
Statistics for Data Science Rajita Chandak and Myrto Limnios

Answer sheet 5

Assignment 1. (a) µ̂ = X.

(b) Using the CLT, it follows that
√
n(µ̂− µ)

d→ N(0, 1) as n → ∞.

(c) Since µ̂ is the MLE of µ, using a theorem done in the class, it follows that
√
n(µ̂− µ)

d→
N(0, I−1

1 (µ)), where I1(µ) is the Fisher information of µ from a single sample. Thus, it follows
from part (b) that I1(µ) = 1. So, In(µ) = nI1(µ) = n. Hence, the Cramer-Rao lower bound
for the variance of an unbiased estimator of µ is I−1

n (µ) = n−1.
(d) Since Var(X) = n−1, it follows that µ̂ satisfies the Cramer-Rao lower bound for all n ≥ 1.
(e) g(µ) = P[X1 ≤ 2] = Φ(2− µ), where Φ is the cdf of the N(0, 1) distribution.
(f) Since g is a bijective function from R to (0,∞), it follows from the equivariance property
of MLEs that the MLE of g(µ) is g(µ̂) = Φ(2−X).
(g) Note that g′(µ) = −ϕ(2− µ), where ϕ is the density function of the N(0, 1) distribution.

So, using the delta method, it follows that
√
n{g(µ̂)−g(µ)} d→ N(0, [g′(µ)]2) ≡ N(0, ϕ2(2−µ))

as n → ∞.

Assignment 2. (a) This is a 1-parameter exponential family because the support [π,∞)
does not depend on the parameter and

f(x;α) = exp (−α log x+ logα+ α log π − log x) = exp (αT (x)− γ(α) + S(x)) .

Thus using the theorem from slide 100, we have

E logX = −ET (X) = −γ′(α) =
1

α
+ log π

Var logX = Var−T (X) = VarT (X) = γ′′(α) =
1

α2
.

Finally E[log2X] = [E logX]2 +Var logX = 2α−2 + 2 log π
α + (log π)2.

(b) Note that the likelihood L(α) is zero outside of the set 1(x(1) ≥ π), where x(1) =
min{x1, x2, . . . , xn}. So, it is good enough to consider the maximization of L(α) when the
sample points satisfy this condition. Then,

L(α) =

n∏
i=1

{
απα

xα+1
i

}
=

αnπnα

(
∏n

i=1 xi)
α+1

⇒ logL(α) = n logα+ nα log π − (α+ 1)

n∑
i=1

log xi

⇒ ∂

∂α
logL(α) =

n

α
+ n log π −

n∑
i=1

log xi.

Setting ∆α logL(α) = 0 yields the solution

α̂ =
n∑n

i=1 log xi − n log π
.

Since ∂2 logL(α)/∂α2 = −n/α2 < 0, it follows that the α̂ is the unique maximizer and hence
the MLE of α.
(c) Observe that

In(α) = E
[
−∂2 logL(α)

∂α2

]
=

n

α2
.
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So, I1(α) = α−2. Thus, using a theorem done in the class, it follows that

√
n(α̂− α)

d→ N(0, α2)

as n → ∞.
(d) Note that for any y > 0, we have

P[Y ≤ y] = P[X ≤ π exp(y)] =

∫ π exp(y)

π

απα

xα+1
dx = πα

[
π−α − (π exp(y))−α

]
= 1− exp(−αy).

So, the density of Y is given by fY (y) = α exp(−αy) if y > 0, and equals zero otherwise.
Thus, Y ∼ Exp(α).
(e) We know that the mean and the variance of the Exp(α) distribution are α−1 and α−2,
respectively. So, using the CLT, we have

√
n

(
T (Y1, Y2, . . . , Yn)

n
− 1

α

)
d→ N

(
0,

1

α2

)
as n → ∞.
(f) α̂ = n/T (Y1, Y2, . . . , Yn).
Define h(x) = x−1 on (0,∞). So, h′(x) = −x−2. Using the delta method, it follows that

√
n

{
h

(
T (Y1, Y2, . . . , Yn)

n

)
− h

(
1

α

)}
d→ N

(
0,

[
h′
(
1

α

)]2 1

α2

)
⇒

√
n(α̂− α)

d→ N
(
0, α2

)
as n → ∞. This is the same asymptotic distribution as that obtained in part (c).
(g) Here we have

EX = πα

∫ ∞

π
αx−αdx = π

α

α− 1
.

