STATISTICS FOR DATA SCIENCE RaAJiTA CHANDAK AND MYRTO LIMNIOS

ANSWER SHEET 3

Assignment 1. (i) If X ~ Pois(\) then

AN
flad) = —
()
= exp|ln
x!

= exp(—A+zln(A\) —In(a!)).
So we can set ¢ = In(\), T(z) = =, v(¢) = e? and S(z) = —In(z!) for a natural
parametrisation. Observe that the support of f is X = {0} UN), thus doesn’t depend
on ¢.
For the usual parametrisation we take ¥ = A and consequently n(J) = log(d) and
d(9) = 9.

(ii) If X ~ Geom(p) then

flzp) = (1=p)p
= exp(zIn(l —p)+1In(p)).

Set ¢ =In(1 —p), T(x) =z, v(¢) = —In(1 — e?) and S(z) = 0 to obtain the natural
parametrisation. Observe that the support of f, given by X = {0}UN, does not depend
on ¢.

For the usual parametrisation, call ¥ = p and define n(¥) = log(1 — p) and d(9) =
v(n(9)) = —log(1 — exp(log(1 — p))) = — log(p).

(iii) If X ~ Exp(A) then for z > 0,

flzA) = Ae ™
= exp(In(A) — A\x).

Set =\, T'(x) = —z, v(¢) = —In(¢) and S(x) = 0 and observe that the support of
f is given by X = [0, 00) and doesn’t depend on ¢.

(iv) If X ~ Gamma(r, \), then for z > 0,

. _ L r—1_—M\z
flx;r\) = I‘(r)m e

~ exp (m <FA(T)> b (r—1)In(z) — )\:r>
— exp (rIn()) — In(T(r)) + rin(z) — In(z) — Az)

Observe that here, as in the Normal example seen in class, £k = 2, while in all the
previous cases k was equal to 1.

Set ¢ = (¢1,¢2) = (A1), Ti(z) = —w, Ta(z) = In(z), 7(¢) = —¢2In(¢1) + In(I'(¢2))
and S(z) = —In(z). Finally observe that the support of f is X = [0, 00) and it doesn’t
depend on ¢.

(Note : we could have set instead ¢ = (¢1,¢2) = (A, r — 1), Ti(x) = —x, To(x) =
In(z), 7(8) = —(¢2 + 1) In(p) + (D65 + 1)) et S(z) = 0).
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Assignment 2. (i) Due to independence, the joint probability of Y is

Frd) =] FwisA) = (e A=) (1') .

|
i—1 Y1+ Yn!

In particular we split f into two functions, one of which doesn’t depend on A and the
other that is a function of the statistics Y . ; y;. Hence by the factorisation theorem
the statistics T'(y) is sufficient for the Poisson distribution.

(ii) The joint probability mass function of Y is

[Ip(=p)¥ =pr(1 - p)2izrve,
=1

Therefore the factorisation theorem with

tells us that T'(y) = > ;" , y; is sufficient for the geometric distribution.
(iii) The joint probability density function of Y is written as

fly;9) = H%exp <5l> = %exp (—éZ%) .
=1 ]

By the factorisation theorem a sufficient statistics is then T'(y) = > " ; yi.
(iv) If r is unknown and A known the joint density of Y writes as

fly;r) = r?:;n (ZHI yf_1> eXp(—/\;yi)-

Write
H yi ! = exp ((7“ -1) Zlog(yﬁ) .
i=1 i=1

Hence by the factorisation theorem T'(y) = > 1, log(y;) is a sufficient statistics.

Assignment 3. (a) Note that

PXqy >yl = PXi>y,Xo>y,..., Xy >y
n

= J[PX:i>y = @X1>y)" = [1-Fy)"
=1

Thus, P[X (1) <y] =1—[1 = F(y)]". Hence, fx,,(y) =n[l = F(y)]" ' f(y).
(b) Note that

PX) <2 = PX;1<2,X9<2,...,X, <7
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Thus, fx, (y) = n[F(2)]" "' f(2).
(c) Note that

]P’[X(l)>y,X(n)§z] = Py<Xi<zy<Xo<z...,y<X,<z|
= JIPly<Xi<z = Py<Xi<2)" = [F(z) - F(y)]" ify<z

i=1
Also, P[X (1) >y, X(5) < 2] =0 if y > 2. Thus,
P[X() <y, X(ny < 2] = [F()]" = [F(2) = F(y)I" ify <z

and equals [F(z)]™ otherwise.
(d) Using (c), we get that

82
f(Xu)’X(n))(y’Z) - Dydz PX1) <y, Xy < 2]
_ = DI@IEFE) - F@I? y<e
0, otherwise

No, X (1) and X(;) are not independent.
(e) For the Unif(0,0) distribution, we have F(z) = (z/0)I1(0 < = < 0) + I(z > 0), where 1I(-)
is the indicator function. So,

0, y <0
Fx,(y) = 1-[1—(H]", o0<y<o
1, y > 0.
fxo) = (/0)[1—(y/0)]" L0 <y <0).
0, z <0
Fx,,(z) = §(3)" 0<2<90
1, z>0.

fx(2) = (n/0)(2/6)" 110 < 2 <0).
f(Xu)vX(n))(y’ 2) = {n(n—=1)/0"}(z—y)" 10 <y <z <0).

