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Linear Algebra Intermezzo- continued

Linear Subspaces, Orthogonal Projections, Gaussian Vectors
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Gaussian Vectors and their Properties

Definition (Multivariate Gaussian Distribution)

A random vector Y in R? has the multivariate normal distribution if and only if
T . — . . . d
B 'Y has the univariate normal distribution, sz € RY.

How can we use this definition to determine basic properties?

Recall that the moment generating function (MGF) of a random vector W in R?
is defined as

Mw(8) =E[e® W], 6eR?

provided the expectation exists. When the MGF exists it characterises the

distribution of the random vector. Furthermore, two random v
independent if and only if their joint MGF is the product of their marginal MGF's.
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Most important facts about Gaussian vectors:

© Moment generating function of Y ~ N (u, ): s“
T fer R
-\ 1 ¢ “
My(u)=exp(u'p+Zu"Qu)| e f?@ (o B
2 (— e _\g@"f
ne

Au.o.
)

Q Y ~ N(ppx1,2pxp) and given By, and 0,41, then

i—‘,— EY NN(9+ B“’v BQB,T) 2 |(\4—v“"rf‘)al

)
© N(p, ) density, assuming Q nonsingular: Py ;% =
1 1
fr(y)= ——z——>ep {(y —p) QN (y - u)} .
(27T)P/2 |\Q|_/1/2 | 2 L

znot 'K

© Constant density isosurfaces are ellipsoidal

@ Marginals of Gaussian are Gaussian (converse NOT true). A

Q (2 diagonal < independent coordinates Y. - <\\° )

QIfY~ N(prla Qpxp), “ e
AY independent of BY <« ﬂS}ET =0.
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Proposition (Property 1: Moment Generating Function)
The moment generating function of Y ~ N (u, Q) is

My (u) = exp (u w+ s uTQu)

Proof (x).

Let u € R be arbitrary. Then uTY is Gaussian with mean u" up and variance u' Qu. Hence it
has moment generating function: —
g g Dus O%‘L

M@(t)— (t"TY) f;xp{t(u W+ Tnu)} D=

Now take t = 1 and observe that dv&m’\:u) o

M,y (1) = \_,_/—> MY(U) _OW««(;M:L

Combining the two, we conclude that

_Ohs. 2
My (u) = exp (uTu-‘r 1u—'—Qu) , u€cRP.
® 2
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Proposition (Property 2: Affine Transformation)
For Y ~ N(ppx1, Qpxp) and given By, and 6,51, we have

0+ BY ~ N(0+ Bu, BQBT)
R
s o\ ¥
Proof (). €[] Lo E Bakid
Lev T &&Nﬁ " h
Moigy(u) = E|exp{u’ (0+BY)}| =exp{u0}E [exp{(BTu)" Y}

_ T T e N
= exp {u 9} My(i&lg“; “YNCA“(h D) . ,

- - 1 Lu‘) Nw
= exp{u B}exp{(Bj)Tu—kiuTBﬂBTu}

Q‘.‘P‘f\l- + LA
= exp{uT9+uT(Bu)+7uTBQBTu}
l 2 W OGF
1 e regate

= eXp{UT(G—FBH)-FEuTBQBTu} wsxm wallivanare EAP

And this last expression is the MGF of a N'(6 + Bu, BQBT) distribution. O
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Proposition (Property 3: Density Function)
Let Q,xp be nonsingular. The density of N'(ptpx1, Qpxp) is
— N —

= ()= Gopgre o0 {30 - ) 070 — 1)}

Proof (x).
Let Z=(Zi,...,2Z,)" be a vector of iid N(0,1) random variables. Then,

because of independence,
(a) the density of Z is Aw&“}\@

/—\»—"’\
P ¢ 1 1 1 1
fz(z) = fz(z;) = exp| —22? ) = ——— ex —sz).'
Z( ) ’1;[1 Z,( ) gm p( 2 ,) (27T)p/2 p( 5
~—
4
(b) The MGF of Z is - [T &) authe as are
2 ;El'_a & pacdy cndegonder

Q—

: " .\
Mz(u {exp (Z ) } = HE{exp(u;Z,-)} =exp(u'u/2), .

i=1

which is the MGF of a p-variate AV(0. /) distribution.
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RIQNI N(0, 1) density is fz(z) 2 W exp (—32"2). Yool (, 1)

