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Linear Algebra Intermezzo- continued
Linear Subspaces, Orthogonal Projections, Gaussian Vectors
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Gaussian Vectors and their Properties

Definition (Multivariate Gaussian Distribution)

A random vector Y in Rd has the multivariate normal distribution if and only if
ω→

Y has the univariate normal distribution, →ω ↑ Rd .

How can we use this definition to determine basic properties?

Recall that the moment generating function (MGF) of a random vector W in Rd

is defined as
MW (ε) = E[eω

→
W ], ε ↑ Rd ,

provided the expectation exists. When the MGF exists it characterises the
distribution of the random vector. Furthermore, two random vectors are
independent if and only if their joint MGF is the product of their marginal MGF’s.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 3 / 37

-

- -

- -

-

-

-

-
-



Most important facts about Gaussian vectors:
1 Moment generating function of Y ↓ N (µ,!):

MY (u) = exp

(
u
→µ+

1

2
u
→!u

)
.

2 Y ↓ N (µp↑1,!p↑p) and given Bn↑p and εn↑1, then

ε + BY ↓ N (ε + Bµ,B!B
→).

3 N (µ,!) density, assuming ! nonsingular:

fY (y) =
1

(2ω)p/2 |!|1/2
exp

{
↔1

2
(y ↔ µ)→!↓1(y ↔ µ)

}
.

4 Constant density isosurfaces are ellipsoidal
5 Marginals of Gaussian are Gaussian (converse NOT true).
6 ! diagonal ↗ independent coordinates Yj .
7 If Y ↓ N (µp↑1,!p↑p),

AY independent of BY ↘≃ A!B
→ = 0.
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Proposition (Property 1: Moment Generating Function)

The moment generating function of Y ↓ N (µ,!) is

MY (u) = exp
(
u
→µ+ 1

2
u
→!u

)

Proof (⇐).
Let u → Rp

be arbitrary. Then u
→

Y is Gaussian with mean u
→µ and variance u

→!u. Hence it

has moment generating function:

M
u→Y

(t) = E
(
e
tu

→
Y

)
= exp

{
t(u

→µ) +
t2

2
(u

→!u)

}
.

Now take t = 1 and observe that

M
u→Y

(1) = E
(
e
u
→

Y

)
= MY (u).

Combining the two, we conclude that

MY (u) = exp

(
u
→µ+

1

2
u
→!u

)
, u → Rp .
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Proposition (Property 2: A!ne Transformation)

For Y ↓ N (µp↑1,!p↑p) and given Bn↑p and εn↑1, we have

ε + BY ↓ N (ε + Bµ,B!B
→)

Proof (⇐).

Mω+BY (u) = E
[
exp{u→

(ω + BY )}
]
= exp

{
u
→ω

}
E
[
exp{(B→

u)
→

Y }
]

= exp

{
u
→ω

}
MY (B

→
u)

= exp

{
u
→ω

}
exp

{
(B

→
u)

→µ+
1

2
u
→

B!B
→

u

}

= exp

{
u
→ω + u

→
(Bµ) +

1

2
u
→

B!B
→

u

}

= exp

{
u
→
(ω + Bµ) +

1

2
u
→

B!B
→

u

}

And this last expression is the MGF of a N (ω + Bµ,B!B
→
) distribution.
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Proposition (Property 3: Density Function)

Let !p↑p be nonsingular. The density of N (µp↑1,!p↑p) is

fY (y) = 1

(2ω)p/2|!|1/2 exp
{
↔ 1

2
(y ↔ µ)→!↓1(y ↔ µ)

}

Proof (⇐).
Let Z = (Z1, . . . ,Zp)→ be a vector of iid N (0, 1) random variables. Then,
because of independence,

(a) the density of Z is

fZ (z) =
p∏

i=1

fZi
(zi ) =

p∏

i=1

1⇒
2ω

exp

(
↔1

2
z2i

)
=

1

(2ω)p/2
exp

(
↔1

2
z
→
z

)
.

(b) The MGF of Z is

MZ (u) = E
{
exp

(
p∑

i=1

uiZi

)}
=

p∏

i=1

E{exp(uiZi )} = exp(u→
u/2),

which is the MGF of a p-variate N (0, I ) distribution.
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(a)+(b)

=≃ the N (0, I ) density is fZ (z) =
1

(2ω)p/2
exp

(
↔ 1

2
z
→
z
)
.

By the spectral theorem, ! admits a square root, !1/2. Furthermore, since ! is
non-singular, so is !1/2.

