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Linear Algebra Intermezzo- continued

Linear Subspaces, Orthogonal Projections, Gaussian Vectors
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Gaussian Vectors and their Properties

Definition (Multivariate Gaussian Distribution)

A random vector Y in R? has the multivariate normal distribution if and only if
B'Y has the univariate normal distribution, V3 € RY.

How can we use this definition to determine basic properties?

Recall that the moment generating function (MGF) of a random vector W in RY
is defined as -
Mw(0) =E[® V], 6 eR’,

provided the expectation exists. When the MGF exists it characterises the
distribution of the random vector. Furthermore, two random vectors are
independent if and only if their joint MGF is the product of their marginal MGF's.
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Most important facts about Gaussian vectors:
© Moment generating function of Y ~ N (p, Q):

My (u) = exp (uTu + ;uTﬂu> .

Q@ Y ~ N(pmpx1,2pxp) and given By, and 0,1, then
0+BY ~N(0+Bu,BQBT).
© N(p, ) density, assuming Q nonsingular:

1 1 _
fr(y) = WWGXP{Q(Y —p)' Q2 1()’#)} .

© Constant density isosurfaces are ellipsoidal
@ Marginals of Gaussian are Gaussian (converse NOT true).
Q 2 diagonal < independent coordinates ;.
QIfY~ N(prh Qpxp),
AY independent of BY <= AQB' =0.
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Proposition (Property 1: Moment Generating Function)
The moment generating function of Y ~ N (p, Q) is

My (u) =exp (u"p + Lu"Qu)

Proof (x).

Let u € RP be arbitrary. Then u! Y is Gaussian with mean u! y and variance u' Qu. Hence it
has moment generating function:

M,y (t) =E (e“‘T Y) = exp {t(uTu) + g(uTQu)} .
Now take t = 1 and observe that
M,7y(1) =E (e"TY> = My (u).
Combining the two, we conclude that

1
My (u) = exp (uTu + EuTQu> , u€ERP.
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Proposition (Property 2: Affine Transformation)
For Y ~ N(ppx1,Qpxp) and given By, and 0,51, we have

0+ BY ~N(0+ Bu, BQBT)

Proof ().
Meigy(u) = E [exp{uT(O + BY)}] = exp {UTQ} E [exp{(BTu)T Y}]
= exp{uTG} My (BT u)
- e { T9} TAT, L, T
= pu exp4 (B ' u) p,—i-zu BQB ' u
= exp{uT0+uT(Bu)+%uTBQBTu}
1
= exp{uT(O—l—B/.L)—s—EuTBQBTu}
And this last expression is the MGF of a N'(6 + Bu, BQBT) distribution. O
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Proposition (Property 3: Density Function)
Let Q,x, be nonsingular. The density of N (ppx1, Qpxp) is

fr(y) = WGXP{ (y—m) QY (y —p)}

Proof (x).

Let Z=(Z,...,2Z,)" be a vector of iid N(0,1) random variables. Then,
because of independence,

(a) the density of Z is
P

atey= Tt T o0 (34) = o (272)

i=1 i=1

(b) The MGF of Z is

Mz(u) =E {exp <Z u,-Z,-) } = HE{exp(u,-Z,-)} = exp(u ' u/2),

which is the MGF of a p-variate A/(0, I) distribution.
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L )ihe N(0,1) density is fz(z) = W exp(—3z'2z).

By the spectral theorem, © admits a square root, /2. Furthermore, since £ is
non-singular, so is /2.

Now observe that from our Property 2, we have Y L2z + w~N(p, ).

By the change of variables formula,

fr(y) = foieziu(y)
0 Ay — )

1 1 To-1
= WWGXP{_z(y—H) Q (y—H)}'

[Recall that to obtain the density of W = g(X) at w, we need to evaluate fx at

g !(w) but also multiply by the Jacobian determinant of g=1 at w.]
]
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Proposition (Property 4: Isosurfaces)

The isosurfaces of a N'(ppx1, Qpxp) are (p — 1)-dimensional ellipsoids centred at
w, with principal axes given by the eigenvectors of 2 and with anisotropies given

by the ratios of the square roots of the corresponding eigenvalues of €2 .

Proof (x).

Exercise: Use Property 3, and the spectral theorem.

