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Answer sheet 6

Assignment 1. (a) The Neyman–Pearson most powerful test is given by the rejection region
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(c) The minimal sample size needed to reject H0 with probability β when the true variance
is σ2
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Assignment 2. (a) The Neyman–Pearson test rejects for

pT1 (1− p1)
n−T
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> k,

where T =
∑n

i=1Xi. Equivalently, it rejects for[
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]T[1− p1
1− p0

]n
> k.

Since p1(1−p0)
p0(1−p1)

> 1 (because p1 > p0), the critical region can be further simplified to T > c.

Under H0, the statistic T =
∑n

i=1Xi ∼ Bin(n, p0). Let c = c1−α be the (1 − α)-quantile of
this distribution, i.e., c1−α = inf{x : Gn,p0(x) ≥ 1 − α} = G−

n,p0(1 − α), where Gn,p0 denotes
the cdf of the Bin(n, p0) distribution. If 1 − Gn,p0(c1−α) = α, then the test T > c1−α is the
most powerful test of significance level α of the test. Otherwise, when

PH0(T > c1−α) < α < PH0(T ≥ c1−α),

we do not get a most powerful test.
No, when a most powerful test exists, the critical value of the test does not depend on p1.
(b) For p0 =

3
10 , n = 3, we have P (T = 3) =
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2(1− 3
10) =

189
1000 . Thus, rejecting for T > 2 would give level 0.027 while rejecting for T > 1 would give
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level 0.027+0.189 = 0.216. Therefore, there does not exist a most powerful test at significance
level α = 0.05.
(c) However, there exists a most powerful test at the significance level α = 0.027. It is given
by δ(X1, X2, . . . , Xn) = 1(T > 2).
(d) The statistic

T − np0√
np0(1− p0)

is asymptotically standard normal under H0. Hence, the asymptotic significance level-α test
rejects when this statistic exceeds the (1− α)-quantile of the N(0, 1) distribution.

Assignment 3. (a) The likelihood ratio is

Λ(X1, . . . , Xn) =
5ne−5

∑
Xi

4ne−4
∑

Xi
= exp(n log(5/4)−

∑
Xi).

We reject H0 if Λ(X1, . . . , Xn) is large ; equivalently, if T (X1, . . . , Xn) =
∑

Xi is small. The
test function is therefore δ(X1, . . . , Xn) = 1 if T ≤ q and 0 otherwise, where q is such that
P(
∑

Xi ≤ q) = α.
(b) The moment generating function of the sum is

n∏
i=1

λ

λ− t
=

(
λ
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)n

which is the moment generating function of a Gamma(n, λ) random variable.
(c) The test function is the same for all λ1 > 4. This test can be shown to be uniformly
optimal. (If λ1 < 4, we would reject when

∑
Xi is large.)

(d) Under H0, T ∼ Gamma(n, 4). Therefore q is the α-quantile of the Gamma(n, 4) distri-
bution. This is a continuous distribution, so q exists, and it is unique because the density is
positive on [0,∞).
(e)–(g) We may use the following code :

set.seed(18102017)

lambda <- 4

n <- 17

REP <- 1000

alpha <- 0.05

rej <- logical(REP)

q <- qgamma(alpha, shape = n, rate = 4)

for(i in 1:REP)

{

X <- rexp(n, rate = lambda)

rej[i] <- (sum(X) <= q) #### returns 1 if the condition is satisfied, 0 otherwise

}

mean(rej)

(h) When λ = 4, we indeed reject approximately 50 times, namely 5%. When λ = 3 we
reject less ; the test is conservative and the type I error is smaller than 5%. When λ = 5 we
reject more (209 times in this particular example), so the power is approximately 0.209 ; as λ

2



Statistics for Data Science Rajita Chandak and Myrto Limnios

becomes larger we reject more and more and the power increases and approaches one. These
two phenomena (increase of power and decrease of type I error) occur more rapidly the larger
n is.

Assignment 4. (i) The likelihood function for the sample is the joint probability function
of all xi’s and yi’s and is given by
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where k = x1! . . . xn!y1! . . . yn! and n = 100.
We can see that L(θ1, θ2) is maximised when both θ1 and θ2 are equal to their m.l.e. θ1 = x̄
and θ2 = ȳ.
Moreover under H0 the likelihood is
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In this example the parameter space is Θ = {(θ1, θ2) : θ1 > 0, θ2 > 0}, and we can write the
likelihood ratio as

Λ =
L(θ̂)

L(θ0)
=

x̄nx̄ȳnȳ

θ̂nx̄+nȳ
.

