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Distribution Theory of Least Squares
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Sampling Distribution of Least Squares Estimators

Gaussian Linear Model:

Yn×1 = Xn×pβp×1 + εn×1, ε ∼ Nn(0, σ
2In×n)

We have derived the estimators:

β̂ = (X⊤X )−1X⊤Y

σ̂2 =
1

n
(Y − X β̂)⊤(y − X β̂) =

1

n
∥Ŷ − Y ∥2

S2 =
1

n − p
∥Ŷ − Y ∥2

We need to study the sampling distribution of these estimators for the purpose of:

Understanding their precision

Building confidence intervals

Testing hypotheses

Comparing them to other candidate estimators

. . .
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Theorem (Sampling Distribution of LSE under Gaussian Model)

Let Yn×1 = Xn×pβp×1 + εn×1 with ε ∼ Nn(0, σ
2In×n) and assume that X has full

rank p < n. Then,

1 β̂ ∼ Np{β, σ2(X⊤X )−1};
2 the random variables β̂ and S2 are independent; and

3
n − p

σ2
S2 ∼ χ2

n−p, where χ2
ν denotes the chi-square distribution with ν

degrees of freedom.
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Proof.
1. Recall our results for linear transformations of Gaussian variables:
β̂ = (X⊤X )−1X⊤Y
Y ∼ Nn(Xβ, σ2I )

}
=⇒ β̂ ∼ Np{β, σ2(X⊤X )−1}

2. If e is independent of Ŷ = X β̂, then S2 = e⊤e/(n− p) will be independent of
β̂ (why?). Now notice that:

e = (I − H)Y , with H = X (X⊤X )−1X⊤

Ŷ = HY
Y ∼ N (Xβ, σ2I )

Therefore, from the properties of the Gaussian distribution e is independent of Ŷ
since (I − H)(σ2I )H = σ2(I − H)H = 0, by idempotency of H .

3. For the last part recall that

e = (I − H)ε =⇒ (n − p)S2 = (n − p) e⊤e
n−p = ε⊤(I − H)ε

by idempotency of H . But recall that ε ∼ Nn(0, σ
2I ) so σ−1ε ∼ Nn(0, I ).

Therefore, by the properties of normal quadratic forms,

(n−p)
σ2 S2 = (σ−1ε)⊤(I − H)(σ−1ε) ∼ χ2

n−p.
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Recall that H = X (X⊤X )−1X⊤.

Corollary

Let Yn×1 = Xn×pβp×1 + εn×1 with ε ∼ Nn(0, σ
2In×n). The statistic HY is

sufficient for the parameter β. If X has full rank p < n, then β̂ is also sufficient
for β.

Corollary

S2 is unbiased whereas σ̂2 is biased (so we prefer S2).
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Proof of the first Corollary.

Write Y = HY + (I − H)Y = Ŷ + e.

If we can show that the conditional distribution of the 2n-dimensional vector
W = (Ŷ , e)⊤ given Ŷ does not depend on β, then we will also know that the
conditional distribution of Y = Ŷ + e given Ŷ does not depend on β either,
proving the proposition.

But we have proven that Ŷ is independent of e. Therefore, conditional on Ŷ , e
always has the same distribution N (0, (I − H)σ2). It follows that, conditional on
Ŷ , the vector W has a distribution whose first n coordinates equal Ŷ almost
surely, and whose last n coordinates are N (0, (I − H)σ2). Neither of those two
depend on β, and the proof is complete.

When X has full rank, β̂ is a 1-1 function of Hy , and is also sufficient for β.

Proof of the second Corollary.

Recall that if Q ∼ χ2
d , then E[Q] = d .
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We have characterized various properties of LSE,
now what about characterizing whether the resulting linear model is good?
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Confidence and Prediction Intervals

How to construct 1− α CI for a linear combination of the parameters, c⊤β?

Have c⊤β̂ ∼ N1(c⊤β, σ2c⊤(X⊤X )−1c) = N1(c⊤β, σ2δ)

Therefore Q = (c⊤β̂ − c⊤β)/(σ
√
δ) ∼ N1(0, 1)

Hence Q2 ∼ χ2
1

and Q2 is independent of S2 (since β̂ is independent of S2)

while n−p
σ2 S2 ∼ χ2

n−p.

In conclusion:

Q2

1
(n−p)
σ2 S2

n − p

∼ F1,n−p ⇒
(c⊤β̂−c⊤β)2

σ2δ
S2

σ2

=

(
c⊤β̂ − c⊤β√

S2c⊤(X⊤X )−1c

)2

∼ F1,n−p

But for real W , W 2 ∼ F1,n−p ⇐⇒ W ∼ tn−p, so base CI on:

c⊤β̂ − c⊤β√
S2c⊤(X⊤X )−1c

∼ tn−p

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 10 / 21



We obtain (1− α)× 100% CI:

c⊤β̂ ± tn−p(α/2)
√
S2c⊤(X⊤X )−1c .

What about a (1− α) CI for βr? (rth coordinate)

Let cr = (0, 0, . . . , 0, 1
r th position

, 0, . . . , 0)

Then βr = c⊤
r β

Therefore, base CI on

c⊤
r β̂ − c⊤

r β√
S2c⊤

r (X⊤X )−1cr
=

β̂r − βr√
S2vr ,r

∼ tn−p,

where vr ,s is the r , s element of (X⊤X )−1.

Obtain (1− α)× 100% CI:

β̂r ± tn−p(α/2)
√

S2vrr .
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A prediction interval aims to give confidence bounds on a potential response.

Suppose we want to predict the value of Y+ for an x+ ∈ Rp

Our model predicts Y+ by x⊤
+ β̂.

