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Nonparametric Regression
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So far we have discussed the following setup:
T ind et b =g(x") = x"3,
Yl ‘ X; DISt[gb,] - { /3 c Rp7
with 3 to be estimated from data, e.g.
e Dist = N(pi,02) and u; = x;' 3 (Gaussian linear regression)
e Dist € ExpFamily(¢;) and ¢; = x," 3 (GLM)

Why this is still a class of models we study?

@ Representing the distribution as linearly dependent on the covariates is
convenient and yields a very easy interpretation (both if Y is continuous
(regression) or discrete (classification))

@ It is sometimes very useful when the sample size is very small (n)
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A More Flexible Regression Model - how to go beyond linearity?

Would now like to extend the model to a more flexible dependence - we want to
replace the linear dependence on x with transformations of x:

- T ind ~. ) d),' = g(X’-T),
Yilxi ~ Distlgi] — { g€ F C L2(RP) (say),
with g : R — R unknown, to be estimated given data {(Y;, x.")}"_,.
@ A nonparametric problem (parameter co-dimensional)!
@ How to estimate g in this context?

e F is usually assumed to be a class of smooth functions (e.g., C¥).

Start from simplest problem:

DiStEN(Mi’Uz) B id R
xi € R = Y, =g(x)+ei, & ~N(0,0%)

And ideally we would like to linearly decompose g over a dictionary depending on
a number of transformations of x
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Exploiting Smoothness

o Ideally: large sample plus multiple x; with same value (many large covariate
classes):

Response

0 20 40 60 80 100

@ Then average Y;'s at each covariate class and interpolate . ..
@ But this is never the case in practice...
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Exploiting Smoothness

@ Usually unique x; distinct:

Time Afer Impact (ms)

@ Here is where the smoothness assumption comes in

@ Since have distinct value for each x;, need to borrow information from nearby

@ ...use continuity!!! (or even better, smoothness)

» Recall: A function g : R — R is continuous if:

Ve>030>0: |x—xo| <6 = |g(x) — g(x0)| <e.

» So maybe average Y;'s corresponding to x;’s in a d-neighbourhood of x.
» Motivates the use of a kernel smoother ...
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Kernel Smoothing
Naive idea: g(xp) should be the average of Yj-values with x;'s “close” to xp.

8(x0) = L
D SN T ey

Z Yil{|xi — xo| < A}

A weighted average! Choose other weights? Kernel estimator:

A _ 1 Xi — Xo _
Bl0) = S e (m ZYK( ) - ,1W,ZW’

i=1 i=1

K is a kernel function: specifies the nature of the local neighbourhood at
each point

< E.g. standard Gaussian pdf, K(x) = p(x).

A is the bandwidth parameter: controls the width of the window

— small \ gives local behaviour, large A gives global behaviour

Choice of K not so important, choice of A\ very important.

@ The resulting fitted values are linear in the responses, i.e., Y = S, Y, where
the smoothing matrix Sy depends on xi,...,x,, K, and A. Analogous to a
projection matrix in linear regression, but Sy is not a projection.
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Head Accelaration (g)
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Figure: Visualising a kernel smoother at work
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> plot(time,accel,xlab="Time After Impact (ms)",ylab="Head Accelaration (g)")
> lines(ksmooth(time,accel,kernel="normal",bandwidth=0.7))

> lines(ksmooth(time,accel,kernel="normal",bandwidth=5),col="red")

> lines(ksmooth(time,accel,kernel="normal",bandwidth=10),col="blue")
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Figure: Motorcycle data kernel smooth for varying bandwidths
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Penalised Likelihood and Cubic Splines

Whatever happened to likelihood, though? Find h € C? that minimises

SV h)? + A [0
i=1 !
—_———
Fit Penalty Roughness Penalty

@ This is a Gaussian likelihood with a roughness penalty
< If use only likelihood, any interpolating function is an MLE!

@ )\ to balance fidelity to the data and smoothness of the estimated h - why?
@ What are the solutions when having A = 0 or co?
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Remarkably, problem has unique explicit solution!

— Natural Cubic Spline with knots at {x;}_;:
@ piecewise polynomials of degree 3,
@ with pieces defined at the knots,
@ with two continuous derivatives at the knots,

@ and linear outside the data boundary.

