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Finding Good Test Functions

Consider the simplest situation:

⇥0 = {✓0} & ⇥1 = {✓1}

The Neyman-Pearson Lemma - Continuous Case

Let Y have joint density/frequency f 2 {f0, f1} and suppose we wish to test

H0 : f = f0 vs H1 : f = f1.

If ⇤(Y ) = f1(Y )/f0(Y ) is a continuous random variable, then there exists a k > 0
such that

P0[⇤(Y ) � k] = ↵

and the test whose test function is given by

�(Y ) = 1{⇤(Y ) � k},

is a most powerful (MP) test of H0 versus H1 at significance level ↵.
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Proof.

Use obvious notation E0, E1, P0, P1 corresponding to H0 or H1. Let
G0(t) = P0[⇤  t]. By assumption, G0 is a di↵erentiable distribution function, and
so is onto [0, 1]. Consequently, the set K1�↵ = {t : G0(t) = 1� ↵} is non-empty
for any ↵ 2 (0, 1). Setting k = inf{t 2 K1�↵} we will have P0[⇤ � k] = ↵ and k

is simply the 1� ↵ quantile of the distribution G0. Consequently,

P0[� = 1] = ↵ (since P0[� = 1] = P0[⇤ � k])

and therefore � 2 D({✓0},↵) (i.e. � indeed respects the level ↵).
To show that � is also most powerful, it su�ces to prove that if  is any function
with  (y) 2 {0, 1}, then

E0[ (Y )]  E0[�(Y )]| {z }
=↵(by first part of proof)

=) E1[ (Y )]| {z }
�1( )

 E1[�(Y )]| {z }
�1(�)

.

(recall that �1(�) = 1� P1[� = 0] = P1[� = 1] = E1[�]).
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WLOG assume that f0 and f1 are density functions. Note that

f1(y)� k · f0(y) � 0 if �(y) = 1 & f1(y)� k · f0(y) < 0 if �(y) = 0.

Therefore, since  can only take the values 0 or 1,

 (y)(f1(y)� k · f0(y))  �(y)(f1(y)� k · f0(y))Z

Rn

 (y)(f1(y)� k · f0(y))dy 
Z

Rn

�(y)(f1(y)� k · f0(y))dy

Rearranging the terms yields
Z

Rn

( (y)� �(y))f1(y)dy  k

Z

Rn

( (y)� �(y))f0(y)dy

=) E1[ (Y )]� E1[�(Y )]  k (E0[ (y)]� E0[�(Y )])

But k > 0 by assumption, so when E0[ (Y )]  E0[�(Y )] the RHS is negative, i.e.
� is an MP test of H0 vs H1 at level ↵.
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The Neyman-Pearson Lemma

Basically we reject if the likelihood of ✓0 is k times higher than the likelihood
of ✓1. This is called a likelihood ratio test, and ⇤ is the likelihood ratio
statistic: how much more plausible is the alternative than the null?

When ⇤ is a continuous RV, the choice of k is essentially unique. That is, if
k
0 is such that �0 = 1{⇤ � k

0} 2 D({✓0},↵), then � = �0 almost surely.

The resulting most powerful test is not necessarily unique.

Unless ⇤ is continuous, the most powerful test is not necessarily guaranteed
to exist.

The problem if ⇤ is a RV with a discontinuous dist is that there may exist no
k for which the equation P0[⇤ � k] = ↵ has a solution.

In any case, typically the distribution of the test statistic converges to a
continuous limit with large n, so these problems become inessential.
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Example (Poisson Distribution)

Let Y1, . . . ,Yn

iid⇠ Poisson(µ) and for µ1 > µ0 consider the hypotheses:

H0 : µ = µ0 vs H1 : µ = µ1.

These correspond to the Higgs example by setting µ0 = b and µ1 = b + s.

Applying the Neyman-Pearson lemma gives a test statistic

�(Y1, . . . ,Yn) = 1
�P

n

i=1
Yi > q1�↵

 
,

provided ↵ is such that G0(q1�↵) = Pµ0
[⌧(Y1, . . . ,Yn)  q1�↵]

!
=1� ↵.

Since the Yi are independent, one can easily show that

⌧(Y1, . . . ,Yn)
H0⇠ Poisson(nµ0).