Now observe that from our Property 2, we have Y
d
= !1/2

Z + µ ↓ N (µ,!).

By the change of variables formula,

fY (y) = f!1/2Z+µ(y)

= |!↓1/2|fZ{!↓1/2(y ↔ µ)}

=
1

(2ω)p/2 |!|1/2
exp

{
↔1

2
(y ↔ µ)→!↓1(y ↔ µ)

}
.

[Recall that to obtain the density of W = g(X ) at w , we need to evaluate fX at
g↓1(w) but also multiply by the Jacobian determinant of g↓1 at w .]
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Proposition (Property 4: Isosurfaces)

The isosurfaces of a N (µp↑1,!p↑p) are (p ↔ 1)-dimensional ellipsoids centred at
µ, with principal axes given by the eigenvectors of ! and with anisotropies given
by the ratios of the square roots of the corresponding eigenvalues of ! .

Proof (⇐).
Exercise: Use Property 3, and the spectral theorem.

Proposition (Property 5: Coordinate Distributions)

Let Y = (Y1, . . . ,Yp)→ ↓ N (µp↑1,!p↑p). Then Yj ↓ N (µj ,!jj) .

Proof (⇐).
Observe that Yj = (0 , 0 , . . . , 1︸

jth position

, . . . , 0 , 0)Y and use Property 2.
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Proposition (Property 6: Diagonal ! ↘≃ Independence)

Let Y = (Y1, . . . ,Yp)→ ↓ N (µp↑1,!p↑p). Then the Yi are mutually
independent if and only if ! is diagonal.

Proof (⇐).
Suppose that the Yj are independent. Property 5 yields Yj ↓ N (µj ,ε2

j
) for some

εj > 0. Thus the density of Y is

fY (y) =
p∏

j=1

fYj
(yj) =

p∏

i=1

1

εj

⇒
2ω

exp

{
↔1

2

(yj ↔ µj)2

ε2

j

}

=
1

(2ω)p/2 |diag(ε2

1
, . . . ,ε2

p)|1/2
exp

{
↔1

2
(y ↔ µ)→diag(ε↓2

1
, . . . ,ε↓2

p )(y ↔ µ)

}
.

Hence Y ↓ N{µ, diag(ε2

1
, . . . ,ε2

p)}, i.e. the covariance ! is diagonal.

Conversely, assume ! is diagonal, say ! = diag(ε2

1
, . . . ,ε2

p). Then we can reverse
the steps of the first part to see that the joint density fY (y) can be written as a
product of the marginal densities fYj

(yj), thus proving independence.
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Proposition (Property 7: AY ,BY indep ↘≃ A!B↑
= 0)

If Y ↓ N (µp↑1,!p↑p), and Am↑p, Bd↑p be real matrices. Then,

AY independent of BY ↘≃ A!B
→ = 0.

Proof (⇐). [wlog assuming µ = 0 (simplifies the algebra)]

First assume A!B
→ = 0. Let W(m+d)↑1 =

(
AY

BY

)
and ε(m+d)↑1 =

(
um↑1

vd↑1

)
.

MW (ε) = E[exp{W→ε}] = E

exp

{
Y

→
A

→
u + Y

→
B

→
v
}

= E

exp

{
Y

→(A→
u + B

→
v)

}
= MY (A→

u + B
→
v)

= exp

{
1

2
(A→

u + B
→
v)→!(A→

u + B
→
v)

}

= exp





1

2



u
→
A!A

→
u + v

→
B!B

→
v + u

→
A!B

→
︸  

=0

v + v
→
B!A

→
︸  

=0

u










= MAY (u)MBY (v) (joint MGF = product of marginal MGFs, thus independence)
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For the converse, assume that AY and BY are independent. Then, →u, v ,

MW (ε) = MAY (u)MBY (v), →u, v ,

=≃ exp

{
1

2

(
u
→
A!A

→
u + v

→
B!B

→
v + u

→
A!B

→
v + v

→
B!A

→
u
)}

= exp

{
1

2
u
→
A!A

→
u

}
exp

{
1

2
v
→
B!B

→
v

}

=≃ exp

{
1

2
⇑ 2v→

A!B
→
u

}
= 1

=≃ v
→
A!B

→
u = 0, → u, v ,

=≃ A!B
→ = 0.
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Gaussian Quadratic Forms and the ω2
& F Distributions

Reminder:

Definition (ω2
distribution)

Let Z ↓ N (0, Ip↑p). Then ⇓Z⇓2 =
p

j=1
Z 2

j
is said to have the chi-square (ϑ2)

distribution with p degrees of freedom; we write ⇓Z⇓2 ↓ ϑ2

p.