Example: Suppose n = 2, then knots are at x1, x», and the cubic spline is defined
by the basis functions 1, X, X2, X3, X = (X — x1)3, and X — (X — x)3.

NB: There are n knots - is it overparametrized? Think about the penalization.
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Can represent splines via natural spline basis functions Bj, as
n
s(x) = Bi(x).
j=1
Defining matrices B and €2 as

B = Bi(x). %= [ BB/ (x)ax.
our penalised likelihood becomes

min {(Y — By) (Y — By) + \y v} .
Differentiating and equating with zero yields

(BTB+X2)y=B'Y — 4=(B'"B+)\Q)"'B'Y.

@ We recognize a solution of a generalized ridge regression

@ The smoothing matrixis Sy = B(BTB +\Q)"'BT.

@ The cubic spline fit is approximately a kernel smoother
(keyword: equivalent kernel).
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lines(smooth.spline(time,accel),col="red")
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Figure: Motorcycle Example Cubic Spline Fit
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Normal Q-Q Plot
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Figure: Motorcycle Example Cubic Spline Residuals
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Equivalent degrees of freedom

@ Least squares estimation: Y = X, ,03 + €, we have Y = HY , with
trace(H) = p, in terms of the projection matrix H = X(X T X)71X .

@ In spline smoothing

Y=B(B"B+\2)"'BT V.

Sx

suggesting definition of equivalent degrees of freedom of smoother as

edf = trace(Sy)

e trace(S,) is monotone decreasing in A, with trace(Sy) — 2 as A — oo (will
always have two nonzero eigenvalues) and trace(Sy) — nas A — 0.

o Note 1-1 map A <> trace(Sy) = df, so usually determine roughness using
edf (interpretation easier).

@ Each eigenvalue of Sy lies in (0,1), so this is a smoothing matrix, not a
projection matrix.
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Bias/Variance Tradeoff and Cross Validation
Focus on the fit for the given grid xq, ..., Xx,:

g=(8(x), - ,&(x)), g=(glx), -,8(xn))

Consider the mean squared error:

E(llg - &%) = E{IE&) - &1} + |lg — E(&)I*.

variance bias®

In the case of a linear smoother, for which g = S, 'Y, we easily calculate

N trace(S, S, _Se) (g—S
E(|lg - &) = (,f 0,2 (8 Ag)n(g \8)

so
@ AT = variance | but bias T,
@ \| = bias | but variance 1.
@ Would like to choose A to find optimal bias-variance tradeoff:

< Unfortunately, optimal A will depend on unknown g!
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o Fitted values are Y = S.\Y.

o Fitted value \A’j_ obtained when (Y}, x;) is dropped from fit is

SN~ ) = Y-V,

@ Cross-validation sum of squares is

j=1 Jj=1

and generalised cross-validation sum of squares is

vy
GCV()\)—Z{l_trace(S/\)/n} :

j=1

where Sji(\) is (j,j) element of Sj.
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Orthogonal Series: “Parametrising” The Problem
If 7> g() is a separable Hilbert space, we can write:

g(x) = Zﬂkwk(x) (in an appropriate sense),
kez

with {¢}%2; known (orthogonal) basis functions for F, e.g.,
o F=12(-mm),
o {Yu}={e ®}rez i Lahj, i #].

. . . . s —
o Gives Fourier series expansion, [5x = % f_w g(x)e *dx.

If we truncate series, then we reduce to linear regression:

Y= E Brbw(xi) +ei, T <00
|k|<T
Notice: truncation has implications, e.g., in Fourier case:
@ Truncating implies assume g € span{¢_,, ...,¢r } C L2.
@ Interpret this as a smoothness assumption on g.

@ How to choose T optimally?
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7 .
Convolution: Series Truncation >~ Smoothing

Classical exercise in Fourier analysis shows that

—Tr

T ] 1 T
k; Bre ™ = g/ g(y)Dr(x — y)dy

with the Dirichlet kernel of order 7, D, (u) = SM{TE/2ut

Recall kernel smoother:

Z ZY_K;(:XTXO)L) = 1/}’(X)K)\(X — xp)dXx,

cJi

with .
x) = Z Y:6(x
i=1

@ So if K is the Dirichlet kernel, we can do series approximation via kernel smoothing.