This being a discrete distribution, the only ↵ for which we get an MP test are

e
�nµ0 , e�nµ0 (1 + nµ0) , e�nµ0

⇣
1 + nµ0 +

(nµ0)
2

2

⌘
, . . . and so on

Nevertheless notice that as n ! 1, these values become dense near the origin.
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When {⇥0,⇥1} are not singletons, choosing a most powerful test is a much
stronger requirement:

1 It should respect the level for all ✓ 2 ⇥0, i.e.

� 2 D(⇥0,↵) = {� : Yn ! {0, 1} : E✓[�]  ↵, 8 ✓ 2 ⇥0}

2 It should be most powerful for all ✓ 2 ⇥1 (i.e. for all possible simple
alternatives),

E✓[�] � E✓[�0] 8✓ 2 ⇥1 & �0 2 D(⇥0,↵)

Unfortunately UMP tests rarely exist. Why?
,! Consider H0 : ✓ = ✓0 vs H1 : ✓ 6= ✓0

A UMP test must be MP test for any ✓ 6= ✓1.

But the form of the MP test typically di↵ers for ✓1 > ✓0 and ✓1 < ✓0!
,! e.g. recall exponential mean example
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Example (No UMP test exists)

Let Y1, ...,Yn ⇠Bernoulli(✓) and suppose we want to test:

H0 : ✓ = ✓0 vs H1 : ✓ 6= ✓0

at some level ↵. To this aim, consider first

H
0
0
: ✓ = ✓0 vs H

0
1
: ✓ = ✓1

Neyman-Pearson lemma gives test statistics

T =
f (Y ; ✓1)

f (Y ; ✓0)
=

✓
1� ✓1
1� ✓0

◆n ✓✓1(1� ✓0)

✓0(1� ✓1)

◆P
n

i=1
Yi

If ✓1 > ✓0 then T increasing in
P

n

i=1
Yi

,! MP test would reject for large values of
P

n

i=1
Yi

If ✓1 < ✓0 then T decreasing in
P

n

i=1
Yi

,! MP test would reject for small values of
P

n

i=1
Yi
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So what can we do for more general {⇥0,⇥1}?

One sided hypotheses: when ⇥0 is a an interval of the form (�1, ✓0] or
[✓0,+1) and ⇥1 = ⇥c

0
, there are often uniformly most powerful tests

depending on the underlying model.

For example, in one-parameter exponential families, one simply uses the

Neyman-Pearson lemma, taking the null to be ✓ = ✓0 and the alternative

✓ = ✓1 for any ✓1 2 ⇥1 (the form of the test depends only on the direction of

the null and the boundary of the null).

This generalises to families admitting a so-called “monotone likelihood ratio”

In the absence of the “monotone likelihood ratio” property, one can seek

locally most powerfull tests, near the hypothesis boundary. It can be shown

that the score function (derivative of the logliklihood) at the boundary ✓0 can

serve as a test statistic to this aim.

General hypothesis pairs: we need to abandon optimality, and search for
sensible tests. But the likelihood ratio idea can serve us well in this pursuit.
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Likelihood Ratio Tests

Consider now the multiparameter case ✓ 2 Rp with general ⇥0, ⇥1

As noted optimality breaks down.

But we can still seek general-purpose approaches.

The idea: Combine Neyman-Pearson paradigm with Maximum Likelihood

Definition (Likelihood Ratio)

The likelihood ratio statistic corresponding to the pair of hypotheses H0 : ✓ 2 ⇥0

vs H1 : ✓ 2 ⇥1 is defined to be

⇤(Y ) =
sup✓2⇥

f (Y ; ✓)

sup✓2⇥0
f (Y ; ✓)

=
sup✓2⇥

L(✓)

sup✓2⇥0
L(✓)

Intuition: choose the “most favourable” ✓ 2 ⇥0 (in favour of H0) and
compare it against the “most favourable” ✓ 2 ⇥1 (in favour of H1) in a
simple vs simple setting (applying NP-lemma)

Typically ⇥0 is a lower dimensional subspace of ⇥1, so taking sup over ⇥
(rather than ⇥1) incurs no loss. In this case ⇥0 \⇥1 6= ;, but
Leb(⇥0 \⇥1) = 0, which su�ces.
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Example

