STATISTICS FOR DATA SCIENCE RaAJiTA CHANDAK AND MYRTO LIMNIOS

ANSWER SHEET 4

Assignment 1. (a) Note that S2 = (n — 1)71Y" | X2 — [n/(n — 1)]?2. By the law of
large numbers applied to the i.i.d. sequence {X1,..., Xy}, it follows that X 5 E[X;] = u
as n — oo. Thus, the continuous mapping theorem implies that X LN pu? as n — oco. We
can also apply the law of large numbers to the i.i.d. sequence {X?, ..., X2}. Then, it follows
that n=1 31 | X2 2 E[X2) = 02 + 42 as n — oo. Since the real-valued sequence {n/(n — 1)}
converges to one as n — 0o, it follows from Slutsky’s theorem that

n 1 " n 2 P
S? = X = X2 - x X° B g2 22 =52
n—1 n; on—1 on 7

as n — oo.
(b) The central limit theorem implies that /n(X — p) LN N(0,0?) as n — oo. Using part (a),
and the continuous mapping theorem along with Slutsky’s theorem, we now have

T, = \/ﬁ();_“) 4 7IN(0,02) £ N(0,1)

as n — oo. Here, 2 denotes equality in distribution.

(c) If F is the N(u,0?) distribution, we know that 7}, has the t distribution with (n — 1)
degrees of freedom for each n > 2.

(d) Part (b) says that the exact distribution of T}, converges to the N(0,1) distribution as
n — oo. Using part (c), we can say that the ¢,,_;) distribution converges to the N(0,1)
distribution as n — oo. This is equivalent as saying that the ¢ distribution converges to
the standard normal distribution as the degrees of freedom tend to infinity. We saw this
phenomenon empirically (using R software) in Exercise 7 in Week 3.

Assignment 2. (a) Since X is an unbiased estimator of p, it is easy to see that X (1 — X) is
a proxy/ estimator of p(1 —p). This is a “plug-in” _estimator of p(1— pi) i
(b) Note that nX = """ | X; ~ Bin(n,p). So, E[nX] = np and Var(nX) = np(1 — p). Now,

E[U,] = n2EnX(n—nX)] = n 'E[nX]-n2E[(nX)?
= " x (np) —n~? x [np(1 - p) + (np)?]

= 1-n""p(1-p).

So, Uy, is not an unbiased estimator of p(1 — p).

(¢) By the weak law of large numbers, we know that X % E[X;] = p as n — oo. Using
the continuous mapping theorem with g(x) = z(1 — z), = € (0,1), it now follows that
Un=9(X) 5 g(p) = p(1 — p) as n — co. So, U, is a consistent estimator of p(1 — p).

(d) The central limit theorem implies that /n(X — p) 4 N(0,p(1 —p)) as n — oo. Let
g(x) =z(1—=x), x € (0,1). Then, ¢’(x) = 1 — 2z. Using the delta method, it now follows that
ValUy —p(1 = p)] % N(0.p(1 ~p)(1 ~ 2p)*) as n — oo,

(Note : If p = 1/2, the above limiting distribution is degenerate as zero. In fact, in that case,
the correct scaling to have a non-degenerate distribution is n instead of \/n.)
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Assignment 3. (a) Note that E[X;] = p. So, it is an unbiased estimator of p.
(b) V;, is minimally sufficient for p (see Slide 92).
(d) Recall that V,, ~ Bin(n,p) and > , X; ~ Bin(n — 1,p). Now, for k£ > 1, we have

]P)[Xl = 1,X1 —1—2?:2)(@' = ]{?]

PXy=1|V,=k] =

P[V,, = ]
B PX:i=1>",X;=k—1]
P[V,, = k]
Iy S
(M@ —pt

So, P[X; =0V, =k] =1— (k/n). Hence, W,, = E[X; | V,,] = V,,/n.

(Alternative proof : Let ¢(V;,) := E[X | Vo] =E[X1 | >_1; X;] for a function (). Since the
X,’s are i.i.d., by symmetry, we have

Xs | ZH:X] =...=E [Xn | Zn:X] .
i=1 i=1

¢(Vn) =K

(V) =Y E
j=1

n n n n
X; | ZX] =E ) _X;[) Xi| =) X,
i=1 j=1 i=1 i=1

where the last equality follows from the fact that E[Z | Z] = Z for any random variable Z.
Thus, E[X; | Vo] = (V) =n"t 30 X; =V, /n.)

(e) E[W,] = E[V,,/n] = (np)/n = p. Alternatively, E[W,] = E[E[X; | V,]] = E[Xi] = p.

(f) Var(W,,) = Var(V,,/n) = np(1 — p)/n? = p(1 — p)/n < p(1 — p) = Var(X;) for all n > 1.
Equality holds if and only if n = 1. So, the inequality is strict for all n > 2, i.e., for all
“practical” sample sizes.

