
Statistics for Data Science Rajita Chandak and Myrto Limnios

Answer sheet 3

Assignment 1. (i) If X ∼ Pois(λ) then

f(x;λ) =
e−λλx

x!

= exp

(
ln

(
e−λλx

x!

))
= exp (−λ+ x ln(λ)− ln(x!)) .

So we can set ϕ = ln(λ), T (x) = x, γ(ϕ) = eϕ and S(x) = − ln(x!) for a natural
parametrisation. Observe that the support of f is X = {0} ∪ N), thus doesn’t depend
on ϕ.
For the usual parametrisation we take ϑ = λ and consequently η(ϑ) = log(ϑ) and
d(ϑ) = ϑ.

(ii) If X ∼ Geom(p) then

f(x; p) = (1− p)xp

= exp (x ln(1− p) + ln(p)) .

Set ϕ = ln(1− p), T (x) = x, γ(ϕ) = − ln(1− eϕ) and S(x) = 0 to obtain the natural
parametrisation. Observe that the support of f , given by X = {0}∪N, does not depend
on ϕ.
For the usual parametrisation, call ϑ = p and define η(ϑ) = log(1 − p) and d(ϑ) =
γ(η(ϑ)) = − log(1− exp(log(1− p))) = − log(p).

(iii) If X ∼ Exp(λ) then for x ≥ 0,

f(x;λ) = λe−λx

= exp (ln(λ)− λx) .

Set ϕ = λ, T (x) = −x, γ(ϕ) = − ln(ϕ) and S(x) = 0 and observe that the support of
f is given by X = [0,∞) and doesn’t depend on ϕ.

(iv) If X ∼ Gamma(r, λ), then for x ≥ 0,

f(x; r, λ) =
λr

Γ(r)
xr−1e−λx

= exp

(
ln

(
λr

Γ(r)

)
+ (r − 1) ln(x)− λx

)
= exp (r ln(λ)− ln(Γ(r)) + r ln(x)− ln(x)− λx)

Observe that here, as in the Normal example seen in class, k = 2, while in all the
previous cases k was equal to 1.
Set ϕ = (ϕ1, ϕ2) = (λ, r), T1(x) = −x, T2(x) = ln(x), γ(ϕ) = −ϕ2 ln(ϕ1) + ln(Γ(ϕ2))
and S(x) = − ln(x). Finally observe that the support of f is X = [0,∞) and it doesn’t
depend on ϕ.
(Note : we could have set instead ϕ = (ϕ1, ϕ2) = (λ, r − 1), T1(x) = −x, T2(x) =
ln(x), γ(ϕ) = −(ϕ2 + 1) ln(ϕ1) + ln(Γ(ϕ2 + 1)) et S(x) = 0).
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Assignment 2. (i) Due to independence, the joint probability of Y is

f(y;λ) =
n∏

i=1

f(yi;λ) = (e−nλλ
∑n

i=1 yi)

(
1

y1! . . . yn!

)
.

In particular we split f into two functions, one of which doesn’t depend on λ and the
other that is a function of the statistics

∑n
i=1 yi. Hence by the factorisation theorem

the statistics T (y) is sufficient for the Poisson distribution.
(ii) The joint probability mass function of Y is

n∏
i=1

p(1− p)yi = pn(1− p)
∑n

i=1 yi .

Therefore the factorisation theorem with

g(T (y); p) = pn(1− p)
∑n

i=1 yi

h(y) = 1,

tells us that T (y) =
∑n

i=1 yi is sufficient for the geometric distribution.
(iii) The joint probability density function of Y is written as

f(y;ϑ) =
∏
i=1

1

ϑ
exp

(
−yi
ϑ

)
=

1

ϑn
exp

(
− 1

ϑ

n∑
i=1

yi

)
.

By the factorisation theorem a sufficient statistics is then T (y) =
∑n

i=1 yi.
(iv) If r is unknown and λ known the joint density of Y writes as

f(y; r) =
λnr

Γ(r)n

(
n∏

i=1

yr−1
i

)
exp(−λ

n∑
i=1

yi).

Write
n∏

i=1

yr−1
i = exp

(
(r − 1)

n∑
i=1

log(yi)

)
.

Hence by the factorisation theorem T (y) =
∑n

i=1 log(yi) is a sufficient statistics.

Assignment 3. (a) Note that

P[X(1) > y] = P[X1 > y,X2 > y, . . . ,Xn > y]

=

n∏
i=1

P[Xi > y] = (P[X1 > y])n = [1− F (y)]n.

Thus, P[X(1) ≤ y] = 1− [1− F (y)]n. Hence, fX(1)
(y) = n[1− F (y)]n−1f(y).

(b) Note that

P[X(n) ≤ z] = P[X1 ≤ z,X2 ≤ z, . . . ,Xn ≤ z]

=

n∏
i=1

P[Xi ≤ z] = (P[X1 ≤ z])n = [F (z)]n.
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Thus, fX(n)
(y) = n[F (z)]n−1f(z).

(c) Note that

P[X(1) > y,X(n) ≤ z] = P[y < X1 ≤ z, y < X2 ≤ z, . . . , y < Xn ≤ z]

=
n∏

i=1

P[y < Xi ≤ z] = (P[y < X1 ≤ z])n = [F (z)− F (y)]n if y < z.

