
Statistics for Data Science Rajita Chandak and Myrto Limnios

Answer sheet 4

Assignment 1. (a) Note that S2 = (n − 1)−1
∑n

i=1X
2
i − [n/(n − 1)]X

2
. By the law of

large numbers applied to the i.i.d. sequence {X1, . . . , Xn}, it follows that X
p→ E[X1] = µ

as n → ∞. Thus, the continuous mapping theorem implies that X
p→ µ2 as n → ∞. We

can also apply the law of large numbers to the i.i.d. sequence {X2
1 , . . . , X

2
n}. Then, it follows

that n−1
∑n

i=1X
2
i

p→ E[X2
1 ] = σ2 + µ2 as n→ ∞. Since the real-valued sequence {n/(n− 1)}

converges to one as n→ ∞, it follows from Slutsky’s theorem that

S2 =
n

n− 1
× 1

n

n∑
i=1

X2
i − n

n− 1
×X

2 p→ σ2 + µ2 − µ2 = σ2

as n→ ∞.
(b) The central limit theorem implies that

√
n(X −µ)

d→ N(0, σ2) as n→ ∞. Using part (a),
and the continuous mapping theorem along with Slutsky’s theorem, we now have

Tn =

√
n(X − µ)

S

d→ σ−1N(0, σ2)
d
= N(0, 1)

as n→ ∞. Here,
d
= denotes equality in distribution.

(c) If F is the N(µ, σ2) distribution, we know that Tn has the t distribution with (n − 1)
degrees of freedom for each n ≥ 2.
(d) Part (b) says that the exact distribution of Tn converges to the N(0, 1) distribution as
n → ∞. Using part (c), we can say that the t(n−1) distribution converges to the N(0, 1)
distribution as n → ∞. This is equivalent as saying that the t distribution converges to
the standard normal distribution as the degrees of freedom tend to infinity. We saw this
phenomenon empirically (using R software) in Exercise 7 in Week 3.

Assignment 2. (a) Since X is an unbiased estimator of p, it is easy to see that X(1−X) is
a proxy/estimator of p(1− p). This is a “plug-in” estimator of p(1− p).
(b) Note that nX =

∑n
i=1Xi ∼ Bin(n, p). So, E[nX] = np and Var(nX) = np(1− p). Now,

E[Un] = n−2 E[nX(n− nX)] = n−1 E[nX]− n−2 E[(nX)2]

= n−1 × (np)− n−2 ×
[
np(1− p) + (np)2

]
= (1− n−1)p(1− p).

So, Un is not an unbiased estimator of p(1− p).

(c) By the weak law of large numbers, we know that X
p→ E[X1] = p as n → ∞. Using

the continuous mapping theorem with g(x) = x(1 − x), x ∈ (0, 1), it now follows that

Un = g(X)
p→ g(p) = p(1− p) as n→ ∞. So, Un is a consistent estimator of p(1− p).

(d) The central limit theorem implies that
√
n(X − p)

d→ N(0, p(1 − p)) as n → ∞. Let
g(x) = x(1−x), x ∈ (0, 1). Then, g′(x) = 1−2x. Using the delta method, it now follows that
√
n[Un − p(1− p)]

d→ N(0, p(1− p)(1− 2p)2) as n→ ∞.
(Note : If p = 1/2, the above limiting distribution is degenerate as zero. In fact, in that case,
the correct scaling to have a non-degenerate distribution is n instead of

√
n.)
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Assignment 3. (a) Note that E[X1] = p. So, it is an unbiased estimator of p.
(b) Vn is minimally sufficient for p (see Slide 92).
(d) Recall that Vn ∼ Bin(n, p) and

∑n
i=2Xi ∼ Bin(n− 1, p). Now, for k ≥ 1, we have

P[X1 = 1 | Vn = k] =
P [X1 = 1, X1 +

∑n
i=2Xi = k]

P[Vn = k]

=
P [X1 = 1,

∑n
i=2Xi = k − 1]

P[Vn = k]

=
p
(
n−1
k−1

)
pk−1(1− p)n−k(

n
k

)
pk(1− p)n−k

=
k

n
.

So, P[X1 = 0 | Vn = k] = 1− (k/n). Hence, Wn = E[X1 | Vn] = Vn/n.

(Alternative proof : Let ψ(Vn) := E[X1 | Vn] = E [X1 |
∑n

i=1Xi] for a function ψ(·). Since the
Xi’s are i.i.d., by symmetry, we have

ψ(Vn) = E

[
X2 |

n∑
i=1

Xi

]
= . . . = E

[
Xn |

n∑
i=1

Xi

]
.

