
Statistics for Data Science: Week 13

Myrto Limnios and Rajita Chandak

Institute of Mathematics – EPFL

rajita.chandak@epfl.ch, myrto.limnios@epfl.ch

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 1 / 39

Nonparametric Regression

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 2 / 39

So far we have discussed the following setup:

Yi | x→
i

ind→ Dist[ωi] ↑
{

ωi = g(x→
i) = x

→
i ω,

ω ↓ Rp,

with ω to be estimated from data, e.g.

Dist = N (µi ,ε2) and µi = x
→
i ω (Gaussian linear regression)

Dist ↓ ExpFamily(ωi) and ωi = x
→
i ω (GLM)

Why this is still a class of models we study?

Representing the distribution as linearly dependent on the covariates is
convenient and yields a very easy interpretation (both if Y is continuous
(regression) or discrete (classification))

It is sometimes very useful when the sample size is very small (n)

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 3 / 39

A More Flexible Regression Model - how to go beyond linearity?

Would now like to extend the model to a more flexible dependence - we want to
replace the linear dependence on x with transformations of x :

Yi | x→
i

ind→ Dist[ωi] ↑
{

ωi = g(x→
i),

g ↓ F ↔ L2(Rp) (say),

with g : Rp ↑ R unknown, to be estimated given data {(Yi , x→
i)}ni=1

.

A nonparametric problem (parameter ↗-dimensional)!

How to estimate g in this context?

F is usually assumed to be a class of smooth functions (e.g., C k).

Start from simplest problem:

Dist ↘ N (µi ,ε2)
xi ↓ R

}
=≃ Yi = g(xi) + ϑi , ϑi

iid→ N (0,ε2)

And ideally we would like to linearly decompose g over a dictionary depending on
a number of transformations of x

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 4 / 39

#parameters

- -

-

: ge

F= (ut <B,
22

, BEBCRY
-Bisi

g(m)=On en,

Exploiting Smoothness

Ideally: large sample plus multiple xi with same value (many large covariate
classes):

0 20 40 60 80 100

0
1

2
3

x

R
es
po
ns
e

Then average Yi ’s at each covariate class and interpolate . . .
But this is never the case in practice... . . .

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 5 / 39

P

Exploiting Smoothness

Usually unique xi distinct:

10 20 30 40 50

−1
00

−5
0

0
50

Time After Impact (ms)

H
ea

d
Ac

ce
la

ra
tio

n
(g

)

Here is where the smoothness assumption comes in

Since have distinct value for each xi , need to borrow information from nearby
. . .

. . . use continuity!!! (or even better, smoothness)

↭ Recall: A function g : R ↑ R is continuous if:

⇐ ϖ > 0 ⇒ ϱ > 0 : |x ⇑ x0| < ϱ =≃ |g(x)⇑ g(x0)| < ϖ.

↭ So maybe average Yi ’s corresponding to xi ’s in a ϱ-neighbourhood of x .
↭ Motivates the use of a kernel smoother . . .

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 6 / 39

=

Opt ·
- = W

Kernel Smoothing

Naive idea: ĝ(x0) should be the average of Yi -values with xi ’s “close” to x0.

ĝ(x0) =
1∑n

i=1
1{|xi ⇑ x0| ⇓ ς}

n∑

i=1

Yi1{|xi ⇑ x0| ⇓ ς}.

A weighted average! Choose other weights? Kernel estimator:

ĝ(x0) =
1∑n

i=1
K
(
xi↑x0
ω

)
n∑

i=1

YiK

(
xi ⇑ x0

ς

)
=

1∑n
i=1

wi

n∑

i=1

wiYi .

K is a kernel function: specifies the nature of the local neighbourhood at
each point
ω→ E.g. standard Gaussian pdf, K(x) = ε(x).

ς is the bandwidth parameter: controls the width of the window
ω→ small ϑ gives local behaviour, large ϑ gives global behaviour

Choice of K not so important, choice of ς very important.