Let Y1, ...,Yn

iid⇠ N (µ,�2) where both µ and �2 are unknown. Consider:

H0 : µ = µ0 vs H1 : µ 6= µ0

⇤(Y ) =
sup

(µ,�2)2R⇥R+ f (Y ;µ,�2)

sup
(µ,�2)2{µ0}⇥R+ f (Y ;µ,�2)

=

✓Pn

i=1
(Yi � µ0)2P

n

i=1
(Yi � Ȳ )2

◆ n

2

=

✓
�̂2

0

�̂2

◆ n

2

So reject when ⇤ � k , where k is s.t. P0[⇤ � k] = ↵. Distribution of ⇤? By
monotonicity look only at

P
n

i=1
(Yi � µ0)2P

n

i=1
(Yi � Ȳ )2

= 1 +
n(Ȳ � µ0)2P
n

i=1
(Yi � Ȳ )2

= 1 +
1

n � 1

✓
n(Ȳ � µ0)2

S2

◆

= 1 +
T

2

n � 1

With S
2 = 1

n�1

P
n

i=1
(Yi � Ȳ )2 and T =

p
n(Ȳ � µ0)/S

H0⇠ tn�1.

So T
2 H0⇠ F1,n�1 and k may be chosen appropriately.
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Example

Let Y1, ...,Ym

iid⇠ Exp(�) and Z1, ...,Zn

iid⇠ Exp(✓). Assume Y indep Z .

Consider: H0 : ✓ = � vs H1 : ✓ 6= �

i.e. (✓,�) 2 R
2

+
against (✓,�) 2 45 degree line

Unrestricted MLEs:
sup

(�,✓)2R2
+

f (Y ,Z ;�,✓)
�̂ = 1/Ȳ & ✓̂ = 1/Z̄

Restricted MLEs:
sup

(�,✓)2{(y,z)2R2
+
:y=z} f (Y ,Z ;�,✓)

�̂0 = ✓̂0 =


mȲ + nZ̄

m + n

��1

=) ⇤ =

✓
m

m + n
+

n

n +m

Z̄

Ȳ

◆m ✓
n

n +m
+

m

m + n

Ȳ

Z̄

◆n

Depends on T = Ȳ /Z̄ and can make ⇤ large/small by varying T .

,! But T
H0⇠ F2m,2n so given ↵ we may find the critical value k .
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Distribution of Likelihood Ratio?

More often than not, dist(⇤) intractable
,!(and no simple dependence on T with tractable distribution either)

Consider asymptotic approximations?

Setup

⇥ open subset of Rp

either ⇥0 = {✓0} or ⇥0 open subset of Rs , where s < p

Concentrate on Y = (Y1, ...,Yn) has iid components.

Initially restrict attention to H0 : ✓ = ✓0 vs H1 : ✓ 6= ✓0. LR becomes:

⇤n(Y ) =
nY

i=1

f (Yi ; ✓̂n)

f (Yi ;✓0)

where ✓̂n is the MLE of ✓.

Impose regularity conditions from MLE asymptotics
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Asymptotic Distribution of the Likelihood Ratio

Theorem (Wilks’ Theorem, case p = 1)

Let Y1, ...,Yn be iid random variables with density (frequency) depending on ✓ 2 R
and satisfying conditions (A1)-(A6), with I1(✓) = J1(✓). If the MLE sequence ✓̂n
is consistent for ✓, then the likelihood ratio statistic ⇤n for H0 : ✓ = ✓0 satisfies

2 log⇤n

d! V ⇠ �2

1

when H0 is true.

Obviously, knowing approximate distribution of 2 log⇤n is as good as knowing
approximate distribution of ⇤n for the purposes of testing (by monotonicity
and rejection method).