(g) Note that

log f(X,p) = Vullnp)+ (n—V,)(In (1-p))
o2 Vi (n—=V,)

1 X = _n_ A7 'n
2

op?

np n—np n
log f(X,p)| == + = .
g J(X.p) p?  (1—-p)? p(1—p)

Thus, the Cramer-Rao lower bound for the variance of an unbiased estimator of p is given by

p(1—p)/n.
This lower bound is attained by the estimator W,.

= ZI,(p) = E

Assignment 4. (a) The random variable will equal 2 with probability p = 0.49 and 0 with
probability 1 — p = 0.51. Therefore X = 2Y with Y ~ Ber(p).

(b) Here we have X7, ..., Xj000 independent realisations of X, and we are interested in their
sum S1pp0- By the above, S/2 ~ Bin(1000, p). Therefore

1000 1000
P(S > 1000) = P(S/2 > 500) = 3 < ! >pk(1 ook,
k=500
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(c) We know that X has expectation 2p = 0.98 and variance 4p(1 — p) = 4 % 0.2499 = 0.9996.
The central limit theorem tells us that

\/ﬁSn/n ~0.98

5906 — N(0,1)

as n — o0o. Therefore

1000 1000 10
P(S > 1000) = P [ {/ ———[S/1000 — 0.98] > 0.021/ —— | ~1—® [ 0.2/ ——— | ~ 0.26.
(S > 1000) ( 9005 [5/1000 —0.98] > 0.0 .9996> <0 _9996> 0.26

(d) This is carried out with the following code. Try changing the parameters p, n and t.

p <- 0.49

n <- 1000

mu <- 2%p

s2 <= 4xp*x(1-p)

t <- 1000

1 - pnorm(sqrt(n/s2) * (t/n - mu))

f1 <- function(x) pbinom((x*sqrt(s2/n) + mu)*n/2 , size = n, prob = p)
curve(fl, from = -3, to = 3)

curve (pnorm, add=TRUE, col = "blue")

The black and blue curves are nearly identical, so the approximation is very good.

Assignment 5. (i) Let X1, Xo,..., X, d B(p) with p € (0,1). The X;’s are discrete, so

the likelihood function

V(p) = fi(z1;p) x fo(z2;p) X ... X fu(zn;p),

where f;(z;;p) = P(X; = x;) = p%(1 — p)'~% is the frequency function for each X;.
We have

V(p) =p™ (1 —p)' " 1p™(1—p)' =72 p™ (1= p)' =" = pZizi (1 — p)" 2= ™,
The m.l.e. is the value of p that maximise L(p) = log(V (p) We have
L(p) = Zmz logp + <n — le) log(1 — p).
i=1 i=1

To find the maximum we solve

L'(p) =
L X =i
p L—p
n n
= (1-p) in—p<n—2xi> =0
=1 =1

n

n n
= Zwi:p<n—2xi+2xi>
i=1 i=1

=1

1 n
1=

3
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To check that is indeed a maximum notice that

L//( ) _ _Z?:l i _ n-— Z’?:l i <0

P p? (1-p)? ’
for every p € (0,1). Hence the value p = #,, maximise the function V'(p) and X, is the
m.l.e, ﬁML = Xn.

(ii)

— We write the log likelihood function for A

L(\) = log(A\"e A Zi=1%) = nlog A — )\le,
i=1

setting it the derivative to zero we find

5\ o n o 1
n Z?:l £ yn

The function #,, is concave, hence we have found a maximum.
(iii)
— The likelihood for (u,?) is

So the log likelihood is

L(p,0%) =logV(p,0%) = (—; log(2m0”) — 2(17 (i — u)2>

Write w = 2. We have

Op i=1
o0

n 1 <«
gw ~ 2w " 2up 2

The first partial derivative vanishes when

hence

B
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The second partial derivative vanishes when

n

n =S (@ — =0 M)
=1
hence
e 1 ) 1 _
W=6"= ;Z(l‘i - )= EZ(%‘ - z)%.
i=1 1=1

By direct computation we find that the hessian matrix at (f,w) is
3 o]
H‘(mw):(ﬂﬂb) [ 0 —g5i=]
The matrix is negative definite so (fi,%) = (fi,6?) is a maximum.
(iv) Let X1, Xa,..., X, asample from a uniform U[0, #] with § > 0. The likelihood func-

tion is

V(0) = fi(z1;0) x fa(x2;0) x ... X f(zn;0),
where f;(x;;0) = fi(x;) is the density of each X;. So

[ 1/6™ six; €]0,0] pourie {1,...,n}
V(o) = { 0 sinon.

V(9) = { 1/6m si max;e(y,. ny T <0

Or else

0 sinon.
Let M, = max(Xy,...,X,).

v(e)

We can on the figure that the function is maximised for § = M,. In particular for
0 < M, the function equals 0, while for 8 > M, the likelihood is a dereasing function
of 6.