Proposition (Property 5: Coordinate Distributions)
Let Y = (Y1,...,Yp) " ~N(ppx1, pxp). Then Y; ~ N(u;, Q) -

Proof (x).
Observe that Y;=(0, 0,..., 1 ,.--, 0, 0)Y and use Property 2.
~—
jth position
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Proposition (Property 6: Diagonal 2 <= Independence)

Let Y = (Y1,...,Yp) " ~N(ppx1,Qpxp). Then the Y; are mutually
independent if and only if S is diagonal.

Proof (x).

Suppose that the Yj are independent. Property 5 yields Yj ~ N (y;, UJ?
o;j > 0. Thus the density of Y is

P P A Y
SV Hajgp{—;(y“)}

) for some

—

1
_ ol =27 = ) aller o = u)} .
(27)P? |diag(0?, . .., 02)[1/2 { 2 ' P

Hence Y ~ N{u,diag(03,...,03)}, i.e. the covariance €2 is diagonal.
Conversely, assume € is diagonal, say €2 = diag(o?, ..., 05). Then we can reverse
the steps of the first part to see that the joint density fy(y) can be written as a

product of the marginal densities fy,(y;), thus proving independence.
]
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Proposition (Property 7: AY,BY indep <= AQB' =0)
IfY ~ N(upxl, Qpo)r and Amxp, Baxp be real matrices. Then,
AY independent of BY +— AQB'T =0.

Proof (x). [wlog assuming g = 0 (simplifies the algebra)]

First assume AQBT = 0. Let Wiinia)x1 = (By) and O(miayx1 = (“1).

Vdx1

Mw (8) Elexp{W 0} =E [exp{YTATu+ Y B v}]

Elexp{YT(ATu+B"v)}] =My(ATu+BTv)

exp {;(ATU +BTv) QAT+ BTV)}

=exp{ | uTAQATu+v BB v+ u'AQB v+ v BQA u
2 N—— ——
=0 =0

= MAy(u)/\/IBy(V) (joint MGF = product of marginal MGFs, thus independence)
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For the converse, assume that AY and BY are independent. Then, Vu, v,

Mw(e) = MAy(U)MBy(V), Vu, v,
1
— exp {2 (uTAQATu+v BB v +uAQBTv + vTBQATu)}
1 1
= exp {2uTAQATu} exp {2VTBQBTV}
1 T T
= exp §><2v AQB u; =1

— v AQB u =0, Yu,v,

— AQBT =0.
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Gaussian Quadratic Forms and the x? & F Distributions

Reminder:
Definition (x? distribution)

Let Z ~ N(0, Ipxp). Then [|Z||* = 37, Z7 is said to have the chi-square (x?)
distribution with p degrees of freedom; we write || Z|[* ~ x3.

[Thus, Xf, is the distribution of the sum of squares of p real independent standard
Gaussian random variates.]

Definition (F distribution)

Let V ~ x2 and W ~ 2 be independent random variables. Then (V/p)/(W/q)
is said to have the F distribution with p and g degrees of freedom; we write

(V/P)/(W/Q) ~ Fpgq-
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Q IfZ ~ N(Opx1, Ipxp) and H is a projection of rank r < p,
ZTHZ ~ 2
Q Y ~ N(ppx1, Qpxp) with Q nonsingular —>

(Y =)"Q (Y —p) ~ x5
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Gaussian Linear Regression: Likelihood
and Geometry
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Simple Normal Linear Regression

General formulation:

Yi|x % Distribution{g(x:)}, i=1,...,n.

Simple Normal Linear Regression:

{ Distribution = N'{g(x), 0?}
g(x) = Bo + Pix
Resulting Model:

ind

Y: % N(Bo + Bixi, 0?)

)
Y =Bo+ Bixi +ein e (0,02)
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Simple Normal Linear Regression

Jargon: Y is response variable and x is explanatory variable (or covariate)
Linearity: Linearity is in the parameters, not the explanatory variable.

Example: Flexibility in what we define as explanatory:

Y; = Bo + fisin(x;) +¢j, € X Normal(0, o).
——

*
X
J

Example: Sometimes a transformation may be required:

Y = Boe™n;, i Lognormal
log(-) T exp(*)
log Y; = log Bo + Bix; + logn;, logn; % Normal

Data Structure:
Fori=1,...,n, pairs

(0, 1) x; fixed values of x
i Yi Y; random output Y; when input is x;
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Example: Professor’s Van

Fillup  Km/L
7.72
8.54
8.35
8.55
8.16
8.12
7.46
6.43
6.74
6.72

QOO N0 WN -

[y
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Example: Professor's Van
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Succesive Fill-Ups
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Multiple Normal Linear Regression

Instead of x; € R could have x;' € RY:

Yi = Bo + Bixin + Boxiz + ... + BgXig +€i,  Ei d (0,02).