Theorem extends immediately and trivially to the case of general p and for a
hypothesis pair H0 : ✓ = ✓0 vs H1 : ✓ 6= ✓0.
(i.e. when null hypothesis is simple)
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Asymptotic Distribution of the Likelihood Ratio

Proof (⇤).
Under the conditions of the theorem and when H0 is true,

p
n(✓̂n � ✓0)

d! N (0, I�1

1
(✓0))

Now take logarithms and expand in a Taylor series around ✓̂n,

log⇤n =
nX

i=1

[`(Yi ; ✓̂n)� `(Yi ; ✓0)] =
nX

i=1

[`(Yi ; ✓̂n)� `(Yi ; ✓̂n)] +

+(✓0 � ✓̂n)
nX

i=1

`0(Yi ; ✓̂n)�
1

2
(✓̂n � ✓0)

2

nX

i=1

`00(Yi ; ✓
⇤
n
)

= �1

2
n(✓̂n � ✓0)

2
1

n

nX

i=1

`00(Yi ; ✓
⇤
n
)

where ✓⇤
n
lies between ✓̂n and ✓0.
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Asymptotic Distribution of the Likelihood Ratio

If H0 is true, and since ✓̂n is a consistent sequence, ✓⇤
n
is sandwiched so

✓⇤
n

p! ✓0.

Hence under assumptions (A1)-(A6), and when H0 is true, a first order Taylor
expansion about ✓0, the continuous mapping theorem and the LLN give

1

n

nX

i=1

`00(Yi ; ✓
⇤
n
)

p! �E✓0 [`00(Yi ; ✓0)] = I1(✓0)

On the other hand, by the continuous mapping theorem,

n(✓̂n � ✓0)
2 d! V

I1(✓0)

Applying Slutsky’s theorem now yields the result.
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Asymptotic Distribution of the Likelihood Ratio

Theorem (Wilk’s theorem, general p, general s  p)

Let Y1, ...,Yn be iid random variables with density (frequency) depending on

✓ 2 Rp
and satisfying conditions (B1)-(B6), with I1(✓) = J1(✓). If the MLE

sequence ✓̂n is consistent for ✓, then the likelihood ratio statistic ⇤n for

H0 : {✓j = ✓j,0}sj=1
satisfies 2 log⇤n

d! V ⇠ �2

s
when H0 is true.

Comments:

Note that it may potentially be that s < p, and this is accommodated by the
theorem

Hypotheses of the form H0 : {gj(✓) = aj}sj=1
, for gj di↵erentiable real

functions, can also be handled by Wilks’ theorem:
Define (�1, ...,�p) = g(✓) = (g1(✓), ..., gp(✓))
gs+1, ..., gp defined so that ✓ 7! g(✓) is 1-1
Apply theorem with parameter �
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Other Tests?

Many other tests possible. For example:

Wald’s test
,! For a simple null, may compare the unrestricted MLE with the MLE under the

null. Large deviations indicate evidence against null hypothesis. Distributions

are approximated for large n via the asymptotic normality of MLEs.

Score Test
,! For a simple null, if the null hypothesis is false, then the loglikelihood gradient

at the null should not be close to zero, at least when n reasonably large: so

measure its deviations form zero. Use asymptotics for distributions (under

conditions we end up with a �2
)

...
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The infamous p-value (a.k.a. observed significance level)

So far focussed on Neyman-Pearson Framework:

1 Fix a significance level ↵ for the test
2 Consider rules � respecting this significance level

,! We choose one of those rules, �⇤, based on power considerations

3 We reject at level ↵ if �⇤(y) = 1.

Useful for attempting to determine optimal test statistics

What if we already have a given form of test statistic in mind? (e.g. LRT)
,! A di↵erent perspective on testing (used more in practice) says:

Rather then consider a family of test functions respecting level ↵...

... consider family of test functions indexed by ↵

1 Fix a family {�↵}↵2(0,1) of decision rules, with �↵ having level ↵
,! for a given y some of these rules reject the null, while others do not

2 Which is the smallest ↵ for which H0 is rejected given y?
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Definition (p–Value)

Let {�↵}↵2(0,1) be a family of test functions satisfying

↵1 < ↵2 =) {y 2 Yn : �↵1
(y) = 1} ✓ {y 2 Yn : �↵2

(y) = 1}.

The p–value (or observed significance level) of the family {�↵} is

p(y) = inf{↵ : �↵(y) = 1}

,! The p–value is the smallest value of ↵ for which the null would be rejected at
level ↵, given Y = y .

Most usual setup:

Have a single test statistic T

Construct family �↵(y) = 1{T (y) > k↵}
If PH0

[T  t] = G (t) then p(y) = PH0
[T (Y ) � T (y)] = 1� G (T (y))
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Notice: contrary to NP-framework did not make explicit decision!