(ii) We will actually need only the value of log Λ, which is easier to compute log(Λ) = 4.76.
Note that straightforward evaluation of Λ e.g. in R results in NaN.
(iii) 2 log Λ is an approximate χ2

1 distribution, therefore we would reject the null hyphothesis
for value of 2 log Λ larger than the k = 3.841, where k is such that P0[Λ ≥ k] = α. In our case
2 log Λ = 9.52 hence we reject the null hypothesis θ1 = θ2.

Assignment 5. (a) We know that
√
n(θ̂n − θ) → N(0, 1/I1(θ)). The asymptotic variance is

therefore v(θ) = 1/(nI1(θ)).
(b) We have
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2.

(c) Since v is continuous v(θ̂)/v(θ) → 1 in probability. By Slutsky’s theorem
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(d) Write θ = σ2 to avoid differentiation errors. The log likelihood and its derivatives are
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so θ̂ is a maximizer and nI1(θ̂) = In(θ̂) = −Eℓ′′(θ̂) = n/2θ̂2. We obtain the Wald test statistic
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Since T is asymptotically χ2
1, the approximate Wald test rejects H0 if T is larger than the

(1− α)-quantile of the χ2
1 distribution, χ2

1,1−α.

Remark. The distribution of
∑

x2i /σ
2
0 is χ2

n, so we can get an exact Wald test, but it will
not have an explicit form.
(e) The likelihood ratio is
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and twice its logarithm is asymptotically χ2
1. The asymptotic test rejects therefore when

n

[
σ̂2

σ2
0

− log
σ̂2

σ2
0

− 1

]
> χ2

1,1−α.

The tests are not the same, but can be shown (by a Taylor expansion, essentially) to be rather
close to each other.

Assignment 6. (a) The model

Xi ∼ N(µ, σ2) for every i ∈ {1, . . . , 12},
X1, . . . , X12 independent,
the parameters µ and σ2 unknown.

The null and the alternative hypothesis are :

H0 : µ = 12.2, H1 : µ ̸= 12.2.

(b) As seen in class, you can pick the statistics

T =
√
n
X̄n − µ0

Sn
,

where µ0 is the value under H0, here µ0 = 12.2.

We can see that T is “small” if H0 is true, and “large” is H1 is true. We note as well
that X̄n is an estimator of the true value of µ. So if H0 is true we expect that X̄n ≈ µ0

and T ≈ 0. On the other hand if H1 is true we expect that X̄n ≈ µ ̸= µ0 and T >> 0 or
T << 0.
We could also consider |T | as a test statistics and expect small values under H0 and large
under H1.

(c) Extreme values correspond to a very large |T |, that is for |T | > c, where c is a critical
value.

To find c remember that we want the probability of the type I error (reject H0 when it’s
true) to be equal to α. In our case

α = PH0({T < −c} ∪ {T > c}) = 1− Pµ=µ0(−c ≤ T ≤ c). (1)
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We know that
√
n
X̄n − µ

Sn
∼ tn−1.

If H0 is true, µ = µ0, so T ∼ tn−1. Hence to satisfy the condition of (1) we can take
c = tn−1(1− α/2).

(d) α = 0.05, so we reject H0 in favour of H1 if∣∣∣∣√12
X̄n − 12.2

Sn

∣∣∣∣ > t11(0.975).

√
12

X̄n − 12.2

Sn
= 2.002 and t11(0.975) = 2.20,

and we do not have enough evidence to reject H0.
(Which doesn’t mean that we “accept” H0 !).

(e) For α = 0.10 we reject H0 in favour of H1 if∣∣∣∣√12
X̄n − 12.2

Sn

∣∣∣∣ > t11(0.95).

√
12

X̄n − 12.2

Sn
= 2.002 and t11(0.975) = 1.80,

and this time we do reject H0.

The difference w.r.t. part (d) is that if we allow a bigger type I error we are satisfied with
less evidence to make a decision against H0.

(f)
pobs = PH0({T < −2.002} ∪ {T > 2.002}) = 1− Pµ=µ0(−2.002 ≤ T ≤ 2.002).

If H0 is true T ∼ t11, so

pobs = 1− (Ft11(2.002)− Ft11(−2.002)) ,

where Ft11 is the cdf of the t11 law. Exploiting the symmetry of this distribution around
0 we obtain that

pobs = 2 (1− Ft11(2.002)) = 2(1− 0.9647) = 0.071.

(g) pobs > 0.05, so we do not reject H0 in favour of H1 at a 5% level, while pobs < 0.10, thus
we do reject H0 at a 10% significance level.
We could say that pobs is the smallest level for which we would rejectH0 in favour of H1.
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