2;1 - <k> 912:121%6_”61922;1%6_”92
i=1 Y= v

where k = z1!...xzxly1! ... y,! and n = 100.

We can see that L(6,62) is maximised when both #; and 0y are equal to their m.le. 0; = Z
and 0o = g.

Moreover under Hy the likelihood is

1 n "
L(Q) = <k‘> 921':1 T+ ?,17;672n07

a function of only one parameter 8 = #; = > maximised in

1 [ - 1

i (St u) - e
=1 =1

In this example the parameter space is © = {(61,62) : 61 > 0,02 > 0}, and we can write the

likelihood ratio as . o

B L(HO) B éni—i—ng.

(ii) We will actually need only the value of log A, which is easier to compute log(A) = 4.76.

Note that straightforward evaluation of A e.g. in R results in NaN.

(iii) 2log A is an approximate x? distribution, therefore we would reject the null hyphothesis

for value of 2log A larger than the k = 3.841, where k is such that Po[A > k] = «. In our case

2log A = 9.52 hence we reject the null hypothesis 1 = 6.

A

Assignment 5. (a) We know that \/ﬁ(é\n —60) — N(0,1/1;(0)). The asymptotic variance is
therefore v(0) = 1/(nl1(0)).
(b) We have L

T = nI;(0)(6 — 6p)°.

(c) Since v is continuous v(6)/v(#) — 1 in probability. By Slutsky’s theorem

~ U(Q) ~ 2 0(9)
T=nh(O@ =005 = (VaO@-00) ~5 -t

(d) Write § = 02 to avoid differentiation errors. The log likelihood and its derivatives are

o _2?213312
Uz1,...,xn;0) = 2111(2779) =
2 n
! . _Exi _ﬁ A—l 2
(21, xn;0) = 52 59 = 9_”;%'
" . _n - ng "neg\ n
(x1,. . mpn;0) = 202 3 = (0"(0) = ) <0,
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~ ~

so 0 is a maximizer and nIy(0) = I,,(8) = —EL"(6) = n/262. We obtain the Wald test statistic

n -~ n o2\ ? ~
7 (0 — ) 5 ( > , ol 0

Since T is asymptotically x?, the approximate Wald test rejects Hy if T is larger than the
(1 — @)-quantile of the x7 distribution, x7 ;.

Remark. The distribution of Y~ 2?/02 is x2, so we can get an exact Wald test, but it will
not have an explicit form.

(e) The likelihood ratio is

o3 n/2 no? n
and twice its logarithm is asymptotically X%- The asymptotic test rejects therefore when

~2 ~2

o o 9

n |:O_2 — 10g ? — 1:| > Xl,l—a'
0 0

The tests are not the same, but can be shown (by a Taylor expansion, essentially) to be rather

close to each other.

Assignment 6. (a) The model

X; ~ N(u,0?) for every i € {1,...,12},
Xi,..., X190 independent,
the parameters p and o2 unknown.

The null and the alternative hypothesis are :
Hy:p=122, Hy:p#12.2.

(b) As seen in class, you can pick the statistics
X — pio
T'=+vn—s—-
\/> Sn )

where g is the value under Hy, here pg = 12.2.

We can see that T is “small” if Hy is true, and “large” is Hj is true. We note as well
that X,, is an estimator of the true value of w. So if Hy is true we expect that X, ~ 140
and T ~ 0. On the other hand if H; is true we expect that X,, ~ p # pug and T >> 0 or
T << 0.

We could also consider |T'| as a test statistics and expect small values under Hy and large
under Hi.

(c) Extreme values correspond to a very large |T'|, that is for |T'| > ¢, where ¢ is a critical
value.

To find ¢ remember that we want the probability of the type I error (reject Hy when it’s
true) to be equal to . In our case

a=Py,({T < —c}U{T >c}) =1—-Pu_py(—c <T < ). (1)

4
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(2)

We know that _
Xn—pu
vn S

If Hy is true, u = po, so T' ~ t,—1. Hence to satisfy the condition of (1) we can take
Cc = tnfl(l — a/2).

a = 0.05, so we reject Hy in favour of H; if

~ 1.

X, —12.2
‘\/12 S’ > 111(0.975).
X, —12.2
V12 ”57 =2.002 and t11(0.975) = 2.20,

and we do not have enough evidence to reject Hy.
(Which doesn’t mean that we “accept” Hp!).

For a = 0.10 we reject Hy in favour of H; if
X, —12.2
‘\/12 S’ > t11(0.95).
X, —12.2
\/ﬁsi =2.002 and #11(0.975) = 1.80,

and this time we do reject Hy.

The difference w.r.t. part (d) is that if we allow a bigger type I error we are satisfied with
less evidence to make a decision against Hy.

Pobs = P, ({T < —2.002} U{T > 2.002}) =1 —P,—,,(—2.002 < T < 2.002).
If Hy is true T ~ tq1, SO

Pobs = 1 — (F,,(2.002) — Fy,, (—2.002)) ,

where Fy,, is the cdf of the ¢1; law. Exploiting the symmetry of this distribution around
0 we obtain that

Pobs = 2 (1 — Fy,,(2.002)) = 2(1 — 0.9647) = 0.071.

Pobs > 0.05, so we do not reject Hy in favour of Hq at a 5% level, while py,s < 0.10, thus
we do reject Hy at a 10 % significance level.
We could say that p.ps is the smallest level for which we would reject Hy in favour of Hj.