We simply reported a p–value

The p–value is used as a measure of evidence against H0

,! Small p–value provides evidence against H0

,! Large p–value provides no evidence against H0

How small does “small” mean?
,! Depends on the specific problem...

Intuition:

Recall that extreme values of test statistics are those that are “inconsistent”
with null (NP-framework)

p–value is probability of observing a value of the test statistic as extreme as
or more extreme than the one we observed, under the null

If this probability is small, then we have witnessed something quite unusual
under the null hypothesis

Gives evidence against the null hypothesis
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Example (Normal Mean)

Let Y1, ...,Yn

iid⇠ N (µ,�2) where both µ and �2 are unknown. Consider:

H0 : µ = 0 vs H1 : µ 6= 0

Likelihood ratio test: reject when T
2 large, T =

p
nȲ /S

H0⇠ tn�1.

Since T
2 H0⇠ F1,n�1, p–value is

p(y) = PH0
[T 2(Y ) � T

2(y)] = 1� GF1,n�1
(T 2(y))

Consider two samples (datasets),

y = (0.66, 0.28,�0.99, 0.007,�0.29,�1.88,�1.24, 0.94, 0.53,�1.2)

y 0 = (1.4, 0.48, 2.86, 1.02,�1.38, 1.42, 2.11, 2.77, 1.02, 1.87)

Obtain p(y) = 0.32 while p(y 0) = 0.006.
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Reporting a p–value does not necessarily mean making a decision

A small p–value can simply reflect our “confidence” in rejecting a null

Recall example: Statisticians working for Trump gather iid sample Y from Florida
with Yi = 1{vote Biden}. Trumps team want to test

(
H0 : Trump wins Florida

H1 : Biden wins Florida

Will statisticians decide for Trump?

Perhaps better to report p–value to him and let him decide...

What if statisticians working for newspaper, not Trump?

Something easier to interpret than test/p–value?
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A Glance Back at Point Estimation

Let Y1, ...,Yn be iid random variables with density (frequency) f (·; ✓).
Problem with point estimation: P✓[✓̂ = ✓] typically small (if not zero)
,! always attach an estimator of variability, e.g. standard error

,! interpretation?

Hypothesis tests may provide way to interpret estimator’s variability within
the setup of a particular problem
,! e.g. if observe P̂[Biden wins] = 0.52 can actually see what p–value we get

when testing H0 : P[Biden wins] � 1/2.

Something more directly interpretable?

Back to our example: What do pollsters do in newspapers?
,! They announce their point estimate (e.g. 0.52)
,! They give upper and lower confidence limits

What are these and how are they interpreted?
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Interval Estimation

Simple underlying idea:

Instead of estimating ✓ by a single value

Present a whole range of values for ✓ that are consistent with the data
,! In the sense that they could have produced the data

Definition (Confidence Interval)

Let Y = (Y1, ...,Yn) be random variables with joint distribution depending on
✓ 2 R and let L(Y ) and U(Y ) be two statistics with L(Y ) < U(Y ) a.s. Then, the
random interval [L(Y ),U(Y )] is called a 100(1� ↵)% confidence interval for ✓ if

P✓[L(Y )  ✓  U(Y )] � 1� ↵

for all ✓ 2 ⇥, with equality for at least one value of ✓.

1� ↵ is called the coverage probability or confidence level

Beware of interpretation!
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Probability statement is NOT made
about ✓, which is constant.

Statement is about interval:
probability that the interval contains
the true value is at least 1� ↵.

Given any realization Y = y , the
interval [L(y),U(y)] will either
contain or not contain ✓.

Interpretation: if we construct
intervals with this method, then we
expect that 100(1� ↵)% of the
time our intervals will engulf the
true value.
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Example (The example that says all)

Let Y1, ...,Yn

iid⇠ N (µ, 1). Then
p
n(Ȳ � µ) ⇠ N (0, 1), so that

Pµ[�1.96 
p
n(Ȳ � µ)  1.96] = 0.95

and since

�1.96 
p
n(Ȳ � µ)  1.96 () Ȳ � 1.96/

p
n  µ  Ȳ + 1.96/

p
n

we obviously have

Pµ


Ȳ � 1.96p

n
 µ  Ȳ +

1.96p
n

�
= 0.95

So that the random interval [L(Y ),U(Y )] =
h
Ȳ � 1.96p

n
, Ȳ + 1.96p

n

i
is a 95%

confidence interval for µ.