(If α ≤ 1 the expectation is infinite.)
We obtain the equation

Xn = m(α̃) = π
α̃

α̃− 1
= π +

1

α̃− π

so that α̃ = 1 + π/(Xn − π) = Xn/(Xn − π).
We will also need variance for the asymptotic distribution. We have EX2 = π2α/(α − 2)
(infinite if α ≤ 2) and VarX = π2α/[(α− 2)(α− 1)2].
Thus by the central limit theorem

√
n

(
Xn − π

α

α− 1

)
→ N

(
0, π2 α

(α− 2)(α− 1)2

)
, n → ∞.

The function m−1(x) = 1 + π/(x − π) is differentiable at πα/(α − 1) > 1 with derivative
−(α− 1)2/π at that point. The delta method then gives

√
n (α̃− α) =

√
n

(
m−1(Xn)−m−1

(
π

α

α− 1

))
→ (α− 1)2

π
N(0,VarX) = N

(
0,

α(α− 1)2

α− 2

)
.

(h)The asymptotic variance of the method of moments estimator α̃ is α(α − 1)2/[(α − 2)n].
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For the maximum likelihood estimator we have
√
n(1/α̂−1/α) → N(0, α−2) and by the delta

method the asymptotic variance of α̂ is α2/n. This is smaller than the asymptotic variance
of the method of moments estimator because α2 < α(α− 1)2/(α− 2) ; the difference is large
when α is close to 2. Both asymptotic variances decay like 1/n.

Assignment 3. The optimal value of a is n−2 = 1. The assignment can be carried out using
the following code :

set.seed(18102017)

n <- 3

REP <- 1000

mu <- c(-1, 0, 1)

a <- n-2

MSE.mle <- MSE.stein <- numeric(REP)

for(i in 1:REP)

{

Y <- rnorm(n, mean = mu, sd = 1)

Y.norm <- sum(Y^2)

stein <- Y * (1 - a/Y.norm)

MSE.mle[i] <- sum((Y - mu)^2)

MSE.stein[i] <- sum((stein - mu)^2)

}

mean(MSE.mle)

mean(MSE.stein)

Assignment 4. (a) We have

E
1

X
=

∫ ∞

0

λkxk−2e−λx

Γ(k)
dx =

λ

k − 1

∫ ∞

0

λk−1xk−2e−λx

Γ(k − 1)
dx =

λ

k − 1
,

since k > 1 and the last integrand is the density of a Gamma(k− 1, λ) distribution. If k ≤ 1,
then E 1

X = ∞.
(b) Put λ = 1/2 and k = n/2 > 1 because n > 2.
(c) Up to constants, the log likelihood is the negative of this sum of squares.
(d) The additive nature of the objective function allows for minimisation each µi separately.
The first derivatives with respect to µi are

2µi − 2yi + 2λµi = 2[(1 + λ)µi − yi]; and 2(1 + λ) > 0

so the unique minimum is attained at µ̃i = yi/(1 + λ). In vector form, this can be written
µ̃λ = y/(1 + λ).
(e) The mean squared error can be written as the expected value of

n∑
i=1

(µ̃i − µi)
2 = (1+ λ)−2

n∑
i=1

(yi − µi − λµi) = (1 + λ)−2
n∑

i=1

(yi − µi)
2 + λ2µ2

i − 2λµi(yi − µi).

Since E yi = µi the last term vanishes and since Var yi = 1 the first sum is n. Thus the mean
squared error equals

1

(1 + λ)2

(
n+ λ2

n∑
i=1

µ2
i

)
=

1

(1 + λ)2
(
n+ λ2∥µ∥2

)
.
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(f) The derivative of the mean squared error with respect to λ is

2λ∥µ∥2(1 + λ)2 − 2(1 + λ)(n+ λ2∥µ∥2)
(1 + λ)4

=
2

(1 + λ)3
(
λ∥µ∥2 − n

)
.

This is negative for small λ, so small but positive values of λ have a lower mean squared error
than that of λ̂ = λ̃0.
(g) Since the derivative is negative for small λ and positive for for large λ, the unique minimum
is attained when λ = n/∥µ∥2 (if µ ̸= 0). What this means is that the smaller ∥µ∥ is, the better
it is to penalise it by choosing a high value of λ. In the extreme case where µ = 0, the mean
squared error is n/(1 + λ)2, which is strictly decreasing ; the more we penalise, the better.
The problem with this choice of λ is that it depends on the unknown value of µ. We will
later see some ways of choosing λ in practice, most notably cross-validation. Note that this
problem does not arise with the James–Stein estimator.
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