The resulting fitted values are linear in the responses, i.e., Ŷ = SωY , where
the smoothing matrix Sω depends on x1, . . . , xn, K , and ς. Analogous to a
projection matrix in linear regression, but Sω is not a projection.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 7 / 39

#pointswithree Elxi-kol] , Vis

E Bleike to,le
- use K instead of

17)

- -
point -

(no)

1

#

Figure: Visualising a kernel smoother at work

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 8 / 39

Iwillavrasen t

O
na

R=l

& Gaushiandensity

Ainsi, on a @`
@⌘i

=
yi
⌘i

� m�yi
1�⌘i

, d’où ⌘i =
yi
m . Finalement,

D = 2

nX

j=1

{log f(yj ; ⇡̂max)� log f(yj ; ⇡̂)}

= 2

nX

j=1

⇢
yj log(⌘j) + (m� yj) log(1� ⌘j) + log

✓
m

yj

◆
� yj log(⇡̂j)� (m� yj) log(1� ⇡̂j)� log

✓
m

yj

◆�

= 2

nX

j=1

⇢
yj log

✓
yj
m⇡̂j

◆
+ (m� yj) log

✓
m� yj
m(1� ⇡̂j

◆�
.

Exercice 4. La log-vraisemblance d’un échantillon de taille n du modèle saturé est donnée par

`(⇡̂max, y) = `(⌘, y) =
nX

i=1

{yi log(⌘i)� ⌘i � log(yi!)}.

Ainsi, on a @`
@⌘i

=
yi
⌘i

� 1, d’où ⌘i = yi. Finalement,

D = 2

nX

j=1

{log f(yj ; ⌘̂max)� log f(yj ; ⌘̂)}

= 2

nX

j=1

{yj log(yj)� yj � log(yj !)� yj log(⌘̂j) + ⌘̂j + log(yj !)}

= 2

nX

j=1

⇢
yj log

✓
yj
⌘̂j

◆
� yj + ⌘̂j

�
.

> plot(time,accel,xlab="Time After Impact (ms)",ylab="Head Accelaration (g)")

> lines(ksmooth(time,accel,kernel="normal",bandwidth=0.7))

> lines(ksmooth(time,accel,kernel="normal",bandwidth=5),col="red")

> lines(ksmooth(time,accel,kernel="normal",bandwidth=10),col="blue")

http://smat.epfl.ch/courses.html

2

10 20 30 40 50

−1
00

−5
0

0
50

Time After Impact (ms)

H
ea

d
Ac

ce
la

ra
tio

n
(g

)

Figure: Motorcycle data kernel smooth for varying bandwidths

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 9 / 39

=

-
small

2
arge

smalld
↑

large d

Penalised Likelihood and Cubic Splines

Whatever happened to likelihood, though? Find h ↓ C 2 that minimises

n∑

i=1

{Yi ⇑ h(xi)}2

︸ ︷︷ ︸
Fit Penalty

+ ς

∫

I
{h↓↓(t)}2dt

︸ ︷︷ ︸
Roughness Penalty

This is a Gaussian likelihood with a roughness penalty
ω→ If use only likelihood, any interpolating function is an MLE!

ς to balance fidelity to the data and smoothness of the estimated h - why?

What are the solutions when having ς = 0 or ↗?

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 10 / 39

parameter 2eg2

verdicti
J :

avoid large values

of the penalty terre

-
O

-

as function of h

es h(t)= et+ B
- - h"(r) = 0

·e ser

Remarkably, problem has unique explicit solution!

φ↑ Natural Cubic Spline with knots at {xi}ni=1
:

piecewise polynomials of degree 3,

with pieces defined at the knots,

with two continuous derivatives at the knots,

and linear outside the data boundary.

Example: Suppose n = 2, then knots are at x1, x2, and the cubic spline is defined
by the basis functions 1,X ,X 2,X 3,X ⇔↑ (X ⇑ x1)3+, and X ⇔↑ (X ⇑ x2)3+.

NB: There are n knots - is it overparametrized? Think about the penalization.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 11 / 39

I approximate he by a function

- gE Nat.
Yubiu selines

J tructioe

-

(a)=tes estimate h ofprevious Slide
.

basus functions

k=6

Can represent splines via natural spline basis functions Bj , as

s(x) =
n∑

j=1

↼jBj(x).

Defining matrices B and ! as

Bij = Bj(xi), !ij =

∫
B ↓↓
i (x)B

↓↓
j (x)dx ,

our penalised likelihood becomes

min
{
(Y ⇑ Bε)→(Y ⇑ Bε) + ςε→!ε

}
.

Di”erentiating and equating with zero yields

(B→
B + ς!)ε̂ = B

→
Y =≃ ε̂ = (B→

B + ς!)↑1
B

→
Y .

