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Distribution Theory of Least Squares
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Sampling Distribution of Least Squares Estimators

Gaussian Linear Model:

Yox1 = Xn><p,8p><1 + €nx1, €~ Nn(oaazlnxn)

We have derived the estimators:
e B=(XTX)1XTY

A 1 A A 1 -
0 7 =—(Y-XB) (y-XB)=—|Y - Y|
1 A
o SF=—|¥V-Y|
n—p

We need to study the sampling distribution of these estimators for the purpose of:

Understanding their precision

Building confidence intervals

Testing hypotheses

Comparing them to other candidate estimators
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Theorem (Sampling Distribution of LSE under Gaussian Model)

Let Yox1 = XnxpBpx1 + €nx1 with € ~ N,(0,0%1,%,) and assume that X has full
rank p < n. Then,

Q@ B~ N, {B,0*(XTX)1};

© the random variables ﬁ and S? are independent; and

n— . .. . .
o 2p52 ~ X2 o Where x? denotes the chi-square distribution with v

degrees of freedom.
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Proof.

1. Recall our results for linear transformations of Gaussian variables:

oy Ty\-lyT -
vy b= B s XX

2. If e is independent of ¥ = X3, then S§2 = e’ e/(n— p) will be independent of

PN

3 (why?). Now notice that:
ee=(I—-H)Y, with H=X(XTX)"1x"
o Y =HY
o Y ~N(XB,0%l)
Therefore, from the properties of the Gaussian distribution e is independent of Y
since (I — H)(c?1)H = 0?(1 — H)H = 0, by idempotency of H.
3. For the last part recall that

e=(I—He = (n—p)S?=(n—p)ee=e"(I - H)e

n—p

by idempotency of H. But recall that & ~ N,(0,021) so 0~te ~ N,(0,1).
Therefore, by the properties of normal quadratic forms,
P52 = (071e) (1 — H)(0 7€) ~ X3
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Recall that H = X(XTX)71XT.

Let Yox1 = XoxpBpx1 + Enx1 With € ~ N,(0,021,x,). The statistic HY is

sufficient for the parameter 8. If X has full rank p < n, then B is also sufficient
for 3.

S? is unbiased whereas 62 is biased (so we prefer S2).




Rn
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Proof of the first Corollary.

Write Y = HY + (I —H)Y = Y +e.

If we can show that the conditional distribution of the 2n-dimensional vector
W = (Y,e)T given Y does not 'depend on (3, then we will also know that the

conditional distribution of Y = ¥ + e given Y does not depend on @ either,
proving the proposition.

But we have proven that Y is independent of e. Therefore, conditional on )A’ e
always has the same distribution A'(0, (I — H)o?). It follows that, conditional on
V, the vector W has a distribution whose first n coordinates equal Y almost
surely, and whose last n coordinates are N'(0, (I — H)o?). Neither of those two
depend on 3, and the proof is complete.

When X has full rank, ﬁ is a 1-1 function of Hy, and is also sufficient for 3.
O

Proof of the second Corollary. |
Recall that if Q@ ~ x3, then E[Q] = d. O
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We have characterized various properties of LSE,
now what about characterizing whether the resulting linear model is good?

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 9/21



Confidence and Prediction Intervals

How to construct 1 — o Cl for a linear combination of the parameters, ¢’ 37
e Have ¢"8 ~ Ni(cTB,02cT (X X) tc) = Ni(cT B, 020)

Therefore @ = (¢" 8 — ¢ B8)/(a/8) ~ N1(0,1)

@ Hence Q2% ~ X%

e and Q2 is independent of S2 (since 3 is independent of S2)

le =P G2 2
e while ©L5% ~ 7 _,.

In conclusion:

Q? A . 2

T (c B;STB)Z CTﬁ _ CT,B
("7 ) 2 ~ Fl’nip :> 52 = T T — ~ Fl,nfp
S 2 S2cT(XTX) 1c
n—p

e But for real W, W2 ~ F ,_, < W ~ t,_p, so base Cl on:
c"B-c'B
S2cT(XTX) tc

~ tn—p
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@ We obtain (1 — «) x 100% Cl:

c' Bty p(a)2)4/S2cT(XT X) tc.

What about a (1 — «) Cl for 8,7 (rth coordinate)
Let ¢, = (0,0,...,0, 1 ,0,...,0)

rth position

Then B, = ¢ 3

@ Therefore, base Cl on

Cr—réfcr—r/g :Brfﬂrwt
VST (XTX) e, /SPv, T

where v, 5 is the r, s element of (X" X)~1.
Obtain (1 — «) x 100% Cl:

By % th_p(a/2)\/S2v,.
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A prediction interval aims to give confidence bounds on a potential response.
@ Suppose we want to predict the value of Y, for an x, € RP
o Our model predicts Y, by x[ 3.
e But Y, = XI,@ + £4 so a prediction interval is different from an interval for a
linear combination ¢ '3 (extra uncertainty due to ¢, ):

o Elx[B+e]=xIB
o var[x] B +e4] = var[x] B8] + var[e;] = ?[x[ (X T X) " Ix; + 1]

@ Base prediction interval on:
XIB - Y
~ thp-
VS (XTX) 1x)
@ Obtain (1 — ) prediction interval:

X B+ by p(0/2)y/S2HL + xT (XTX)1x ).
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The Coefficient of Determination, R?