Central Limit Theorem: same argument can yield approximate 95% CI when
Y1, ...,Yn are iid, EYi = µ and var(Yi ) = 1, regardless of their distribution.
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n(Ȳ � µ) ⇠ N (0, 1), so that

Pµ[�1.96 
p
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Ȳ � 1.96p

n
 µ  Ȳ +

1.96p
n

�
= 0.95

So that the random interval [L(Y ),U(Y )] =
h
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Example (continued)

Notice that the interval is centred at Ȳ , the MLE of µ. It’s often thus written:

Ȳ ± z1�↵
2

�p
n

Observations:

The length of the interval is 2z1�↵/2�/
p
n, which depends on �2, n and ↵.

The parameter �2 is beyond our control.

We can nevertheless control n and 1� ↵. Increasing n, the length of the
interval decays as 1/

p
n.

Reducing ↵ (i.e. increasing 1� ↵) increases the length of the interval (the
dependence is quite non-linear, and 5% is chosen as a “sweet spot”).
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Pivotal Quantities

What can we learn from previous example?

Definition (Pivot)

A random function g(Y , ✓) is said to be a pivotal quantity (or simply a pivot) if it
is a function both of Y and ✓ whose distribution does not depend on ✓.

,!
p
n(Ȳ � µ) ⇠ N (0, 1) is a pivot in previous example

Why is a pivot useful?

8 ↵ 2 (0, 1) we can find constants a < b independent of ✓, such that

P✓[a  g(Y , ✓)  b] = 1� ↵ 8 ✓ 2 ⇥

If g(Y , ✓) can be manipulated then the above yields a CI
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Example

Let Y1, ...,Yn

iid⇠ U [0, ✓]. Recall that MLE ✓̂ is ✓̂ = Y(n), with distribution

P✓
⇥
Y(n)  x

⇤
= FY(n)

(x) =
⇣
x

✓

⌘n

=) P✓

Y(n)

✓
 y

�
= y

n

! Hence Y(n)/✓ is a pivot for ✓. Can now choose a < b such that

P✓

a 

Y(n)

✓
 b

�
= 1� ↵

! But there are 1-many such choices!
,! Idea: choose pair (a, b) that minimizes interval’s length!

Solution can be seen to be a = ↵1/n and b = 1, yielding

Y(n),

Y(n)

↵1/n

�
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Pivotal method extends to construction of CI for ✓k , when

✓ = (✓1, ..., ✓k , ..., ✓p) 2 Rp

and the remaining coordinates are also unknown. ! Pivotal quantity should now
be function g(Y ; ✓k) which

1 Depends on Y , ✓k , but no other parameters
2 Has a distribution independent of any of the parameters

,! e.g.: CI for normal mean, when variance unknown

! Main di�culties with pivotal method:

Hard to find exact pivots in general problems

Exact distributions may be intractable

Resort to asymptotic approximations...

,! Most classic example when have an(✓̂n � ✓)
d! N (0,�2(✓)).
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What about higher dimensional parameters?

Definition (Confidence Region)

Let Y = (Y1, ...,Yn) be random variables with joint distribution depending on
✓ 2 ⇥ ✓ Rp. A random subset R(Y ) of ⇥ depending on Y is called a
100(1� ↵)% confidence region for ✓ if

P✓[R(Y ) 3 ✓] � 1� ↵

for all ✓ 2 ⇥, with equality for at least one value of ✓.

No restriction requiring R(Y ) to be convex or even connected
,! So when p = 1 get more general notion than CI

Nevertheless, many notions extend immediately to CR case
,! e.g. notion of a pivotal quantity
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Let g : Yn ⇥⇥ ! R be a function such that dist[g(Y ,✓)] independent of ✓
,! Since image space is the real line, can find a < b s.t.