Also, P[X(1) > y,X(n) ≤ z] = 0 if y ≥ z. Thus,

P[X(1) ≤ y,X(n) ≤ z] = [F (z)]n − [F (z)− F (y)]n if y < z,

and equals [F (z)]n otherwise.
(d) Using (c), we get that

f(X(1),X(n))(y, z) =
∂2

∂y∂z
P[X(1) ≤ y,X(n) ≤ z]

=

{
n(n− 1)f(y)f(z)[F (z)− F (y)]n−2, y < z

0, otherwise

No, X(1) and X(n) are not independent.
(e) For the Unif(0,θ) distribution, we have F (x) = (x/θ)I(0 ≤ x ≤ θ) + I(x > θ), where I(·)
is the indicator function. So,

FX(1)
(y) =


0, y < 0

1−
[
1−

(y
θ

)]n
, 0 ≤ y ≤ θ

1, y ≥ θ.

fX(1)
(y) = (n/θ)[1− (y/θ)]n−1I(0 ≤ y ≤ θ).

FX(n)
(z) =


0, z < 0(
z
θ

)n
, 0 ≤ z ≤ θ

1, z ≥ θ.

fX(n)
(z) = (n/θ)(z/θ)n−1I(0 ≤ z ≤ θ).

f(X(1),X(n))(y, z) = {n(n− 1)/θn}(z − y)n−2I(0 ≤ y < z ≤ θ).

(f) As n → ∞, we have FX(n)
(z) → 0 if z < θ and FX(n)

(z) → 1 if z ≥ θ. Thus, the c.d.f. of
X(n) converges to the c.d.f. of a discrete distribution which puts probability one at a single
point θ.

Assignment 4. (a) Note that

P[V 2 ≤ w] = P[−
√
w ≤ V ≤

√
w]

= Φ

(√
w − µ

σ

)
− Φ

(
−
√
w − µ

σ

)
⇒ fV 2(w) = ϕ

(√
w − µ

σ

)
1

2
√
wσ

+ ϕ

(
−
√
w − µ

σ

)
1

2
√
wσ

.
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(b) When µ = 0 and σ = 1, we have

fV 2(w) =
1√
2πw

exp(−w/2) =
1

2
1
2Γ
(
1
2

)w 1
2
−1 exp(−w/2),

which is the density function of a χ2 distribution with one degree of freedom.
(c) Note that

P[U ≤ u, V 2 ≤ v] = P[U ≤ u,−
√
v ≤ V ≤

√
v] = P[U ≤ u]P[−

√
v ≤ V ≤

√
v] = P[U ≤ u]P[V 2 ≤ v],

where the second inequality follows from the independence of U and V .
(d) Here X = (X1 +X2)/2. So,

S2 =
1

2− 1

2∑
i=1

[Xi − (X1 +X2)/2]
2

= [(X1 −X2)/2]
2 + [(X2 −X1)/2]

2 = (X1 −X2)
2/2.

(e) Define Y1 = (X1 − µ)/σ and Y2 = (X2 − γ)/η. So, Y1, Y2 are i.i.d. N(0, 1) variables. Set
U = (

√
2/η)(X−γ), which also equals (Y1+Y2)/

√
2. Set V = (Y1−Y2)/

√
2, which also equals

(
√
2/η)(X1 −X2).

Using Exercise (1) in Week 3, it follows that Y1+Y2 and Y1−Y2 are independent. Thus, U =
(Y1+Y2)/

√
2 and V = (Y1−Y2)/

√
2 are also independent. They are also normally distributed.

Now using part (c), it follows that U = (
√
2/η)(X−γ) and V 2 = (2/η2)(X1−X2)

2 = 4S2/η2

are independent. So, X and S2 are independent (since these are functions of U and V 2).
(f) If γ = 0, observe that

T =
X1 +X2

|X1 −X2|
=

2X√
2S

=
X − γ

S/
√
2
.

Hence, T has a Student’s t distribution with two degrees of freedom.
(g)
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Since the scatter-plot shows that X and S2 are distributed almost evenly in all the four
quadrants when the center is shifted to the true value (0, 1)⊤ (which is close to the empirical
values), we may guess that the covariance/correlation between the two should be close to
zero. This is also because the correlation is a measure of the strength of linear relationship
between the two variables, and the scatter-plot indicates the lack thereof.

Assignment 5. (a) Since 0 ≤ pk ≤ 1, log pk ≤ 0 and −pk log pk ≥ 0.
The entropy is infinite if pk behaves like [k log2(k)]−1 (meant in the limit, the discrete random
variable must have infinite support).
(b) Since g is injective for any y ∈ Y = g(X ) there is a unique x = g−1(y) ∈ X such that
y = g(x). Then

−H(g(X)) =
∑
y∈Y

fY (y) log fY (y) =
∑
x∈X

fY (g(x)) log fY (g(x)) =
∑
x∈X

fX(x) log fX(x) = −H(X).

(c) X2 takes the values 0 and 1 with probabilities p2 and p1 + p3. Since p1, p3 > 0 the
superadditivity gives

−H(X2) = h(p1 + p3) + h(p2) > h(p1) + h(p3) + h(p2) = −H(X).

For the general case one applies the same idea by “stacking” for each y those x ∈ X for which
g(x) = y.
(d) Here we have

H(X) = −
∫ θ

0

1

θ
log

1

θ
dx = log θ.

(e) No. Take θ < 1 above.
(f) No. Take X ∼Unif[0, 1] and g(x) = θx. Then H(g(X)) > H(X) if θ > 1. Note that g is
injective !
Remark : if X has density that behaves like [x log2 x]−1 for x > 2, then H(X) = ∞. If we have
the same behaviour but only on (0, 1/2) then H(X) = −∞. If we have the same behaviour on
(0, 1/2) ∪ (2,∞) then H(X) is undefined. Thus the continuous entropy can take any value in
[−∞,∞] or be undefined !

Assignment 6. The complete R code for this assignment is avaliable on the course website
at http://smat.epfl.ch/courses/datasci/corrections/3.R
(e) We see that the values of small increase towards the value of small.norm.
(f) Similarly, the densities of the t distribution converge to that of the Gaussian distribution.
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