(f) As n — oo, we have Fx (2) = 0if 2 <6 and Fx, (z) — 1if z > 0. Thus, the c.d.f. of
X(n) converges to the c.d.f. of a discrete distribution which puts probability one at a single
point 6.

Assignment 4. (a) Note that

BV’ <w] = Bl-Vu <V <l
\/qj

= fir(w) = ¢




STATISTICS FOR DATA SCIENCE RaAJiTA CHANDAK AND MYRTO LIMNIOS

(b) When p =0 and o = 1, we have
1

1
———w? L exp(—w/2),
22T (3)

1
w) = exp(—w/2) =
which is the density function of a y? distribution with one degree of freedom.
(c) Note that

PlU <u,V? <] =P[U < u,—vv <V < Vo] = P[U < ulP[—o <V < o] = PlU < u]P[VZ < )],

where the second inequality follows from the independence of U and V.
(d) Here X = (X7 + X3)/2. So,
2
Sz = ﬁ [XZ—(X1+X2)/2]2
i=1
= [(X1 = X2)/2P + [(X2 — X1) /2] = (X1 - X2)?/2.

(e) Define Y7 = (X1 — u)/o and Yo = (X9 — 7)/n. So, Y1,Ys are i.i.d. N(0,1) variables. Set
U = (v2/n)(X —), which also equals (Y7 +Y3)/v/2. Set V = (Y] —Y3)/+/2, which also equals
(V2/m)(X; — Xa).
Using Exercise (1) in Week 3, it follows that Y; + Y5 and Y; — Y5 are independent. Thus, U =
(Y1+Y3)/v/2and V = (Y; —Y3)/V/2 are also independent. They are also normally distributed.
Now using part (c), it follows that U = (v/2/1)(X —~) and V2 = (2/n?)(X1 — X2)? = 458%/n?
are independent. So, X and S? are independent (since these are functions of U and V?2).
(f) If v = 0, observe that

o XitXe 2X X -y

X1 —Xao| V2S5 S/V2

Hence, T has a Student’s ¢ distribution with two degrees of freedom.

(2)

SZ
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Since the scatter-plot shows that X and S? are distributed almost evenly in all the four
quadrants when the center is shifted to the true value (0,1)" (which is close to the empirical
values), we may guess that the covariance/correlation between the two should be close to
zero. This is also because the correlation is a measure of the strength of linear relationship
between the two variables, and the scatter-plot indicates the lack thereof.

Assignment 5. (a) Since 0 < py < 1, logpr < 0 and —pg logpr > 0.

The entropy is infinite if py behaves like [klog?(k)]~" (meant in the limit, the discrete random
variable must have infinite support).

(b) Since g is injective for any y € J = g(X) there is a unique z = g~ '(y) € X such that
y = g(z). Then

= fyWlog fr(y) = Y fr(g(x))log fy(g(x)) = D fx(x)log fx(z) = —H(X).

yey reX zeX

(c) X2 takes the values 0 and 1 with probabilities ps and p; + p3. Since pi,ps > 0 the
superadditivity gives

—H(X?) = h(p1 + ps) + h(p2) > h(p1) + h(ps) + h(p2) = —H(X).

For the general case one applies the same idea by “stacking” for each y those x € X for which
g9(x) =y.
(d) Here we have

0
1 1
H(X):—/O alogédleogﬁ.

(e) No. Take 6 < 1 above.

(f) No. Take X ~Unif]0, 1] and g(z) = . Then H(g(X)) > H(X) if § > 1. Note that g is
injective !

Remark : if X has density that behaves like [xlog? 2] ™! for x > 2, then H(X) = oco. If we have
the same behaviour but only on (0,1/2) then H(X) = —oo. If we have the same behaviour on
(0,1/2) U (2, 00) then H(X) is undefined. Thus the continuous entropy can take any value in
[—00, 00| or be undefined !

Assignment 6. The complete R code for this assignment is avaliable on the course website
at http://smat.epfl.ch/courses/datasci/corrections/3.R

(e) We see that the values of small increase towards the value of small.norm.

(f) Similarly, the densities of the ¢ distribution converge to that of the Gaussian distribution.