Thus,

nψ(Vn) =
n∑

j=1

E

[
Xj |

n∑
i=1

Xi

]
= E

 n∑
j=1

Xj |
n∑

i=1

Xi

 =
n∑

i=1

Xi,

where the last equality follows from the fact that E[Z | Z] = Z for any random variable Z.
Thus, E[X1 | Vn] = ψ(Vn) = n−1

∑n
i=1Xi = Vn/n.)

(e) E[Wn] = E[Vn/n] = (np)/n = p. Alternatively, E[Wn] = E[E[X1 | Vn]] = E[X1] = p.
(f) Var(Wn) = Var(Vn/n) = np(1 − p)/n2 = p(1 − p)/n ≤ p(1 − p) = Var(X1) for all n ≥ 1.
Equality holds if and only if n = 1. So, the inequality is strict for all n ≥ 2, i.e., for all
“practical” sample sizes.
(g) Note that

log f(X, p) = Vn(ln p) + (n− Vn)(ln (1− p))

⇒ ∂2

∂p2
log f(X, p) = −Vn

p2
− (n− Vn)

(1− p)2

⇒ In(p) = E
[
− ∂2

∂p2
log f(X, p)

]
=
np

p2
+

n− np

(1− p)2
=

n

p(1− p)
.

Thus, the Cramer-Rao lower bound for the variance of an unbiased estimator of p is given by
p(1− p)/n.
This lower bound is attained by the estimator Wn.

Assignment 4. (a) The random variable will equal 2 with probability p = 0.49 and 0 with
probability 1− p = 0.51. Therefore X = 2Y with Y ∼ Ber(p).
(b) Here we have X1, . . . , X1000 independent realisations of X, and we are interested in their
sum S1000. By the above, S/2 ∼ Bin(1000, p). Therefore

P(S ≥ 1000) = P(S/2 ≥ 500) =
1000∑
k=500

(
1000

k

)
pk(1− p)1000−k.
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(c) We know that X has expectation 2p = 0.98 and variance 4p(1− p) = 4 ∗ 0.2499 = 0.9996.
The central limit theorem tells us that

√
n
Sn/n− 0.98√

.9996
→ N(0, 1)

as n→ ∞. Therefore

P(S ≥ 1000) = P

(√
1000

.9996
[S/1000− 0.98] ≥ 0.02

√
1000

.9996

)
≈ 1− Φ

(
0.2

√
10

.9996

)
≈ 0.26.

(d) This is carried out with the following code. Try changing the parameters p, n and t.

p <- 0.49

n <- 1000

mu <- 2*p

s2 <- 4*p*(1-p)

t <- 1000

1 - pnorm(sqrt(n/s2) * (t/n - mu))

f1 <- function(x) pbinom((x*sqrt(s2/n) + mu)*n/2 , size = n, prob = p)

curve(f1, from = -3, to = 3)

curve(pnorm, add=TRUE, col = "blue")

The black and blue curves are nearly identical, so the approximation is very good.

Assignment 5. (i) Let X1, X2, . . . , Xn
iid∼ B(p) with p ∈ (0, 1). The Xi’s are discrete, so

the likelihood function

V (p) = f1(x1; p)× f2(x2; p)× . . .× fn(xn; p),

where fi(xi; p) = P (Xi = xi) = pxi(1− p)1−xi is the frequency function for each Xi.
We have

V (p) = px1(1− p)1−x1px2(1− p)1−x2 . . . pxn(1− p)1−xn = p
∑n

i=1 xi(1− p)n−
∑n

i=1 xi .

The m.l.e. is the value of p that maximise L(p) = log(V (p) We have

L(p) =
n∑

i=1

xi log p+

(
n−

n∑
i=1

xi

)
log(1− p).

To find the maximum we solve

L′(p) = 0

⇒
∑n

i=1 xi
p

−
n−

∑n
i=1 xi

1− p
= 0

⇒ (1− p)
n∑

i=1

xi − p

(
n−

n∑
i=1

xi

)
= 0

⇒
n∑

i=1

xi = p

(
n−

n∑
i=1

xi +
n∑

i=1

xi

)

⇒ p =
1

n

n∑
i=1

xi = x̄n.
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To check that is indeed a maximum notice that

L′′(p) = −
∑n

i=1 xi
p2

−
n−

∑n
i=1 xi

(1− p)2
< 0,

for every p ∈ (0, 1). Hence the value p = x̄n maximise the function V (p) and X̄n is the
m.l.e, p̂ML = X̄n.