Letting p = g + 1, this can be summarised via matrix notation:

Y1 1 X11 - Xig 60 €1
Yo 1 xp X2q b1 €2
= |+
Y, 1 Xp1 ... Xng Bq €n
Y X B €

—t Y = X ﬁ + € 5 ENNn(0,0'2In><n)

nx1 nxp px1 nx1

X is called the design matrix.
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Example: Cement Heat Evolution

Case 3Ca0.Alh O3 3Ca0.5i0p 4Cao0.Aly03.Fey O3 2Ca0.5i0p Heat
1 7.00  26.00 6.00 60.00 78.50
2 1.00 29.00 15.00 52.00 74.30
3 11.00  56.00 8.00 20.00 104.30
4 11.00  31.00 8.00 47.00 87.60
5 7.00 52.00 6.00 33.00 95.90
6 11.00  55.00 9.00 22.00 109.20
7 3.00 71.00 17.00 6.00 102.70
8 1.00 31.00 22.00 44.00 7250
9 2.00 54.00 18.00 22.00 93.10

10 21.00 47.00 4.00 26.00 115.90
11 1.00 40.00 23.00 34.00 83.80
12 11.00  66.00 9.00 12.00 113.30
13 10.00  68.00 8.00 12.00 109.40
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Likelihood for Normal Linear Regression

Model is:

Yi = Bo + Bixin + BoxXip + -+ + BgXig + i, E€i < N(0,0?)
(i
Y =XB+e, &~Ny0,0%y,)
Observe: Y = (Y1,...,Y,)T for given fixed design matrix X, i.e.:

(Y15X117"'7X1q)a"'7(\//5X/17"'7X/q)7"'7(YnaXn17"'7an)

Likelihood and Loglikelihood

LB.0%) = s P {—2},2(\’ —XB)T(Y - xm}

0B, 0?) = —% {nlog27r+ nlogo® + %(Y - XB)' (Y —Xﬂ)}
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Maximum Likelihood Estimation

Whatever the value of o, the log-likelihood is maximised when
(Y — XB)"(Y — X) is minimised. Hence, the MLE of 3 is:

8= argmax {—(Y — XB)'(Y - XB3)} = argmin(Y — XB)"(—XP)
B8 B
Obtain minimum by solving:

0 = (Y- XB)'(Y - XP)
oY = XB) oY — XB)(Y — XB)

0 = 98 oY — XB) (chain rule)
0 = X'(Y—XB) (normal equations)

X'Xg = X'y
B = (X"X)'XTY (if X has rank p)
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The MLE B is called the least squares estimator because it is a result of minimising

(Y =XB)' (Y - XB) = Z(YI — Bo — Baxin — Poxia — -+ — BaXig)-

i=1

sum of squares

Thus we are trying to find the 3 that gives the hyperplane with minimum sum of
squared vertical distances from our observations.
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Residuals: e = Y — X3, so that e = (ey,...,e,)T, with

e = Y;— Bo— Bixi1 — Baxio — -+ — BgXiq
“Regression Line” is such that Y e? is minimised over all 3.

A

Fitted Values: Y = X3, so that ¥ = (Y1,...,Y,)T, with

37/:30+51Xi1+"'+3qxiq
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Since the MLE of B is 3 = (X X)"'XT Y for all values of o2, we have

52 = argmax {mgxf(ﬁ, 02)}

o2

= argmax/(8,0?)
o2
1 , 1 AT A
= argmax — - qnlogo®+ (Y —XB) (Y —X3);.
o2 2 o2

Differentiating and setting equal to zero yields

N N

52 = (Y~ XB)T(Y — XP).