P✓[a  g(Y ,✓)  b] = 1� ↵

=) P✓[R(Y ) 3 ✓] = 1� ↵

where R(y) = {✓ 2 ⇥ : g(y ,✓) 2 [a, b])}

Notice that region can be “wild” since it is a random level set of g

Example

Let Y1, ...,Yn

iid⇠ Nk(µ,⌃). Two unbiased estimators of µ and ⌃ are

µ̂ =
1

n

nX

i=1

Yi

⌃̂ =
1

n � 1

nX

i=1

(Yi � µ̂)(Yi � µ̂)T
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Example (cont’d)

Consider the random variable

g({Y }n
i=1

,µ) :=
n(n � k)

k(n � 1)
(µ̂� µ)T ⌃̂�1(µ̂� µ) ⇠ F -dist with k and n-k d.f.

A pivot!
,! If fq is q-quantile of this distribution, then get 100q% CR as

R({Y }n
i=1

) =

⇢
✓ 2 Rn :

n(n � k)

k(n � 1)
(µ̂� µ)T ⌃̂�1(µ̂� µ)  fq

�

An ellipsoid in Rn

Ellipsoid centred at µ̂

Principle axis lengths given by eigenvalues of ⌃̂�1

Orientation given by eigenvectors of ⌃̂�1
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Duality

Visualisation of high-dimensional CR’s can be hard

When these are ellipsoids, spectral decomposition helps

But more generally?

Things are especially easy when dealing with rectangles - but they rarely occur!
,! What if we construct a CR as Cartesian product of CI’s?

Let [Li (Y ),Ui (Y )] be 100qi% CI’s for ✓i , i = 1, .., p, and define

R(Y ) = [L1(Y ),U1(Y )]⇥ . . .⇥ [Lp(Y ),Up(Y )]

Bonferroni’s inequality implies that

P✓[R(Y ) 3 ✓] � 1�
pX

i=1

P[✓i /2 [Li (Y ),Ui (Y )]] = 1�
pX

i=1

(1� qi )

! So pick qi such that
P

p

i=1
(1� qi ) = ↵ (can be conservative...)
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Discussion on CR’s ! provides no guidance on choosing “good” regions

But: 9 close relationship between CR’s and hypothesis tests!
,! exploit this to transform good testing properties into good CR properties

Suppose R(Y ) is an exact 100q%=100(1� ↵)% CR for ✓. Consider

H0 : ✓ = ✓0 vs H1 : ✓ 6= ✓0

Define test function:

�(Y ) =

(
1 if ✓0 /2 R(Y ),

0 if ✓0 2 R(Y ).

Then, E✓0
[�(Y )] = 1� P✓0

[✓0 2 R(Y )]  ↵

Can use a CR to construct test with significance level ↵!

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 37 / 45



Discussion on CR’s ! provides no guidance on choosing “good” regions

But: 9 close relationship between CR’s and hypothesis tests!
,! exploit this to transform good testing properties into good CR properties

Suppose R(Y ) is an exact 100q%=100(1� ↵)% CR for ✓. Consider

H0 : ✓ = ✓0 vs H1 : ✓ 6= ✓0

Define test function:

�(Y ) =

(
1 if ✓0 /2 R(Y ),

0 if ✓0 2 R(Y ).

Then, E✓0
[�(Y )] = 1� P✓0

[✓0 2 R(Y )]  ↵

Can use a CR to construct test with significance level ↵!

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 37 / 45



Discussion on CR’s ! provides no guidance on choosing “good” regions

But: 9 close relationship between CR’s and hypothesis tests!
,! exploit this to transform good testing properties into good CR properties

Suppose R(Y ) is an exact 100q%=100(1� ↵)% CR for ✓. Consider

H0 : ✓ = ✓0 vs H1 : ✓ 6= ✓0

Define test function:

�(Y ) =

(
1 if ✓0 /2 R(Y ),

0 if ✓0 2 R(Y ).

Then, E✓0
[�(Y )] = 1� P✓0

[✓0 2 R(Y )]  ↵

Can use a CR to construct test with significance level ↵!

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 37 / 45



Going the other way around, can invert tests to get CR’s:

Suppose we have tests at level ↵ for any choice of simple null, ✓0 2 ⇥.
,! Say that �(Y ;✓0) is appropriate test function for H0 : ✓ = ✓0

Define R
⇤(Y ) = {✓0 : �(Y ;✓0) = 0}

Coverage probability of R⇤(Y ) is

P✓[✓ 2 R
⇤(Y )] = P✓[�(Y ;✓) = 0] � 1� ↵

Obtain a 100(1� ↵)% confidence region by choosing all the ✓ for which the null
would not be rejected given our data Y .