[Thus, ϑ2

p is the distribution of the sum of squares of p real independent standard
Gaussian random variates.]

Definition (F distribution)

Let V ↓ ϑ2

p and W ↓ ϑ2

q be independent random variables. Then (V /p)/(W /q)
is said to have the F distribution with p and q degrees of freedom; we write
(V /p)/(W /q) ↓ Fp,q.
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Proposition (Gaussian Quadratic Forms)

1 If Z ↓ N (0p↑1, Ip↑p) and H is a projection of rank r ⇔ p,

Z
→
HZ ↓ ϑ2

r .

2 Y ↓ N (µp↑1,!p↑p) with ! nonsingular =≃

(Y ↔ µ)→!↓1(Y ↔ µ) ↓ ϑ2

p.
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Gaussian Linear Regression: Likelihood
and Geometry
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Simple Normal Linear Regression

General formulation:

Yi |xi
ind↓ Distribution{g(xi )}, i = 1, . . . , n.

Simple Normal Linear Regression:

{
Distribution = N{g(x),ε2}
g(x) = ϖ0 + ϖ1x

Resulting Model:

Yi

ind↓ N (ϖ0 + ϖ1xi ,ε
2)

↖

Yi = ϖ0 + ϖ1xi + ϱi , ϱi
ind↓ N (0,ε2)
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Simple Normal Linear Regression

Jargon: Y is response variable and x is explanatory variable (or covariate)
Linearity: Linearity is in the parameters, not the explanatory variable.
Example: Flexibility in what we define as explanatory:

Yj = ϖ0 + ϖ1sin(xj)︸  
x↓
j

+ ϱj , ϱj
iid↓ Normal(0,ε2).

Example: Sometimes a transformation may be required:

Yj = ϖ0e
ε1xjςj , ςj

iid↓ Lognormal

log(·) ↙ ∝ exp(·)

logYj = log ϖ0 + ϖ1xj + log ςj , log ςj
iid↓ Normal

Data Structure:
For i = 1, . . . , n, pairs

(xi , yi )↔′
{

xi fixed values of x
Yi random output Yi when input is xi
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Example: Professor’s Van

Fillup Km/L
1 7.72
2 8.54
3 8.35
4 8.55
5 8.16
6 8.12
7 7.46
8 6.43
9 6.74

10 6.72
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Example: Professor’s Van
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Multiple Normal Linear Regression

Instead of xi ↑ R could have x
→
i

↑ Rq:

Yi = ϖ0 + ϖ1xi1 + ϖ2xi2 + . . .+ ϖqxiq + ϱi , ϱi
ind↓ N (0,ε2).

Letting p = q + 1, this can be summarised via matrix notation:





Y1

Y2

...
Yn





︸  
Y

=





1 x11 . . . x1q
1 x21 x2q
...

...
...

1 xn1 . . . xnq





︸  
X





ϖ0

ϖ1

...
ϖq





︸  
ε

+





ϱ1
ϱ2
...
ϱn





︸  
ε

=≃ Y
n↑1

= X
n↑p

ω
p↑1

+ ϑ
n↑1

, ϱ ↓ Nn(0,ε
2
In↑n)

X is called the design matrix.
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Example: Cement Heat Evolution

Case 3CaO.Al2O3 3CaO.SiO2 4Cao.Al2O3.Fe2O3 2CaO.SiO2 Heat
1 7.00 26.00 6.00 60.00 78.50
2 1.00 29.00 15.00 52.00 74.30
3 11.00 56.00 8.00 20.00 104.30
4 11.00 31.00 8.00 47.00 87.60
5 7.00 52.00 6.00 33.00 95.90
6 11.00 55.00 9.00 22.00 109.20
7 3.00 71.00 17.00 6.00 102.70
8 1.00 31.00 22.00 44.00 72.50
9 2.00 54.00 18.00 22.00 93.10

10 21.00 47.00 4.00 26.00 115.90
11 1.00 40.00 23.00 34.00 83.80
12 11.00 66.00 9.00 12.00 113.30
13 10.00 68.00 8.00 12.00 109.40
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Likelihood for Normal Linear Regression

Model is:

Yi = ϖ0 + ϖ1xi1 + ϖ2xi2 + · · ·+ ϖqxiq + ϱi , ϱi
iid↓ N (0,ε2)

↖

Y = Xω + ϑ, ϱ ↓ Nn(0,ε
2
In↑n)

Observe: Y = (Y1, . . . ,Yn)→ for given fixed design matrix X , i.e.:

(Y1, x11, . . . , x1q), . . . , (Yi , xi1, . . . , xiq), . . . , (Yn, xn1, . . . , xnq)

Likelihood and Loglikelihood

L(ω,ε2) =
1

(2ωε2)n/2
exp

{
↔ 1

2ε2
(Y ↔ Xω)→(Y ↔ Xω)

}

φ(ω,ε2) = ↔1

2

{
n log 2ω + n log ε2 +

1

ε2
(Y ↔ Xω)→(Y ↔ Xω)

}
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Maximum Likelihood Estimation

Whatever the value of ε, the log-likelihood is maximised when
(Y ↔ Xω)→(Y ↔ Xω) is minimised. Hence, the MLE of ω is:

ω̂ = argmax
ϑ

{
↔(Y ↔ Xω)→(Y ↔ Xω)

}
= argmin

ϑ
(Y ↔ Xω)→(→Xω)

Obtain minimum by solving:

0 =
↼

↼ω
(Y ↔ Xω)→(Y ↔ Xω)

0 =
↼(Y ↔ Xω)

↼ω

↼(Y ↔ Xω)→(Y ↔ Xω)

↼(Y ↔ Xω)
(chain rule)

0 = X
→(Y ↔ Xω) (normal equations)

X
→
Xω = X

→
Y

ω̂ = (X→
X )↓1

X
→
Y (if X has rank p)
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The MLE ω̂ is called the least squares estimator because it is a result of minimising

(Y ↔ Xω)→(Y ↔ Xω) =
n∑

i=1

(Yi ↔ ϖ0 ↔ ϖ1xi1 ↔ ϖ2xi2 ↔ · · ·↔ ϖqxiq)
2

︸  
sum of squares

.

Thus we are trying to find the ω that gives the hyperplane with minimum sum of
squared vertical distances from our observations.
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Residuals: e = Y ↔ X ω̂, so that e = (e1, . . . , en)→, with

ei = Yi ↔ ϖ̂0 ↔ ϖ̂1xi1 ↔ ϖ̂2xi2 ↔ · · ·↔ ϖ̂qxiq

“Regression Line” is such that


e2
i
is minimised over all ω.

Fitted Values: Ŷ = X ω̂, so that Ŷ = (Ŷ1, . . . , Ŷn)→, with

Ŷi = ϖ̂0 + ϖ̂1xi1 + · · ·+ ϖ̂qxiq
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Since the MLE of ω is ω̂ = (X→
X )↓1

X
→
Y for all values of ε2, we have

ε̂2 = argmax
ϑ2

{
max
ϑ

φ(ω,ε2)

}

= argmax
ϑ2

φ(ω̂,ε2)

= argmax
ϑ2

↔ 1

2

{
n log ε2 +

1

ε2
(Y ↔ X ω̂)→(Y ↔ X ω̂)

}
.

Di”erentiating and setting equal to zero yields

ε̂2 =
1

n
(Y ↔ X ω̂)→(Y ↔ X ω̂).

We will soon see that a better (unbiased) estimator is

S2 =
1

n ↔ p
(Y ↔ X ω̂)→(Y ↔ X ω̂).
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Example: Professor’s Van

ϖ̂0 = 8.6 ϖ̂1 = ↔0.068 S2 = 17.4

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 28 / 37

o O

00
To

am2
. 10

DDD



The Geometry of Least Squares

There are two dual geometrical viewpoints that one may adopt:





Y1

Y2

...
Yn




=





1 x11 x12 . . . x1q
1 x21 x22 x2q
...

...
...

1 x(n↓1)1 x(n↓1)2 . . . x(n↓1)q

1 xn1 xn2 . . . xnq









ϖ0

ϖ1

...
ϖq




+





ϱ1
ϱ2
...
ϱn





Row geometry: focus on the n OBSERVATIONS

Column geometry: focus on the p covariates

Both are useful, usually for di”erent things:

Row geometry useful for exploratory analysis.

Column geometry useful for theoretical analysis.

Both geometries give useful, but di”erent, intuitive interpretations of the least
squares estimators.
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Row Geometry (Observations)

Corresponds to the “scatterplot geometry” – (data space)

n points in Rp

each corresponds to an observation

least squares parameters give parametric
equation for a hyperplane

hyperplane has property that it minimizes
the sum of squared vertical distances of
observations from the plane itself over all
possible hyperplanes

Fitted values are vertical projections (NOT orthogonal projections!) of
observations onto plane, residuals are signed vertical distances of observations
from plane.
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Column Geometry (Variables)

Adopt the dual perspective:

Consider the entire vector Y as a single point living in Rn

Then consider each variable (column of X ) as a point also in Rn

What is the interpretation of the p-dimensional vector ω̂, and the n-dimensional
vectors Ŷ and e in this dual space?