—

By the spectral theorem, © admits a square root, 91/2 Furthermare, since Q is

non-singular, so is /2. Jj‘(mjf
Now observe that from our Property 2, we have Y = 91/22 +p~ N(,u, Q).
By the change of variables formula, S ;SL‘Q/ —)«) .
sC
frly) = fams -
v(y Ql/ZZ+p,(y) / " ) PPN
= Q720 (y — )} L 1T e N
22 =< Ltﬁ-)k\

)
—%U—ufﬂdu—u) Loy

[Recall that to obtain the density of W = g(X) at w, we need to evaluate fx at
g !(w) but also multiply by the Jacobian determinant of g=1 at w.]

O
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}"a‘ )&Wf)t) Lta.)n\* e (‘Q-Ji\ = (‘\0‘ -_‘A\TJL—\(“.JA)B + t:‘{j‘: SYCU'“‘L d:.oo"“("”“m

Proposition (Property 4: Isosurfaces)

The isosurfaces of a N'(ppx1, Qpxp) are (p — 1)-dimensional ellipsoids centred at
w, with principal axes given by the eigenvectors of @ and with anisotropies given
e — ———

FZ the ratios of the square roots of the corresponding eigenvalues of 2 .

Proof (x).
Exercise: Use Property 3, and the spectral theorem. O
Proposition (Property 5: Coordinate Distributions) [ 4ﬂ‘_
= ~. )

Let ¥ = (Yo, -, Vo) T ~ N(ttpt, Rpp). Then ¥ ~ Ny, @) {7 [,
Proof (%).  Aw tacar tomapen 347 & ol Guodon (8y2) ( Hen wean we wz@
Observe that Y;=(0, 0,..., 1 ,---, 0, 0)Y and use Property 2. [

~~

\_____jen position J
@ AL 177«:&(%3*,&:'“1*—)
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Proposition (Property 6: Diagonal 2 <= Independence)

Let Y = (Y1,...,Y,)" ~ N(ppx1,2pxp). Then the Y; are mutually
independent if and only if 2 is diagonal.
e ————

Proof (x).

Suppose that the Y] are independent. Property 5 yields Yj ~ N (y;, o J) for some
o; > 0. Thus the density of Y is

" SN IR
,fy Hf H rep -

J
I &
gxtl-— b Lmt 3’
: { Sy ) ding(or %2y ) |
= exp —= ey
(2m)°"? |diag(03, ..., oB)[}/2 P Lo
d1agloy, - --» 9p))
Hence Y ~ N{p,diag(c?,...,0 )} i.e. the covariance €2 is diagonal.
Conversely, assume €2 is diagonal, say Q2 = diag( O'] 02). Then we can reverse
the steps of the first part to see that the joint denS|ty fy(y) can be written as a
product of the marginal densities fy,(y;), thus proving indepdndence. )
Y )\rd'“%(r“ j
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Proposition (Property 7: AY,BY indep <= AQB' =0)
IfY ~ N(prl, Qpo)r and Amxp, th'xp be real matrices. Then,
AY independent of BY +— AQB' =0.

Proof (x). [wlog assuming g = 0 (simplifies the algebra)]
Un’qxl)_

QBT = 0. )let Wimig)1 = (gy) and O(mra)a = (1]
CAMTw o (eN™w

A
Elexp{WT6}] =E [exp {YTATu+ Y B v}]
Efoxp {YT(ATut BTv)}] = My(ATut BTv) 570

1
= exp{(ATu—l-BTv)TQ(ATu—&—BTv)}
e —— ! V= ==
> ) w)Tsw cAE) =0

First assume

N
LM uTAQATu+ v BOB v+ uTAQB v+ v BQA T u

=expq 3
/V @ %@/__:0_@

(joint MGF = product of marginal MGFs, thus independence)

= MAY(U)MBY(V)

11/37
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For the converse, assume that AY and BY are independent. Then, Vu, v,

MAY U)MBY ), Vu,v,

:>exp{2 }ﬂfTu—vaE(‘B\ +u QBTv—i—vTBQATu)}
= exp{ /A{ﬁT exp { }ﬂiv}

L(<ASE vy wTBRNT)

< :> exp { 1 x2v AQB u } 1
L_,Q/"—/ LM=1
- [v AQB"u =0, Y u,v, ‘ﬁ wEe s
T _
= AQB =0.
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Gaussian Quadratic Forms and the x? & F Distributions

Reminder:
Definition (x? distribution)

Let Z ~ N(0, I,xp). Then || Z||> =3P | Z2 is said to have the chi-square (x?)
distribution with p degrees of freedom; we write || Z|[* ~ x3.