@ Works for other series expansions with other kernels (e.g., Fourier with convergence factors)
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The Dirichlet kernel

n=1
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From Gaussian to Exponential Family Responses

So far: how to estimate g : R — R (assumed smooth) in
Yi=g(x)+ei, 2 N(0,02), givendata {(Vi,x)},.

Can extend to GLM setting as:

Yilxi "E exp {g(x1)y — v(g(x) + S(v)}

o Parametrise candidate g via spline

x) =Y _%Bi(x)
j=1
@ Define matrices B and €2 as before,

B = Bi(x). 0= [ B/} (x)dx

@ And consider penalised likelihood, similarly as with penalised GLM

(V) + Xy Qy=5"BTY - Zv (b v) + My Q.

i=1
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From x € R to (x1,...,x4) " € R?

How can we generalise to multivariate covariates?
> “Immediate” Generalisation: g : R? — R (smooth)

iid
Y =g(xj1,- - %p) +ej, g ~N(0,0°%)

» Estimation by (e.g.) multivariate kernel method.

» Two basic drawbacks of this approach ...
< Shape of kernel? (definition of local)
< Curse of dimensionality
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What is “local” in RP, though?
— Need some definition of “local” in the space of covariates

< Use some metric on RP > (xq,...,xp) " !

But which one?

@ Choice of metric <= choice of geometry

< e.g., curvature reflects intertwining of dimensions

o Geometry = reflects structure in the covariates

e potentially different units of measurement
(variable stretching of space)

e g may be of higher variation in some dimensions
(need finer neighbourhoods there)

o statistical dependencies present in the covariates
(“local” should reflect these)
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Curse of Dimensionality

“neighbourhoods with a fixed number of points become less local as the
dimensions increase”
Bellman (1961)

@ Notion of local in terms of % of data: fails in high dimensions
< There is too much space!

@ Hence to allow for reasonably small bandwidths
— Density of sampling must increase.

@ Need to have ever larger samples as dimension grows.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 24 /39



Tackling the Dimensionality Issue

Attempt to find a link/compromise between:
@ our mastery of 1D case (at least we can do that well ...),

@ and higher dimensional covariates (and associated difficulties).

Perhaps something that can be fitted /interpreted variable-by-variable?

» Compromise: Additive Model
p »
Yi=a; + Z fe(xik) +eiy € ~ N(0,02),
k=1

with fi's univariate smooth functions, ), fi(xi) = 0.
» Can extend to Generalised Additive Model:
> P P
Yilx" P exp {a,-y + yz fi(xik) — v (a,- + Z fk(x,-k)> + S(y)}
k=1 k=1
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The Backfitting Algorithm

» How to fit additive model? Consider Gaussian case only for simplicity.
— Know how to fit each f, separately quite well
< Take advantage of this ...

» Consider ith response:

E|Yi—a—=> folxm)| = fulxi)
m#k

> Suggests the Backfitting Algorithm:
(1) Initialise: a=VY, =7 k=1,...,p.
(2) Cycle: Get fx by 1D smoothing of partial residual scatterplot
n
Yi—a-— Z fr(Xim ), Xik = {eik, Xik } =1
mk i=1

(3) Stop: when individual functions don't change
» Any smoother can be used, usually splines.
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Family: gaussian
Link function: identity

Formula:
perm ~ 1 + s(peri) + s(area)

Parametric coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 415.45 27.18 15.29 <2e-16 ***

Signif. codes: O ’*xx’ 0.001 ’**’ 0.01 ’%’ 0.05 ’.” 0.1’ ’ 1

Approximate significance of smooth terms:

edf Est.rank F p-value
s(peri) 8.739 9 18.286 9.49e-11 *xx
s(area) 3.357 7 6.364 7.41e-05 ***
Signif. codes: 0 ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1’ ’ 1

R-sq.(adj) = 0.8156 Deviance explained = 86.3}
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Projection Pursuit Regression

A different approach is inspired by tomography. Model Gaussian response as:

X

Y=Y h(x B+ e 18l =1, & K N(0,02).

k=1

:g(x,'T)

@ Also additively decomposes g into smooth functions hx : R — R.

@ But each function now depends on a global linear feature x.' B
< a linear combination of the covariates
— ||Bk|| = 1 for identifiability.