Note that V(0) is not derivable, hence the maximum cannot be found using L'(0) as
in the previous exercises.
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Assignment 6. (a) By the law of large numbers, X,, — EX = m(f) in probability as
n — o0o.

(b) Since X, is close to m(f), it makes sense to estimate 6 by the solution of the equation
m(f) = X,,. When m is invertible, this amounts to 0 = m~1(X,). If the inverse is continuous,
then by the continuous mapping theorem # = m~'(X,) — m~'(m(#)) = 0 in probability.
Therefore, 0 is consistent for 0, a desirable property.

(c) Here we have m(A) = 1/X. We obtain the equation

X, =m) =1/A

so that A = 1 /X . The maximum likelihood estimator is the same (see slide 147).
(d) Here we have E X = /2 and we obtain the equation

X, = m(F) = 7/2

so that & = 2X,. The maximum likelihood estimator is X,y = max(X1,...,X,) (see slide
151).
(e) Here we have

o0 0
EX = / Oz Vde = ——.
1 -1

(If # < 1 the expectation is infinite.) We obtain the equation

X, =m@) = 141
i j

sothat 0 =1+1/(X, — 1) = X,/ (Xn — 1).
The log likelihood and its derivatives are

0(0) =nlogh — 0> logX;— » logX;
=1 =1

79 = % ~ 3 log X;
=1

0'(9) = —% <0
so that 6 = n/ > log X; is the maximum likelihood estimator.
(f) For the exponential, the mean squared errors are the same because the estimators are the
same.
For the uniform case, & = 2X,, is unbiased and has variance x2/(3n) (slide 62). Its mean
squared error is therefore x2/(3n). The maximum likelihood estimator & has density function
nz""1/k™ on [0, k] and 0 otherwise. Thus

K n K n+1 2 2
EE:/ nx—d:v:ﬂ; EE2:/ nt—dy = ; Vark = ER2-E%% = nr .
0 K" n+1 o K" n+2 (n+2)(n+1)2
We see that % is biased with mean squared error
2 2 2
~ ~ 2
[ER — 60> + Vark = " + e = r

n+1)2 (n+2)(n+1)2 (nm+Dn+2)

This behaves like 1/n? whereas the mean squared error of & behaves like 1/n. Thus, despite
being biased, k has a smaller mean squared error when n > 3 is sufficiently large.
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Assignment 7. We have seen that the minimal sufficient statistic is T = ) ;" ; z; and it’s
defined over an open set. T' is the sample mean. From the Theorem in Slide 100 it follows
that :

BT = nn(6) = ne®  BT] = ¢
2 o®
Var[T] = ng(ﬁw(gb) = ne? Var[T] = -

In particular from the Th. on Slide 114 it follows that
V(T — e?) — N(0,e?)
in distribution, so T is asymptotically A'(e?,e?/n). Consequently T is asymptotically Normal
N (ne?, ne?).
Assignment 8. (i) Let Xq,...,X,,Y1,...,Y,, be asample from a Binomial with P(X; =
z;) = (2)p*(1 — p)'~*i. We have that

flap) _ (@)p==ri(l—p)n =i

f(y;p) ( )pz?:l Yi(l— p)"‘Z?:l Yi

n
Yi

Now, we can ignore the factorial constant because we want the ratio to be constant
w.r.t. the parameters. We see that the ratio above is independent on p iff Y 1" | z; =
>, yi. Hence by the factorisation theorem T'(y) = .7, v; is a minimal sufficient
statistics.

(ii) Let Xi,...,Xp,Y1,...,Y,, be a sample from a Poisson distribution. We look at the
ratio of Poisson distribution in terms of x and y and we check when the ratio is
independent on the parameter \. In particular

flasp) _ emazi=m Tyl

flyp) Tlimgwid endAXizw
RSO BHE I DIRE T M
[Ty @i
The above expression is independent w.r.t. A iff ", @z = > | y;. Hence by the
factorisation theorem T'(y) = """ | y; is a minimal sufficient statistics.
(iii) Let X1,...,X, and Y1,...,Y, be samples from a Normal distribution, the ratio of
densities is

fay ot e (<)
fw) i=1 H?:1(27r02)_1/2 exp <_M)

202

S (DS SERET) SRR i) 3
i=1 i=1 i=1

i=1
The above ratio is constant w.r.t. p if and only if Y 7" 2; = > I, y;, while it is
constant w.r.t. o2 iff Y0 2 =Y 0y and Yon 22 =30 y2 thus Ti(y) = Y0 v
is a minimal sufficient statistics for p and (T1(y) = Yr, vi, To(y) = Soi y?) is
minimal sufficient for o2.
(Note : We could have also taken the sample mean as a minimal sufficient statistics).