(ii)
— We write the log likelihood function for λ

L(λ) = log(λne−λ
∑n

i=1 xi) = n log λ− λ

n∑
i=1

xi,

setting it the derivative to zero we find

λ̂n =
n∑n
i=1 xi

=
1

Xn

.

The function ℓn is concave, hence we have found a maximum.
(iii)
— The likelihood for (µ, σ2) is

V (µ, σ2) =
n∏

i=1

p(xi;µ, σ
2) =

n∏
i=1

1√
2πσ2

exp

(
− 1

2σ2
(xi − µ)2

)
.

So the log likelihood is

L(µ, σ2) = log V (µ, σ2) =

n∑
i=1

(
−1

2
log(2πσ2)− 1

2σ2
(xi − µ)2

)

= −1

2

(
n log(2πσ2) +

1

σ2

n∑
i=1

(xi − µ)2

)
.

Write w = σ2. We have

∂ℓ

∂µ
=

1

w

n∑
i=1

(xi − µ),

∂ℓ

∂w
= − n

2w
+

1

2w2

n∑
i=1

(xi − µ)2.

The first partial derivative vanishes when

n∑
i=1

(xi − µ) = 0

hence

µ̂ =
1

n

n∑
i=1

xi = x̄.
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The second partial derivative vanishes when

−n+
1

w

n∑
i=1

(xi − µ)2 = 0 (1)

hence

ŵ = σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2 =
1

n

n∑
i=1

(xi − x̄)2.

By direct computation we find that the hessian matrix at (µ̂, ŵ) is

H
∣∣
(µ,w)=(µ̂,ŵ)

=

[
− n

ŵ 0
0 − n

2ŵ2

]
.

The matrix is negative definite so (µ̂, ŵ) = (µ̂, σ̂2) is a maximum.
(iv) Let X1, X2, . . . , Xn a sample from a uniform U[0, θ] with θ > 0. The likelihood func-

tion is
V (θ) = f1(x1; θ)× f2(x2; θ)× . . .× fn(xn; θ),

where fi(xi; θ) = fi(xi) is the density of each Xi. So

V (θ) =

{
1/θn si xi ∈ [0, θ] pour i ∈ {1, . . . , n}
0 sinon.

Or else

V (θ) =

{
1/θn si maxi∈{1,...,n} xi ≤ θ

0 sinon.

Let Mn = max(X1, . . . , Xn).

θ

V
(θ

)

Mn

We can on the figure that the function is maximised for θ = Mn. In particular for
θ < Mn the function equals 0, while for θ ≥Mn the likelihood is a dereasing function
of θ.
Note that V (θ) is not derivable, hence the maximum cannot be found using L′(θ) as
in the previous exercises.
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Assignment 6. (a) By the law of large numbers, Xn → EX = m(θ) in probability as
n→ ∞.
(b) Since Xn is close to m(θ), it makes sense to estimate θ by the solution of the equation
m(θ̃) = Xn. When m is invertible, this amounts to θ̃ = m−1(Xn). If the inverse is continuous,
then by the continuous mapping theorem θ̃ = m−1(Xn) → m−1(m(θ)) = θ in probability.
Therefore, θ̃ is consistent for θ, a desirable property.
(c) Here we have m(λ) = 1/λ. We obtain the equation

Xn = m(λ̃) = 1/λ̃

so that λ̃ = 1/Xn. The maximum likelihood estimator is the same (see slide 147).
(d) Here we have EX = κ/2 and we obtain the equation

Xn = m(κ̃) = κ̃/2

so that κ̃ = 2Xn. The maximum likelihood estimator is X(n) = max(X1, . . . , Xn) (see slide
151).
(e) Here we have

EX =

∫ ∞

1
θx−θdx =

θ

θ − 1
.