R? is a measure of fit of the model to the data.

@ We are trying to best approximate Y through an element of the
column-space of X.

T

@ How successful are we? Squared error is e ' e.

@ How large is this, relative to data variation? Look at

le> eTe YTU-H)Y _ YT¥
IYI? YTy Yy = YTy

@ Define n

e YTV VP
STYTY TV

@ Note that 0 < Rg <1

Interpretation: what proportion of the squared norm of Y does our fitted value ¥
explain?
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Geometry Reminder

RTZ

va

—

Dty e
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Different Versions of R>

“Centred (in fact, usual) R?". Compares empirical variance of Y to empirical
variance of Y, instead of the empirical norms. In other words:

R2_IZI 1(\’\/ )2221 1(? ) 7271Y_ny2
121 (Vi — Yi—Y)? Zi:l Y’.2—nY2

Y

Y2
(note that 1377 Vi =157 (Y —¢) =
of 1's = first column of design matrix X) so >, e; = 0.

-<| -<|

Y because e L 1 (here 1 is the vector

Note that

2 _ [IYIP—IIYL?
Y12 = 1Y1)?

@ R2 mathematically more natural (does not treat first column of X as special).

e R2 statistically more relevant (expresses variance—the first column of X
usually /s special, in statistical terms!).

e RZ and R? may differ a lot when Y = %27:1 Y; large.
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Geometrical interpretation of R?: project Y and Y on orthogonal complement of
1, then compare the norms (of the projections):

01(171) 11TY =1n130, Vi =1Y.
0 1(171) 11TY =113, Vi =1Y.

So _ .
o _ IYIP =YL _ U -1 ) ) Y|P

YR —lvR Q0 -1aT) Ty

Intuition: Should not take into account the part of || Y| that is explained by a
constant, we only want to see the effect of the explanatory variables.

Note: Statistical packages (e.g., R) provide R? (and/or R2, see below), not R3.

Exercise: Show that R? = [corr({ Y;}7_,, { Yi}1_,)]2.
Exercise: Show that R? < R2.
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The adjusted R? takes into account the number of variables employed. It is
defined as:
2 oyn—1
RE=14+(1-R)——.
n—p
Corrects for the fact that we can always increase R? by adding variables. One can
also correct the un-centred R3 and take into account instead

n
n—p

R%L =1+ (1-R?)
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Example: Cement Heat Evolution

Case 3Ca0.Alh O3 3Ca0.Si0y 4Ca0.Aly O3.Fey O3 2Ca0.Si0y Heat
1 7.00 26.00 6.00 60.00 78.50
2 1.00 29.00 15.00 52.00 74.30
3 11.00 56.00 8.00 20.00 104.30
4 11.00 31.00 8.00 47.00 87.60
5 7.00 52.00 6.00 33.00 95.90
6 11.00  55.00 9.00 22.00 109.20
7 3.00 71.00 17.00 6.00 102.70
8 1.00 31.00 22.00 44.00 7250
9 2.00 54.00 18.00 22.00 93.10

10 21.00 47.00 4.00 26.00 115.90
11 1.00 40.00 23.00 34.00 83.80
12 11.00 66.00 9.00 12.00 113.30
13 10.00  68.00 8.00 12.00 109.40
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Example: Cement Heat Evolution
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Example: Cement Heat Evolution

> cement.lm<-1m(y~1+x1+x2+x3+x4,data=cement)
> summary (cement.1lm)

Estimate Std. Error tvalue Pr(>|t|)

(Intercept)  62.4054 70.0710 0.89 0.3991
x1 1.5511 0.7448 2.08 0.0708
x2 0.5102 0.7238 0.70 0.5009
x3 0.1019 0.7547 0.14 0.8959
x4  —0.1441 0.7091 —-0.20 0.8441

Residual standard error: 2.446 on 8 degrees of freedom
R-Squared: 0.9824
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Example: Cement Heat Evolution

> x.plus

[1] 25 25 25 25
predict(cement.lm,x.plus,interval="confidence",
se.fit=T,level=0.95)

Fit Lower | Upper
112.8 | 97.5 | 128.2

predict(cement.lm,x.plus,interval="prediction",
se.fit=T,level=0.95)

Fit Lower | Upper
112.8 | 96.5 | 129.2
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