We recognize a solution of a generalized ridge regression

The smoothing matrix is Sω = B(B→
B + ς!)↑1

B
→.

The cubic spline fit is approximately a kernel smoother
(keyword: equivalent kernel).

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 12 / 39

-I J

janotcisicasions
n

11Y - B2x112
uG11y = piB(x) 112

W -

IL
O ⑧ LSy

w L = 6
& B=(x (X +32)

xTy

- Women

-

lines(smooth.spline(time,accel),col="red")

10 20 30 40 50

−1
00

−5
0

0
50

Time After Impact (ms)

H
ea

d
Ac

ce
la

ra
tio

n
(g

)

Figure: Motorcycle Example Cubic Spline Fit

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 13 / 39

(

-

10 20 30 40 50

−8
0

−6
0

−4
0

−2
0

0
20

40

Time (ms)

R
es

id
ua

ls

−2 −1 0 1 2

−8
0

−6
0

−4
0

−2
0

0
20

40

Normal Q−Q Plot

Theoretical Quantiles
Sa

m
pl

e
Q

ua
nt

ile
s

Figure: Motorcycle Example Cubic Spline Residuals

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 14 / 39

Equivalent degrees of freedom

Least squares estimation: Y = Xn↔pω + ϑ, we have Ŷ = HY , with
trace(H) = p, in terms of the projection matrix H = X (X→

X)↑1
X

→.

In spline smoothing

Ŷ = B(B→
B + ς!)↑1

B
→

︸ ︷︷ ︸
Sω

Y .

suggesting definition of equivalent degrees of freedom of smoother as

edf = trace(Sω)

trace(Sω) is monotone decreasing in ς, with trace(Sω) ↑ 2 as ς ↑ ↗ (will
always have two nonzero eigenvalues) and trace(Sω) ↑ n as ς ↑ 0.

Note 1–1 map ς ↖ trace(Sω) = df, so usually determine roughness using
edf (interpretation easier).

Each eigenvalue of Sω lies in (0, 1), so this is a smoothing matrix, not a
projection matrix.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 15 / 39

Bias/Variance Tradeo! and Cross Validation

Focus on the fit for the given grid x1, . . . , xn:

ĝ = (ĝ(x1), . . . , ĝ(xn)), g = (g(x1), . . . , g(xn))

Consider the mean squared error:

E(↙g ⇑ ĝ↙2) = E{↙E(ĝ)⇑ ĝ↙2︸ ︷︷ ︸}

variance

+ ↙g ⇑ E(ĝ)↙2︸ ︷︷ ︸
bias2

.

In the case of a linear smoother, for which ĝ = SωY , we easily calculate

E(↙g ⇑ ĝ↙2) = trace(SωS
→
ω)

n
ε2 +

(g ⇑ Sωg)→(g ⇑ Sωg)
n

,

so

ς ∝ =≃ variance ′ but bias ∝,
ς ′ =≃ bias ′ but variance ∝.
Would like to choose ς to find optimal bias-variance tradeo”:
ω→ Unfortunately, optimal ω will depend on unknown g !

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 16 / 39

- [Sx#Y - By12] + 11 g- SyETR

- --
J

Y = g(m) +app(04
- - -

~

-

Fitted values are Ŷ = SωY .

Fitted value Ŷ↑
j obtained when (Yj , xj) is dropped from fit is

Sjj(ς)(Yj ⇑ Ŷ↑
j) = Ŷj ⇑ Ŷ↑

j .

Cross-validation sum of squares is

CV(ς) =
n∑

j=1

(Yj ⇑ Ŷ↑
j)2 =

n∑

j=1


Yj ⇑ Ŷj

1⇑ Sjj(ς)

2

,

and generalised cross-validation sum of squares is

GCV(ς) =
n∑

j=1


Yj ⇑ Ŷj

1⇑ trace(Sω)/n

2

,

where Sjj(ς) is (j , j) element of Sω.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 17 / 39

LR: Y = HY

3(Yi
, x)]

- 1)

Trombraining . Or Dn

/((((
~ train" -> estimate

evalvakparamea
en

-

Orthogonal Series: “Parametrising” The Problem

If F ∞ g(·) is a separable Hilbert space, we can write:

g(x) =
∑

k↗Z
↽k⇀k(x) (in an appropriate sense),

with {⇀}↘k=1
known (orthogonal) basis functions for F , e.g.,

F = L2(⇑⇁,⇁),

{⇀k} = {e↑ikx}k↗Z, ⇀i ∈ ⇀j , i ∋= j .