Turns out there is another important plane here: the plane spanned by the
variable vectors (the column vectors of X ).

Recall that this is the column space of X , denoted by M(X ).
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Recall: M(X )︸  
Column Space

:= {Xϖ : ϖ ↑ Rp}

Q: What does Y = Xω + ϑ mean?

A: Y is [some element of M(X )] + [Gaussian disturbance].

Any realisation of Y will lie outside M(X ) (almost surely). MLE estimates ω by
minimising

(Y ↔ Xω)→(Y ↔ Xω) = ⇓Y ↔ Xω⇓2

Thus we search for a ω giving the element of M(X ) with the minimum distance
from Y .
Hence Ŷ = X ω̂ is the projection of Y onto M(X ):

Ŷ = X ω̂ := X (X→
X )↓1

X
→

︸  
H

Y = HY .

H is the hat matrix (because it puts a hat on Y !)
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Leads to geometric derivation of the MLE of ω:

Choose ω̂ to minimise (Y ↔ Xω)→(Y ↔ Xω) = ⇓Y ↔ Xω⇓2, so

ϖ̂ = argmin ⇓Y ↔ Xϖ⇓2.

minϑ↔Rp ⇓Y ↔ Xω⇓2 = minϖ↔M(X ) ⇓Y ↔ ϖ⇓2

But the unique ϖ that yields minϖ↔M(X ) ⇓Y ↔ ϖ⇓2 is ϖ = PY .

Here P is the projection onto the column space of X , M(X ).

Since X is of full rank, H = X (X→
X )↓1

X
→. (cf s21w8)

So ϖ = X (X→
X )↓1

X
→
Y

ω̂ will now be the unique (since X non-singular) vector of coordinates of ϖ
with respect to the basis of columns of X .

So
X ω̂ = ϖ = X (X→

X )↓1
X

→
Y ,

which implies that ω̂ = (X→
X )↓1

X
→
Y
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The (Column) Geometry of Least Squares
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Important facts that will repeatedly be made use of:
1 e = (I ↔ H)Y = (I ↔ H)ϑ.
2 Ŷ and e are orthogonal, i.e. Ŷ

→
e = 0

3 Pythagoras: Y
→
Y = Ŷ

→
Ŷ + e

→
e = Y

→
HY + ϑ→(I ↔ H)ϑ

Derivation:
1 e = Y ↔ X ω̂ = Y ↔ HY = (I ↔ H)Y = (I ↔ H)(Xω + ϑ) =

(I ↔ H)Xω + (I ↔ H)ϑ = (I ↔ H)ϑ

2 e = Y ↔ Ŷ = (I ↔ H)Y =≃ Ŷ
→
e = Y

→
H

→(I ↔ H)Y = 0

3 Y
→
Y = (HY + (I ↔ H)Y )→(HY + (I ↔ H)Y ) =

Ŷ
→
Ŷ + e

→
e + 2YH(I ↔ H)Y︸  

=0

.
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- XBetdef - - -

[
- -

&

def "

**= HY
O

*Hy
:

(Y +e)(Y + 2)
⑨

--

By = [Y = 2Y + Hy - Hy = Hy + (1 = H)y = Y + e (byz)
un



Weighted Least Squares

Could also assume slightly di”erent model:

Yi = ϖ0 + ϖ1xi1 + ϖ2xi2 + · · ·+ ϖqxiq +
ϱi⇒
wi

, ϱi
ind↓ N (0,ε2), wi > 0

↖

Yi

ind↓ N

(
ϖ0 + ϖ1xi1 + ϖ2xi2 + · · ·+ ϖqxiq,

ε2

wi

)
.

With the wj known weights (example: each Yj is an average of wj measurements).

Arises often in practice (e.g., in sample surveys), but also arises in theory (will see
in GLM).
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Weighted Least Squares

Transformation:
Y

↗ = W
1/2

Y , X
↗ = W

1/2
X

with
Wn↑n = diag(w1, . . . ,wn)

Leads to usual scenario. In this notation we obtain:

ω̂ = [(X ↗)→X
↗]↓1(X ↗)→Y

↗

= (X→
WX )↓1

X
→
WY

Similarly:

S2 =
1

n ↔ p
Y

→ 
W ↔ WX (X→

WX )↓1
X

→
W


Y
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