[Thus, X,z, is the distribution of the sum of squares of p real independent standard
Gaussian random variates.]

Definition (F distribution)

!_et V ~x%and W~ _X25 -be i.ndegefndent random variables. Then (V/p)/-(W/q)
is said to have the F distribution with p and g degrees of freedom; we write

(V/p)/(W/q) ~ Fp.q

/¢
T- & €l
W/a
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Proposition (Gaussian Quadratic Forms)
(1) /fZN./\/‘_’ﬁ,w,_lw) and H is a projection of(rank r < p,|

Tz v

¢ SL non ym%ulo.r
= ml‘(—“-) = g

(¥ )"0y - ) ~(12) )

QY~ N(@l, %p) with Q nonsingular =
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Gaussian Linear Regression: Likelihood
and Geometry
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Simple Normal Linear Regression

General formulation:

@@ ind Distribution{g(x;)}, i=1,...,n.
w—J

—

Simple Normal Linear Regression:

{ Distribution = N'{g(x),0?}-
g(x) = Bo + Pix

Resulting Model:

Y; % N (o + B 0?) J
(;
Yi = Bo+ Buxi+ei, & N(0,02) .y;l
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Simple Normal Linear Regression

Jargon: Y is response variable and x is explanatory variable (or covariate) '&,_gwn“

Linearity: Linearity is in the parameters, not the explanatory variable.
Example: Flexibility in what we define as explanatory:

TN iid 5
Y; = Bo + Bisin(x;) +¢;, g ~ Normal(0, 7).
——

*
X
J

Example: Sometimes a transformation may be required:

-
\YJ = ,Boeﬁl@nj, nj 7’,@ Lognormal) &
log(-) | Texp(:)
log Y; = log Bo + Bix; + logn;, logn; % Normal
—w—’—‘rw—ﬁ—
[

Data Structure:
Fori=1,....n

..., N, pairs

(0, 1) x; fixed values of x .
,,y_, Y; random output Y; when input is x;

~
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Example: Professor's Van

Fillup  Km/L
7.72
8.54
8.35
8.55
8.16
8.12
7.46
6.43
6.74
6.72

QOO N0 WN -

[y
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Example: Professor’'s Van

Kim/Litre
15 20 25

10

Succesive Fill-Ups
R e £
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Multiple Normal Linear Regression

o=" Vo= Po+ Pa™ax 4
Instead of x; € R could have x;" e@

ind
Y; = Bo + Bixi + BoXio + ... + Baxig + €1, € ~ N(0,02).
~/ T —— ) ()
Letting p = g + 1, this can be summarlsed via matrix notation:
Y1 . X1 \ A\ Xiq Bo €1
Y \X21 \i | X2q b1 €2
= +
: : : \‘ : : :
Yn Lan '( f/ Xnq ﬁq €n

\/

&)

—t Y = X ﬁ 13} 5 ENNn(Oyo'zlan) j
nx t/“f_/

nx1 nxp px1
—— —

X is called the design matrix.

Y- %
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|

Example: Cement Heat I‘é\:olutlonﬁ Xy )('1 i
Case 3Ca0.Alh O3 3Ca0.5i0p 4Cao0.Aly03.Fey O3 2Ca0.5i0p Heat
1 7.00 26.00 6.00 60.00 78.50
2 1.00 29.00 15.00 52.00 74.30
3 11.00 56.00 8.00 20.00 104.30
4 11.00 31.00 8.00 47.00 87.60
5 7.00 52.00 6.00 33.00 95.90
6 11.00 55.00 9.00 22.00 109.20
7 3.00 71.00 17.00 6.00 102.70
8 1.00 31.00 22.00 44.00 72.50
9 2.00 54.00 18.00 22.00 93.10
10 21.00 47.00 4.00 26.00 115.90
11 1.00 40.00 23.00 34.00 83.80
12 11.00 66.00 9.00 12.00 113.30
13 10.00  68.00 8.00 12.00 109.40