@ Projections directions to be chosen for best fit (nonlinear problem)

@ Each hy is a ridge function of x;": varies only in the direction defined by B

Pros and Cons:

(+) By classical Fourier series, can show that any C!([0,1]?) — R function is
uniformly approximated arbitrarily well as K — oco. Useful for prediction.

(=) Interpretability? What do terms mean within problem?
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How is the model fitted to data?

Assume only one term, K = 1 and consider penalized likelihood:

n 1
i L T 2 1" 2
mect i 51y {2{% m(x B + /0 (K1)} dt}.

Two steps:
e Smooth: Given a direction (3, fitting h1(x;" 3) is done via 1D smoothing.
@ Pursue: Given hy, have a non-linear regression problem w.r.t. 3.

Hence, iterate between the two steps

— Complication is that h; not explicitly known, so need numerical derivatives.
< Computationally intensive (impractical in the '80's but doable today).

— Can separate second step by looking for non-Gaussian projection directions.

Further terms added in forward stepwise manner.
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Embracing Nonlinearity (at the expense of interpretability)

If Bk needs to be estimated non-linearly anyway...

K

g(x") = > h(x" Br)

k=1

... do we really need to estimate the hy or can we fix them?
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Embracing Nonlinearity (at the expense of interpretability)

Theorem (Nonlinear Sigmoidal Approximation)

Let W : R — [0,1] be a strictly increasing distribution function and g : [0,1]°" — R
be an arbitrary continuous function. Then, for any € > 0, there exists K < co and
vectors a, t € RK and {81, ..., Bk} C RP such that

K
sup |g(x) — Zaklll(tk +x"B)| <e
x€[0,1]¢ =1
@ Can take hy to be translations of the same known function W!
@ The tradeoff is that K may need to be quite large (interpretability?)
o Called a (single layer) neural network by analogy to synaptic function.

@ A parametric model with many parameters — fit by nonlinear least squares
(gradient descent)
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Inception
What about including transformations of the original covariates?
© Can of course include J transformations w; : R — R
(U]_,...,UP)H VVj(“lv"'v“H)? ./: 17"'aJ7

of the original variables as additional covariates by suitably enlarging the
design matrix X.

@ We simply adjoin to X another J columns of dimension n x 1 each:
w;(x)")

wi(x7)

© Which functions w; should we pick though?

Since we've gone nonlinear anyway,

why not attempt to learn which transformations to include from the data?
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How?
@ Instead of including our original covariates (p columns of X)...

@ ... use g derived covariates (g can be larger than p)

wi () wo(x7) wa(xT)
wi(x]) wa(xT) we(x7)

@ ... where the g transformations {WJ-}J‘-’=1 are to be estimated from the data.

Recycling our nonlinear approximation theorem, write

M;
wi(x ")~ Y 6mV(smj+ X Ymy)

m=1

using the same W, and needing to estimate (d;, sj, 71, ..., Ym,j), for j = 1,.... q.
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Assuming that we've constructed our new variables, we have a new design matrix

Summarising, we have defined a hierarchical nonlinear regression model:

K
Yi= Zak"’<tk +(wi(x) ), ooy Wi(XnT))ﬁk) +ei=

k=1
K My Mq
=D oV (et [ D omaW(sma+ X Yma), e D 01qW(s1g + X Y1) | B | +ei
=1 m=1 =1

... known these days as a two-layer neural network.
o Can add more layers (“deep neural network™).

@ Highly non-linear and non-convex — cascade of simple nonlinearities applied
to linear transformations.

@ More easily perceived visually through a graphical representation
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hidden layers

output layer

input layer

Figure: A multilayer neural network. The “input layer” corresponds to the original
covariates. Each “hidden layer” corresponds to successively derived covariates via
sigmoid superposition. The “output layer” is the final sigmoid superposition yielding the
response.
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Seems like we're asking a lot from the data...

...and indeed we are
o NN fitted by optimising least square fit of Y; to model w.r.t. parameters.
@ Typically carried out with some flavour of gradient descent.
@ Representation can be highly non-unique and many local optima can exist.
@ Large number of parameters requires very large number of observations.

@ Sampling distribution essentially totally unknown, practically no theory
available.

@ Seldom useful for interpretation — typically used for prediction/classification.

o Often requires context-dependent tuning and optimisation architecture.
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