Gives Fourier series expansion, ↽k = 1

2ε

 ε
↑ε g(x)e

↑ikxdx .

If we truncate series, then we reduce to linear regression:

Yi =
∑

|k|<ϑ

↽k⇀k(xi) + ϑi , τ < ↗

Notice: truncation has implications, e.g., in Fourier case:
Truncating implies assume g → span{ε→ω , ...,εω} ↑ L2.

Interpret this as a smoothness assumption on g .

How to choose ϑ optimally?

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 18 / 39

Y= g(x)+ E

pix -> used orthogone

onho the
ty

colmn Space
of X

Eg(ni)
-

Convolution: Series Truncation
?↑ Smoothing

Classical exercise in Fourier analysis shows that

ϑ∑

k=↑ϑ

↽ke
↑ikx =

1

2⇁

∫ ε

↑ε
g(y)Dϑ (x ⇑ y)dy

with the Dirichlet kernel of order τ , Dϑ (u) =
sin{(ϑ+1/2)u}

sin(u/2) .

Recall kernel smoother:

ĝ(x0) =
n∑

i=1

YiKω(xi ⇑ x0)∑n
i=1

Kω(xi ⇑ x0)
=

1

c

∫

I
y(x)Kω(x ⇑ x0)dx ,

with

y(x) =
n∑

i=1

Yiϱ(x ⇑ xi).

So if K is the Dirichlet kernel, we can do series approximation via kernel smoothing.

Works for other series expansions with other kernels (e.g., Fourier with convergence factors)

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 19 / 39

--

·
-

The Dirichlet kernel

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 20 / 39

⑨

Co

From Gaussian to Exponential Family Responses

So far: how to estimate g : R ↑ R (assumed smooth) in

Yi = g(xi) + ϑi , ϑi
iid→ N (0,ε2), given data {(Yi , xi)}ni=1

.

Can extend to GLM setting as:

Yi |xi
indep→ exp {g(xi)y ⇑ ↼(g(xi)) + S(y)}

Parametrise candidate g via spline

s(x) =
n∑

j=1

↼jBj(x).

Define matrices B and ! as before,

Bij = Bj(xi), !ij =

∫
B ↓↓
i (x)B

↓↓
j (x)dx

And consider penalised likelihood, similarly as with penalised GLM

-n(ε) + ςε→!ε = ε→
B

→
Y ⇑

n∑

i=1

↼(b→
i ε) + ςε→!ε.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 21 / 39

parametersestimate

Onu

splinefunctionsedanddefendet fets

-

Y anguinChr

From x ↓ R to (x1, . . . , xd)
↑ ↓ Rp

How can we generalise to multivariate covariates?

↭ “Immediate” Generalisation: g : Rp ↑ R (smooth)

Yj = g(xj1, . . . , xjp) + ϑj , ϑj
iid→ N (0,ε2)

↭ Estimation by (e.g.) multivariate kernel method.

↭ Two basic drawbacks of this approach . . .

φ↑ Shape of kernel? (definition of local)

φ↑ Curse of dimensionality

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 22 / 39

(x* x)

-

What is “local” in Rp, though?
↑ Need some definition of “local” in the space of covariates

φ↑ Use some metric on Rp ∞ (x1, . . . , xp)→ !

But which one?

Choice of metric △≃ choice of geometry

ω→ e.g., curvature reflects intertwining of dimensions

Geometry =≃ reflects structure in the covariates

potentially di!erent units of measurement

(variable stretching of space)

g may be of higher variation in some dimensions

(need finer neighbourhoods there)

statistical dependencies present in the covariates

(“local” should reflect these)

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 23 / 39

-

- --

-

-

Curse of Dimensionality
“neighbourhoods with a fixed number of points become less local as the
dimensions increase”

Bellman (1961)

Notion of local in terms of % of data: fails in high dimensions
φ↑ There is too much space!

Hence to allow for reasonably small bandwidths
φ↑ Density of sampling must increase.

Need to have ever larger samples as dimension grows.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 24 / 39

E

Tackling the Dimensionality Issue

Attempt to find a link/compromise between:

our mastery of 1D case (at least we can do that well . . .),

and higher dimensional covariates (and associated di#culties).

Perhaps something that can be fitted/interpreted variable-by-variable?