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 21/37



ra

n °
B o | e 3 .|
] ° 2 o
s &1 ' s &1
[} ) [
T 7 T 7
@ o o Qo
- ® 7| o T @® o
8 T T T T
5 10 15 20
¥, Percent weight of 3Ca0.Al_20_3
[ o ° ‘L
T o | o’ 3 .|
S o ° o 2 o |o
s &1 s 81
[ o 3
k] 7 o T 7
o o o
T g ° I Q-
° o
T T T T
5 10 15 20

* 3 Percent weight of 4Ca0.Al_20_3.Fe20_3
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% 3 = Percent weight of 2Ca0.SiO_2
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Likelihood for Normal Linear Regression

Model is:

»
Yi = Bo + fixin + ﬂlez + 4 Bgxig +€iy €1 ~ N(0,0?)

én.“‘ﬁ\ b\G‘p ,n :H:

w o

Y=XB+¢e, &~ Ny(0,0%xn)}

Observe: Y = (Y1,...,Y,)T for given fixed design matrix X, i.e.:

|
(YlaX117~-~7X19)a---7(YI'7X/'17~-~aXiq)7~-~7(\:TM) -ﬁ
\——/—/
Likelihood and Loglikelihood (Yoot ot e by degendasd )

1
LBLE) = (2m2 o2y & p{—M(Y—Xﬂ (Y — xg J

UB,0%) = — ;{nlog27r+nloga+ S(Y — XB)' (Y - Xﬁ}

‘—/_
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Maximum Likelihood Estimation

Whatever the value o_f_g, the log-likelihood is maximised when . %Q“Jiw&m(@
(Y — XB)T(Y — X3) is minimised. Hence, the MLE of 3 is: il

——
8= argmax {—(Y — XB)'(Y — XB)} =argmin(Y — XB)"(—Xp)
N B ~ )

- =YY e NORE £ Y Y 'Qqu)1 ®p) = 2
Obtain minimum by solving: Tw\d%&w\,ﬁ?

9 T

95 Y = X8 (Y = XB) .

_ WY —XB) Y - XB)'(Y - XB) -

0 = 3 oY — X3) (chain rule)

0 :(-Xj)(Y — XB) (normal equations) (- X'y + Xx'xp =0

0

X'Xp = X'v,
(‘F*\‘\Q“X}“B = (XTX)AXTY! (if X has rank p)
e — —_—
=1 Y

XTK S \m—td!a
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The MLE 3 is called the least squares estimator because it is a result of minimising
- ~ 9

@ .
(Y =XB)' (Y - XB) = Z(YI — Bo — Baxin — Poxia — -+ — BaXig)-

i=1

sum of squares

Thus we are trying to find the 3 that gives the hyperplane with minimum sum of
squared vertical distances from our observations.

- k-0l
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Y

Residuals: e = Y — XB, so that e = (e, ..., e,)7, with

e = Y;— Bo— Bixi1 — Baxio — -+ — BgXiq

“Regression Line" is such that > e? is minimised over all 8.
—— - —

A

Fitted Values: Y = X[3, so that ¥ = (Y1,...,Y,)T, with
Y=

\%230+5A1Xi1+"'+3qx 1

iq
e
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Since the MLE of B is 3 = (X X)"'XT Y for all values of o2, we have

J——

62 = arg max{mgxﬁ(ﬁ,az)}

o2

= argmax/(8,0?)
s N T

[on

1 1 A A
= argmax — = {nloga2 + =Y = XB)(Y — X,B)} .
2 - 02
@ </ 2
=0
Differentiating and setting equal to zero yields

5 (Y X3) (foé)l 8 30"

We will soon see that a better (unbiased) estimator is

~ N

\52 - n%\p(v ~XB)T(Y - x,a)-\ Esto
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Example: Professor’'s Van

o
™

25
«
&

KilometresiLitre
15

10

~s%. 4o

Fill up

\B’O_:iﬁj |41 = —0.068] ls2 = 17.4’
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The Geometry of Least Squares

There are two dual geometrical viewpoints that one may adopt:

Nz X B s
Y, i in §12 e §1q By e
Y2 21 22 2q /81 62

= S

: 1 Xo-11 Xn-1)2 -+ Xn-1)q ' '

Ya 1 X1 Xn2 . Xnq Ba En

@ Row geometry: focus on the n OBSERVATIONS

@ Column geometry: focus on the@covariates
Both are useful, usually for different things:

@ Row geometry useful for exploratory analysis.