We will soon see that a better (unbiased) estimator is

1 A A

fznigv—meY—xm.
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Example: Professor's Van

2
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Fill up

Bo=8.6 p=-0068 S>=17.4
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The Geometry of Least Squares

There are two dual geometrical viewpoints that one may adopt:

1 X11 X12 N X1
n 1 xx X22 qu bo °1
Y2 _ I A €2
= : . + .
. 1 X(n—1)1 X(n-1)2 --- Xn-1 )
Y, i (n-1)q 8, .
Xn1 Xn2 PN Xng

@ Row geometry: focus on the n OBSERVATIONS

@ Column geometry: focus on the p covariates
Both are useful, usually for different things:

@ Row geometry useful for exploratory analysis.

@ Column geometry useful for theoretical analysis.

Both geometries give useful, but different, intuitive interpretations of the least
squares estimators.
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Row Geometry (Observations)

Corresponds to the “scatterplot geometry” — (data space)

n points in RP
each corresponds to an observation

least squares parameters give parametric
equation for a hyperplane

hyperplane has property that it minimizes
the sum of squared vertical distances of
observations from the plane itself over all
possible hyperplanes

Pty

o Fitted values are vertical projections (NOT orthogonal projections!) of
observations onto plane, residuals are signed vertical distances of observations
from plane.
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Column Geometry (Variables)

Adopt the dual perspective:
o Consider the entire vector Y as a single point living in R”

@ Then consider each variable (column of X) as a point also in R"

What is the interpretation of the p-dimensional vector ﬁ and the n-dimensional
vectors Y and e in this dual space?

Turns out there is another important plane here: the plane spanned by the
variable vectors (the column vectors of X).

Recall that this is the column space of X, denoted by M(X).
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Recall: M(X) ={Xvy:v€eRr}
——
Column Space

Q: What does Y = X3 + € mean?
A: Y is [some element of M(X)] + [Gaussian disturbance].

Any realisation of Y will lie outside M(X) (almost surely). MLE estimates 3 by
minimising

(Y =XB) (Y = XB) =Y — X3
Thus we search for a 3 giving the element of M(X) with the minimum distance
from Y.
Hence Y = X is the projection of Y onto M (X):

Y =XB8:=X(X"X)"'XTY =HY.

[ ——_—
H

H is the hat matrix (because it puts a hat on Y!)
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Leads to geometric derivation of the MLE of 3:

e Choose 3 to minimise (Y — X3)T(Y — XB) = || Y — X3|?, so

B =argmin|Y — X3|>.

mingess | ¥ — X8I = minye i) | ¥ =72
But the unique + that yields minyepqx) [|Y — | is v = PY.

Here P is the projection onto the column space of X, M(X).

Since X is of full rank, P = X(XTX)~1XT.

e Soy=X(XTX)"IXTY

e A3 will now be the unique (since X non-singular) vector of coordinates of
with respect to the basis of columns of X.

e So R
XB=~r=X(X"X)"'X"Y,

which implies that 3 = (XTX)"1XTY
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The (Column) Geometry of Least Squares

RTZ

/I3

0 Y

—

Dty e
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Important facts that will repeatedly be made use of:
Q@e=(I-H)Y=(I-H)e.
(2] Y and e are orthogonal, i.e. YTe=0
O Pythagoras: Y'Y =Y Y +e'e=YTHY +¢" (I - H)e

Derivation:
Qe=Y-XB=Y-HY=(-H)Y=(-H)(XB+¢)=
(I = H)XB+ (I — H)e = (I — H)e

Qe=Y-Y=(-HY = Y'e=Y H (I-H)Y=0
Q@ Y'Y =(HY +(I-H)Y) (HY +(I-H)Y) =
Y'Y +ele+2YH(I - H)Y.

—_——
=0
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Weighted Least Squares

Could also assume slightly different model:

Yi:ﬁO‘FﬂlXil+62Xi2+"'+6qxiq+\/67;v—ia g ™ (0,0%), w; >0

)

2
. o
Y; CN (50 + Bixi1 + BoXip + - - + BgXig, w-) .

1

With the w; known weights (example: each Y] is an average of w; measurements).

Arises often in practice (e.g., in sample surveys), but also arises in theory (will see
in GLM).
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Weighted Least Squares

Transformation:
Y* _ W1/2Y, X* — W1/2X
with
W, xn = diag(wi, ..., w,)

Leads to usual scenario. In this notation we obtain:

/é — [(X*)TX*]fl(x*)Ty*
(XTwx)"'x"wy
Similarly:
1
5% = YT [W-—wxX(XTwX)"' X Tw]y
n—p
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