But Y+ = x⊤
+β+ ε+ so a prediction interval is different from an interval for a

linear combination c⊤β (extra uncertainty due to ε+):

E[x⊤
+ β̂ + ε+] = x⊤

+ β
var[x⊤

+ β̂ + ε+] = var[x⊤
+ β̂] + var[ε+] = σ2[x⊤

+ (X⊤X )−1x+ + 1]

Base prediction interval on:

x⊤
+ β̂ − Y+√

S2{1 + x⊤
+ (X⊤X )−1x+}

∼ tn−p.

Obtain (1− α) prediction interval:

x⊤
+ β̂ ± tn−p(α/2)

√
S2{1 + x⊤

+ (X⊤X )−1x+}.
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The Coefficient of Determination, R2

R2 is a measure of fit of the model to the data.

We are trying to best approximate Y through an element of the
column-space of X .

How successful are we? Squared error is e⊤e.
How large is this, relative to data variation? Look at

∥e∥2

∥Y ∥2
=

e⊤e
Y⊤Y

=
Y⊤(I − H)Y

Y⊤Y
= 1− Ŷ⊤Ŷ

Y⊤Y

Define

R2
0 =

Ŷ⊤Ŷ
Y⊤Y

=
∥Ŷ ∥2

∥Y ∥2

Note that 0 ≤ R2
0 ≤ 1

Interpretation: what proportion of the squared norm of Y does our fitted value Ŷ
explain?
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Geometry Reminder
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Different Versions of R2

“Centred (in fact, usual) R2”. Compares empirical variance of Ŷ to empirical
variance of Y , instead of the empirical norms. In other words:

R2 =
1
n

∑n
i=1(Ŷi − Ȳ )2

1
n

∑n
i=1(Yi − Ȳ )2

=

∑n
i=1(Ŷi − Ȳ )2∑n
i=1(Yi − Ȳ )2

=

∑n
i=1 Ŷ

2
i − nȲ 2∑n

i=1 Y
2
i − nȲ 2

.

(note that 1
n

∑n
i=1 Ŷi =

1
n

∑n
i=1(Yi − ei ) = Ȳ because e ⊥ 1 (here 1 is the vector

of 1’s = first column of design matrix X ) so
∑

i ei = 0.

Note that

R2 =
∥Ŷ ∥2 − ∥Ȳ 1∥2

∥Y ∥2 − ∥Ȳ 1∥2
.

R2
0 mathematically more natural (does not treat first column of X as special).

R2 statistically more relevant (expresses variance—the first column of X
usually is special, in statistical terms!).

R2
0 and R2 may differ a lot when Ȳ = 1

n

∑n
i=1 Yi large.
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Geometrical interpretation of R2: project Y and Ŷ on orthogonal complement of
1, then compare the norms (of the projections):

1(1⊤1)−11⊤Y = 1n−1
∑n

i=1 Yi = 1Ȳ .

1(1⊤1)−11⊤Ŷ = 1n−1
∑n

i=1 Ŷi = 1Ȳ .

So

R2 =
∥Ŷ ∥2 − ∥Ȳ 1∥2

∥Y ∥2 − ∥Ȳ 1∥2
=

∥(I − 1(1⊤1)−11)Ŷ ∥2

∥(I − 1(1⊤1)−11)Y ∥2

Intuition: Should not take into account the part of ∥Y ∥ that is explained by a
constant, we only want to see the effect of the explanatory variables.

Note: Statistical packages (e.g., R) provide R2 (and/or R2
a , see below), not R2

0 .

Exercise: Show that R2 = [corr({Ŷi}ni=1, {Yi}ni=1)]
2.

Exercise: Show that R2 ≤ R2
0 .
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The adjusted R2 takes into account the number of variables employed. It is
defined as:

R2
a = 1 + (1− R2)

n − 1

n − p
.

Corrects for the fact that we can always increase R2 by adding variables. One can
also correct the un-centred R2

0 and take into account instead

R2
a0 = 1 + (1− R2

0 )
n

n − p
.
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Example: Cement Heat Evolution

Case 3CaO.Al2O3 3CaO.SiO2 4Cao.Al2O3.Fe2O3 2CaO.SiO2 Heat
1 7.00 26.00 6.00 60.00 78.50
2 1.00 29.00 15.00 52.00 74.30
3 11.00 56.00 8.00 20.00 104.30
4 11.00 31.00 8.00 47.00 87.60
5 7.00 52.00 6.00 33.00 95.90
6 11.00 55.00 9.00 22.00 109.20
7 3.00 71.00 17.00 6.00 102.70
8 1.00 31.00 22.00 44.00 72.50
9 2.00 54.00 18.00 22.00 93.10

10 21.00 47.00 4.00 26.00 115.90
11 1.00 40.00 23.00 34.00 83.80
12 11.00 66.00 9.00 12.00 113.30
13 10.00 68.00 8.00 12.00 109.40
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Example: Cement Heat Evolution
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Example: Cement Heat Evolution

> cement.lm<-lm(y∼1+x1+x2+x3+x4,data=cement)
> summary(cement.lm)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 62.4054 70.0710 0.89 0.3991

x1 1.5511 0.7448 2.08 0.0708
x2 0.5102 0.7238 0.70 0.5009
x3 0.1019 0.7547 0.14 0.8959
x4 −0.1441 0.7091 −0.20 0.8441

Residual standard error: 2.446 on 8 degrees of freedom

R-Squared: 0.9824
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Example: Cement Heat Evolution

> x.plus

[1] 25 25 25 25

predict(cement.lm,x.plus,interval="confidence",

se.fit=T,level=0.95)

Fit Lower Upper
112.8 97.5 128.2

predict(cement.lm,x.plus,interval="prediction",

se.fit=T,level=0.95)

Fit Lower Upper
112.8 96.5 129.2
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