@ Column geometry useful for theoretical analysis.

Both geometries give useful, but different, intuitive interpretations of the least
squares estimators.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 29/37



Row Geometry (Observations)

Corresponds to the “scatterplot geometry” — (data space)

L op
n points m&

each corresponds to an observation (izn)
least squares parameters give parametric
equation for a hyperplane

hyperplane has property that it minimizes
the sum of squared vertical distances of

observations from the plane itself over all
possible hyperplanes

A

| TR
o Fitted values are vertical projections (NOT orthogonal projections!) of
observations onto plane, residuals are signed vertical distances of observations
from plane.

e = \1;- :/\\.
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Column Geometry (Variables)

Adopt the dual perspective:

o Consider the entire vector Y as a single point living in R"”

@ Then consider each variable (column of X) as a point also in R"

What is the interpretation of the p-dimensional vectorﬁ, and the n-dimensional
vectors Y and e in this dual space?
-ctors ¥ and €

Turns out there is another important plane here: the plane spanned by the
variable vectors (the column vectors of X).

Recall that this is the column space of X, denoted by M(X).

—r
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Recall: M(X) ={Xy:v€eRr}

—— — [
AU}‘\ Column Space

Q: What does lmean7

A: Y is [some element of M(X)] + [Gaussian disturbance].

Any realisation of Y will lie outside M(X) (almost surely). MLE estimates 3 by
minimising

L(Y = xB)T(¥ — XxB) = | ¥ - XB]

Thus we search for a 3 giving the element of M(X) with the minimum distance
from Y.

HencelY X,B is the projection of Y onto M(X):

Y = xé:: X(X"TX)'xTy = HY.
N—————
H

H is the hat matrix (because it puts a hat on Y!)
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Leads to geometric derivation of the MLE of 3:

e Choose 3 to minimise (Y — X3)T(Y — XB) = || Y — XB|?, so

lﬂi argmin||Y — XB||2.I

mingeml| Y — XB|* = mingemco 1Y, —@)I°

But the unique ~ that yields minycaqx) | Y — [? isly = PYI

Here P is the projection onto the column space of X, M(X).

Since X is of full rank,|H = X(XTX)*le’. (cf s21w8) w

e Sovy=X(X"X)"'XTY

o /3 will now be the Uhique (since(X non-singular) vector of coordinates of

with respect to the basis of columns of X.

e So
Ve XB=y=XX'X)'XTY, o e
which implies that 8 = (X TX)"1XTY . F=(XTRTXTY
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The (Column) Geometry of Least Squares
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Important facts that will repeatedly be made use of:
oe—(l— ) (I—H)v v
T,
(2] Y and e are orthogonaAI, I'f' Y'e=0 —
© Pythagoras: Y'Y, =Y 'Y +e'e=Y HY +e'(I - H)e
oet(vuo.\\c’m{m L
Derivation: RS s
3k o > ek I
Qe—Y XB=Y — HY—(I— H)Y =(I —H)(XB+¢) =

I/—_éj)i(ﬂJr(I (I - H)e

—Y Y - H 4l —YTHTI—H Y =0
Qe & HY @: e, ( ) -
) vT Y 5 (HY + (1= H)Y)T(HY + (1 - H)Y) = (§¢Y(J2e)

YTY—i—e e+2YH§l— Y.

©Y <1y . I7+uy-HY :Hy*u WY = ¥ ae (g2)
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Weighted Least Squares

Could also assume slightly different model:
Yi = Bo + Bixir + Poxip 4 - - + BgXig + e (0,0%), w; >0

)

‘J(z-)

With the w; known weights (example: each Y] is an average of w; measurements).
wj xnown WeIgNT:

Arises often in practice (e.g., in sample surveys), but also arises in theory (will see
in GLM).
S——
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Weighted Least Squares

Transformation:
Y =Wy, Xx'=w"X @
- -
with

‘ W, «n = diag(w, ..., Wm

Leads to usual scenario. In this notation we obtain:

[B — [(X*)TX*]fl(X*)Ty*
= (X"wx)"'x"wy
—— —
Similarly:
1
5% = YT [W-—wxX(XTWX)' X Tw]y
n—p « o oL
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