STATISTICS FOR DATA SCIENCE RaAJiTA CHANDAK AND MYRTO LIMNIOS

ANSWER SHEET 5

Assignment 1. (a) 1 = X.

(b) Using the CLT, it follows that /n(z — u) 4 N(0,1) as n — oc.

(c) Since i is the MLE of p, using a theorem done in the class, it follows that /n(u — p) LN
N(0,Z; (1)), where Z; (1) is the Fisher information of y from a single sample. Thus, it follows
from part (b) that Z;(u) = 1. So, Z,,(n) = nZ1(p) = n. Hence, the Cramer-Rao lower bound
for the variance of an unbiased estimator of p is Z, ' (u) = n~L.

(d) Since Var(X) = n~!, it follows that /i satisfies the Cramer-Rao lower bound for all n > 1.
(e) g(p) = P[X; < 2] = ®(2 — p), where @ is the cdf of the N(0,1) distribution.

(f) Since g is a bijective function from R to (0, c0), it follows from the equivariance property
of MLEs that the MLE of g(u) is g(i) = ®(2 — X).

(g) Note that ¢’'(u) = —¢(2 — u), where ¢ is the density function of the N (0, 1) distribution.

So, using the delta method, it follows that \/n{g() —g(u)} 4 N(0,[¢"(w)]?) = N(0,¢*(2—p))
as n — 00.

Assignment 2. (a) This is a 1-parameter exponential family because the support [m,0c0)
does not depend on the parameter and

f(z;a) = exp (—alogx +log o + alog m — log ) = exp (oI (z) — v(a) + S(z)) .

Thus using the theorem from slide 100, we have
1
ElogX = —ET(X) = —/(a) = — + log7
o

Varlog X = Var —T(X) = VarT(X) = 7"(a) = —.
a
Finally E[log? X] = [Elog X]? 4 Varlog X = 2a~2 + 21%7 1 (log 7)2.
(b) Note that the likelihood L(«a) is zero outside of the set 1(w;) > ), where z() =
min{zy, z2,...,2,}. So, it is good enough to consider the maximization of L(«) when the
sample points satisfy this condition. Then,

o) =TT{ 5} =

i=1 T i=1 Ti

= log L(a) = nloga + nalogm — (a+ I)Zlogm
i=1

a n
= a—alogL(a) = g +nlogm — ;logm.
Setting A, log L(a) = 0 yields the solution
- n
a=—=xn .
Yo qlogx; —nlogm
Since 9% log L(a)/0a? = —n/a? < 0, it follows that the @ is the unique maximizer and hence

the MLE of «.
(c) Observe that
0?log L(a) n
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So, Z1(a) = 2. Thus, using a theorem done in the class, it follows that

V(@ —a) % N(0,a?)

as n — o0.
(d) Note that for any y > 0, we have

Texp(y) oo
By <yl =FIX <memil= [ o

s

de =7 [77% — (mexp(y))"*] =1 — exp(—ay).

So, the density of Y is given by fy(y) = aexp(—ay) if y > 0, and equals zero otherwise.
Thus, Y ~ Exp(a).

(e) We know that the mean and the variance of the Exp(a) distribution are a~! and a2,
respectively. So, using the CLT, we have

\/ﬁ(T(Yl,YQ,---aYn) _1> iN(o,IQ)

n «

as n — 0o.
() & = n/T(V1, Yo, ..., Vo).
Define h(z) = 27! on (0,0). So, h/(x) = —2~2. Using the delta method, it follows that

viadn (FRes D) ()] 4y (0’ i (clv)] al)

= Va@-a) % N(0,a?)

as n — oo. This is the same asymptotic distribution as that obtained in part (c).
(g) Here we have

o0
EX:WC“/ ar Ydr=m .
- a—1
(If @ <1 the expectation is infinite.)
We obtain the equation
— a 1
X == a = =
n =m(@) = 7T—i-&_7T
sothat a =1+ 7/(X,, — ) = X,,/(X,, — 7).
We will also need variance for the asymptotic distribution. We have E X? = n2a/(a — 2)
(infinite if o < 2) and Var X = 7%a/[(a — 2)(a — 1)2].
Thus by the central limit theorem

ail)ﬁN(O’Wz(a—Q)?a—l)Q» n — 00.

The function m~!(x) = 1+ 7/(x — 7) is differentiable at ma/(a — 1) > 1 with derivative
—(a— 1)/ at that point. The delta method then gives

)> - MN(O,VMX) N (O’Q(a_l)?> |

T o —2

ﬁ(xnﬁ

Vi@ =) = Vi (7 () = (n

a—1

(h)The asymptotic variance of the method of moments estimator & is a(a — 1)?/[(a — 2)n].
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For the maximum likelihood estimator we have v/n(1/a—1/a) — N(0,a~2) and by the delta
method the asymptotic variance of @ is o/n. This is smaller than the asymptotic variance
of the method of moments estimator because o? < a(a — 1)?/(a — 2) ; the difference is large
when « is close to 2. Both asymptotic variances decay like 1/n.

Assignment 3. The optimal value of a is n—2 = 1. The assignment can be carried out using
the following code :

set.seed(18102017)

n <-3

REP <- 1000

mu <- c(-1, 0, 1)
a <- n-2

MSE.mle <- MSE.stein <- numeric(REP)
for(i in 1:REP)

{

Y <- rnorm(n, mean = mu, sd = 1)
Y.norm <- sum(Y"2)

stein <- Y * (1 - a/Y.norm)
MSE.mle[i] <- sum((Y - mu)~2)
MSE.stein[i] <- sum((stein - mu)"~2)
}

mean (MSE.mle)

mean (MSE.stein)

Assignment 4. (a) We have

)\k k—2 —)\a: A e’} )\k—lxk—Qe—)\az A
/ dr = / dr = 9
X k—1J, T(k-1) k—1

since k > 1 and the last integrand is the density of a Gamma(k — 1, \) distribution. If £ < 1,
then E % = 0.

(b) Put A=1/2 and k =n/2 > 1 because n > 2.

(c) Up to constants, the log likelihood is the negative of this sum of squares.

(d) The additive nature of the objective function allows for minimisation each pu; separately.
The first derivatives with respect to u; are

2ui — 2y + 22 = 2[(1+ My —yil; - and  2(1+A) >0

so the unique minimum is attained at fi; = y;/(1 + A). In vector form, this can be written
fix =y/(L+A).
(e) The mean squared error can be written as the expected value of

n

D (=) = N2 (g — = Aw) = (LAY (g — ) + N4 — 22 (ys — )
=1 =1

i=1

Since Ey; = p; the last term vanishes and since Vary; = 1 the first sum is n. Thus the mean
squared error equals

(1+1)\ (HAQZM> 1+)\) (4 X1).

3
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(f) The derivative of the mean squared error with respect to A is

AP (1 +2)% = 2(1 + N (n + A% u][?) 2

Allull* = n) .

TESNE TENE (

This is negative for small A, so small but positive values of A have a lower mean squared error
than that of X = \o.

(g) Since the derivative is negative for small A and positive for for large A, the unique minimum
is attained when A = n/||u|? (if © # 0). What this means is that the smaller ||| is, the better
it is to penalise it by choosing a high value of A. In the extreme case where yu = 0, the mean
squared error is n/(1 + \)?, which is strictly decreasing ; the more we penalise, the better.
The problem with this choice of A is that it depends on the unknown value of p. We will
later see some ways of choosing A in practice, most notably cross-validation. Note that this
problem does not arise with the James—Stein estimator.