,! If test inverted is powerful, then get “small” region for given 1� ↵.
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Multiple Testing

Modern example: looking for signals in noise

Interested in detecting presence of a signal µ(xt), t = 1, . . . ,T over a
discretised domain, {x1, . . . , xt}, on the basis of noisy measurements

This is to be detected against some known background, say 0.

May or may not be specifically interested in detecting the presence of the
signal in some particular location xt , but in detecting whether the a signal is
present anywhere in the domain.

Formally:

Does there exist a t 2 {1, . . . ,T} such that µ(xt) 6= 0?

or

for which t’s is µ(xt) 6= 0?
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More generally:

Observe
Yt = µ(xt) + "t , t = 1, . . . ,T .

Wish to test, at some significance level ↵:

(
H0 : µ(xt) = 0 for all t 2 {1, . . . ,T},
HA : µ(xt) 6= 0 for some t 2 {1, . . . ,T}.

May also be interested in which specific locations signal deviates from zero

More generally: May have T hypotheses to test simultaneously at level ↵
(they may be related or totally unrelated)

Suppose we have a test statistic for each individual hypothesis H0,t yielding a
p-value pt .
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Bonferroni Method.

If we test each hypothesis individually, we will not maintain the level!

Can we maintain the level ↵?

Idea: use the same trick as for confidence regions!

Bonferroni

1 Test individual hypotheses separately at level ↵t = ↵/T

2 Reject H0 if at least one of the {H0,t}Tt=1
is rejected

Global level is bounded as follows:

P[not H0|H0] = P
"

T[

t=1

{not H0,t}

�����H0

#


TX

t=1

P[not H0,t |H0] = T
↵

T
= ↵

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 41 / 45



Holm-Bonferroni Method.

Advantage: Works for any (discrete domain) setup!

Disadvantage: Too conservative when T large

Holm’s modification increases average # of hypotheses rejected at level ↵ (but
does not increase power for overall rejection of H0 = \t2TH0,t)

Holm’s Procedure

1 We reject H0,t for small values of a corresponding p-value, pt

2 Order p-values from most to least significant: p(1)  . . .  p(T )

3 Starting from t = 1 and going up, reject all H0,(t) such that p(t) significant at
level ↵/(T � t + 1). Stop rejecting at first insignificant p(t).

Genuine improvement over Bonferroni if want to detect as many signals as
possible, not just existence of some signal
Both Holm and Bonferroni reject the global H0 if and only if inft pt significant at
level ↵/T .
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Taking Advantage of Structure: Independence.

In the (special) case where individual test statistics are independent, one may use
Sime’s (in)equality,

P

p(j) �

j↵

T
, for all j = 1, ...,T

����H0

�
� 1� ↵

(strict equality requires continuous test statistics, otherwise  ↵)

Yields Sime’s procedure (assuming independence)

1 Suppose we reject H0,j for small values of pj

2 Order p-values from most to least significant: p(1)  . . .  p(T )

3 If, for some j = 1, . . . ,T the p-value p(j) is significant at level
j↵
T
, then reject

the global H0.

Provides a test for the global hypothesis H0, but does not “localise” the signal at
a particular xt
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One can, however, devise a sequential procedure to “localise” Sime’s procedure, at
the expense of lower power for the global hypothesis H0:

Hochberg’s procedure (assuming independence)

1 Suppose we reject H0,j for small values of pj

2 Order p-values from most to least significant: p(1)  . . .  p(T )

3 Starting from j = T ,T � 1, ... and down, accept all H0,(j) such that p(j)
insignificant at level ↵/(T � j + 1).

4 Stop accepting for the first j such that p(j) is significant at level ↵/j , and
reject all the remaining ordered hypotheses past that j going down.

Genuine improvement over Holm-Bonferroni both overall (H0) and in terms of signal localisation:

1 Rejects “more” individual hypotheses than Holm-Bonferroni

2 Power for overall H0 “weaker” than Sime’s (for T > 2), much “stronger” than Holm (for

T > 1).
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