(If θ ≤ 1 the expectation is infinite.) We obtain the equation

Xn = m(θ̃) =
θ̃

θ̃ − 1
= 1 +

1

θ̃ − 1

so that θ̃ = 1 + 1/(Xn − 1) = Xn/(Xn − 1).
The log likelihood and its derivatives are

ℓ(θ) = n log θ − θ

n∑
i=1

logXi −
n∑

i=1

logXi

ℓ′(θ) =
n

θ
−

n∑
i=1

logXi

ℓ′′(θ) = − n

θ2
< 0

so that θ̂ = n/
∑

logXi is the maximum likelihood estimator.
(f) For the exponential, the mean squared errors are the same because the estimators are the
same.
For the uniform case, κ̃ = 2Xn is unbiased and has variance κ2/(3n) (slide 62). Its mean
squared error is therefore κ2/(3n). The maximum likelihood estimator κ̂ has density function
nxn−1/κn on [0, κ] and 0 otherwise. Thus

E κ̂ =

∫ κ

0
n
xn

κn
dx =

nκ

n+ 1
; E κ̂2 =

∫ κ

0
n
xn+1

κn
dx =

nκ2

n+ 2
; Var κ̂ = E κ̂2−E2 κ̂ =

nκ2

(n+ 2)(n+ 1)2
.

We see that κ̂ is biased with mean squared error

[E κ̂− θ]2 +Var κ̂ =
κ2

(n+ 1)2
+

nκ2

(n+ 2)(n+ 1)2
=

2κ2

(n+ 1)(n+ 2)
.

This behaves like 1/n2 whereas the mean squared error of κ̃ behaves like 1/n. Thus, despite
being biased, κ̂ has a smaller mean squared error when n ≥ 3 is sufficiently large.
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Assignment 7. We have seen that the minimal sufficient statistic is T =
∑n

i=1 xi and it’s
defined over an open set. T is the sample mean. From the Theorem in Slide 100 it follows
that :

E[T ] = n
∂

∂ϕ
γ(ϕ) = neϕ E[T ] = eϕ

Var[T ] = n
∂2

∂ϕ
γ(ϕ) = neϕ Var[T ] =

eϕ

n
.

In particular from the Th. on Slide 114 it follows that
√
n(T − eϕ) → N (0, eϕ)

in distribution, so T is asymptotically N (eϕ, eϕ/n). Consequently T is asymptotically Normal
N (neϕ, neϕ).

Assignment 8. (i) LetX1, . . . , Xn, Y1, . . . , Yn, be a sample from a Binomial with P (Xi =
xi) =

(
n
xi

)
pxi(1− p)1−xi . We have that

f(x; p)

f(y; p)
=

(
n
xi

)
p
∑n

i=1 xi(1− p)n−
∑n

i=1 xi(
n
yi

)
p
∑n

i=1 yi(1− p)n−
∑n

i=1 yi

Now, we can ignore the factorial constant because we want the ratio to be constant
w.r.t. the parameters. We see that the ratio above is independent on p iff

∑n
i=1 xi =∑n

i=1 yi. Hence by the factorisation theorem T (y) =
∑n

i=1 yi is a minimal sufficient
statistics.

(ii) Let X1, . . . , Xn, Y1, . . . , Yn, be a sample from a Poisson distribution. We look at the
ratio of Poisson distribution in terms of x and y and we check when the ratio is
independent on the parameter λ. In particular

f(x; p)

f(y; p)
=
enλλ

∑n
i=1 xi∏n

i=1 xi!

∏n
i=1 yi!

enλλ
∑n

i=1 yi

= λ
∑n

i=1 xi−
∑n

i=1 yi

∏n
i=1 yi!∏n
i=1 xi!

The above expression is independent w.r.t. λ iff
∑n

i=1 xi =
∑n

i=1 yi. Hence by the
factorisation theorem T (y) =

∑n
i=1 yi is a minimal sufficient statistics.

(iii) Let X1, . . . , Xn and Y1, . . . , Yn be samples from a Normal distribution, the ratio of
densities is

f(x)

f(y)
=

n∏
i=1

(2πσ2)−1/2 exp
(
− (xi−µ)2

2σ2

)
∏n

i=1(2πσ
2)−1/2 exp

(
− (yi−µ)2

2σ2

)
= exp

{
(2σ−2)(

n∑
i=1

y2i −
n∑

i=1

x2i + 2µ(
n∑

i=1

xi −
n∑

i=1

yi)

}
.

The above ratio is constant w.r.t. µ if and only if
∑n

i=1 xi =
∑n

i=1 yi, while it is
constant w.r.t. σ2 iff

∑n
i=1 xi =

∑n
i=1 yi and

∑n
i=1 x

2
i =

∑n
i=1 y

2
i thus T1(y) =

∑n
i=1 yi

is a minimal sufficient statistics for µ and (T1(y) =
∑n

i=1 yi, T2(y) =
∑n

i=1 y
2
i ) is

minimal sufficient for σ2.
(Note : We could have also taken the sample mean as a minimal sufficient statistics).
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