↭ Compromise: Additive Model

Yi = ▷i +
p∑

k=1

fk(xik) + ϑi , ϑi
iid→ N (0,ε2),

with fk ’s univariate smooth functions,
∑

i fk(xik) = 0.

↭ Can extend to Generalised Additive Model:

Yi |x→
i

indep→ exp


▷iy + y

p∑

k=1

fk(xik)⇑ ↼


▷i +

p∑

k=1

fk(xik)


+ S(y)



Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 25 / 39

Pil = Je(xiz) + Je(miz)

O
parameters

O
individual ↳glui)

-

- -

g(ui) y Ucgil)

The Backfitting Algorithm

↭ How to fit additive model? Consider Gaussian case only for simplicity.
φ↑ Know how to fit each fk separately quite well
φ↑ Take advantage of this . . .

↭ Consider ith response:

E



Yi ⇑ ▷⇑
∑

m ≃=k

fm(xim)



 = fk(xik)

↭ Suggests the Backfitting Algorithm:
(1) Initialise: ▷ = Ȳ , fk = f 0k , k = 1, . . . , p.
(2) Cycle: Get fk by 1D smoothing of partial residual scatterplot








Yi ⇑ ▷⇑
∑

m ≃=k

fm(xim), xik










n

i=1

= {eik , xik}ni=1
.

(3) Stop: when individual functions don’t change

↭ Any smoother can be used, usually splines.
Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 26 / 39

Yi - glai) + feelmiel

⑳
C

5 10 15

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

Age

C
−p

ep
tid

e

−30 −25 −20 −15 −10 −5 0

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

Base Deficit

C
−p

ep
tid

e

Figure: Example: Diabetes Data

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 27 / 39

h= 1

k= 1 h=2

estimate optimal parameters-> plugin into
-> eshmate optimal yaras E= 2

general formula

Or -
O Xa Oxe

5 10 15

−1
.0

−0
.5

0.
0

0.
5

age

s(
ag
e,
2.
29
)

−30 −25 −20 −15 −10 −5 0

−1
.0

−0
.5

0.
0

0.
5

base

s(
ba
se
,1
.8
7)

Figure: Example: Diabetes Data Additive Fit

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 28 / 39

1000 2000 3000 4000 5000

−2
00
0

−1
00
0

0
10
00

20
00

30
00

peri

s(
pe
ri,
8.
74
)

2000 4000 6000 8000 10000 12000

−2
00
0

−1
00
0

0
10
00

20
00

30
00

area

s(
ar
ea
,3
.3
6)

Figure: Example: Rock Permeability Data (measurements on 48 rock samples from a

petroleum reservoir)

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 29 / 39

Family: gaussian

Link function: identity

Formula:

perm ~ 1 + s(peri) + s(area)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 415.45 27.18 15.29 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Approximate significance of smooth terms:

edf Est.rank F p-value

s(peri) 8.739 9 18.286 9.49e-11 ***

s(area) 3.357 7 6.364 7.41e-05 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

R-sq.(adj) = 0.815 Deviance explained = 86.3%

2

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 30 / 39

Projection Pursuit Regression

A di”erent approach is inspired by tomography. Model Gaussian response as:

Yi =
K∑

k=1

hk(x
→
i ωk)

︸ ︷︷ ︸
=g(x→

i)

+ ϑi , ↙ωk↙ = 1, ϑi
i.i.d.→ N (0,ε2).

Also additively decomposes g into smooth functions hk : R ↑ R.
But each function now depends on a global linear feature x

→
i ωk

φ↑ a linear combination of the covariates
φ↑ ↙ωk↙ = 1 for identifiability.

Projections directions to be chosen for best fit (nonlinear problem)

Each hk is a ridge function of x
→
i : varies only in the direction defined by ωk

Pros and Cons:

(+) By classical Fourier series, can show that any C 1([0, 1]p) ↑ R function is
uniformly approximated arbitrarily well as K ↑ ↗. Useful for prediction.

(⇑) Interpretability? What do terms mean within problem?

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 31 / 39

W -

:Pr

How is the model fitted to data?

Assume only one term, K = 1 and consider penalized likelihood:

min
h1↗C 2[0,1],⇐ω⇐=1


n∑

i=1

{Yi ⇑ h1(x
→
i ω)}2 +

∫
1

0

{h↓↓
1
(t)}2dt


.

Two steps:

Smooth: Given a direction ω, fitting h1(x→
i ω) is done via 1D smoothing.

Pursue: Given h1, have a non-linear regression problem w.r.t. ω.

Hence, iterate between the two steps

φ↑ Complication is that h1 not explicitly known, so need numerical derivatives.

φ↑ Computationally intensive (impractical in the ’80’s but doable today).

φ↑ Can separate second step by looking for non-Gaussian projection directions.

Further terms added in forward stepwise manner.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 32 / 39

Embracing Nonlinearity (at the expense of interpretability)

If ωk needs to be estimated non-linearly anyway...

g(x→
i) ▽

K∑

k=1

hk(x
→
i ωk)

... do we really need to estimate the hk or can we fix them?

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 33 / 39

Embracing Nonlinearity (at the expense of interpretability)

Theorem (Nonlinear Sigmoidal Approximation)

Let $: R ↑ [0, 1] be a strictly increasing distribution function and g : [0, 1]p ↑ R
be an arbitrary continuous function. Then, for any ϖ > 0, there exists K < ↗ and
vectors ϖ, t ↓ RK and {ω1, ...,ωK} ↔ Rp such that

sup
x↗[0,1]d

g(x)⇑
K∑

k=1

▷k$(tk + x
→ωk)

 < ϖ.

Can take hk to be translations of the same known function $!

The tradeo” is that K may need to be quite large (interpretability?)

Called a (single layer) neural network by analogy to synaptic function.

A parametric model with many parameters – fit by nonlinear least squares
(gradient descent)

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 34 / 39

Inception

What about including transformations of the original covariates?
1 Can of course include J transformations wj : Rp ↑ R

(u1, ..., up) ⇔↑ wj(u1, ..., un), j = 1, ..., J,

of the original variables as additional covariates by suitably enlarging the
design matrix X .

2 We simply adjoin to X another J columns of dimension n ̸ 1 each:




wj(x→

1
)

...
wj(x→

n)



 j = 1, ..., J.

3 Which functions wj should we pick though?

Since we’ve gone nonlinear anyway,

why not attempt to learn which transformations to include from the data?

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 35 / 39

X = (())n

How?

Instead of including our original covariates (p columns of X)...

... use q derived covariates (q can be larger than p)




w1(x→

1
)

...
w1(x→

n)



 ,




w2(x→

1
)

...
w2(x→

n)



 , . . . ,




wq(x→

1
)

...
wq(x→

n)





... where the q transformations {wj}qj=1
are to be estimated from the data.

Recycling our nonlinear approximation theorem, write

wj(x
→) ▽

Mj∑

m=1

ϱm,j$(sm,j + x
→εm,j)

using the same $, and needing to estimate (ϱj , sj ,ε1,j , ...,εMj ,j), for j = 1, ..., q.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 36 / 39

Assuming that we’ve constructed our new variables, we have a new design matrix




w1(x→

1
) . . . wq(x→

1
)

...
...

w1(x→
n) . . . wq(x→

n)



 .

Summarising, we have defined a hierarchical nonlinear regression model:

Yi =
K∑

k=1

▷k$
(
tk + (wi (x

→
1
), ...,wi (x

→
n))ωk

)
+ ϑi =

=

K∑

k=1

ϖk!



tk +




M1∑

m=1

ϱm,1!(sm,1 + x↑ωm,1), ...,

Mq∑

l=1

ϱl,q!(sl,q + x↑ωl,q)



εk



+ ςi

... known these days as a two-layer neural network.

Can add more layers (“deep neural network”).

Highly non-linear and non-convex – cascade of simple nonlinearities applied
to linear transformations.

More easily perceived visually through a graphical representation

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 37 / 39

Figure: A multilayer neural network. The “input layer” corresponds to the original

covariates. Each “hidden layer” corresponds to successively derived covariates via

sigmoid superposition. The “output layer” is the final sigmoid superposition yielding the

response.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 38 / 39

25

=
in

Seems like we’re asking a lot from the data...

...and indeed we are

NN fitted by optimising least square fit of Yi to model w.r.t. parameters.

Typically carried out with some flavour of gradient descent.

Representation can be highly non-unique and many local optima can exist.

Large number of parameters requires very large number of observations.

Sampling distribution essentially totally unknown, practically no theory
available.

Seldom useful for interpretation – typically used for prediction/classification.

Often requires context-dependent tuning and optimisation architecture.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 39 / 39

