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Logistics

Instructors: Myrto Limnios and Rajita Chandak

TAs: Ramzi Dakhmouche, Yann Becker, Regina Garćıa Averell.

Schedule:

Lectures: Mondays 10:00–12:00 (CM 1 1) + Tuesdays 08:00–10:00 (CM 1 1)

Exercises: Wednesdays 08:00-10:00 (CM 1 5)

Midterm: Date TBA (Apr 2 or 7), 100 minutes

Final Exam: TBD, 3 hours

Course website: https://go.epfl.ch/MATH-413

Ed Forum: See Moodle.

Lecture notes: =slides (more references on website).
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Course Structure

Probabilistic background

1 Probability.

2 Reminder on Basic Probability Distributions.

3 Entropy and Exponential Families.

Sampling Theory

1 Sufficient Statistics.

2 Sampling distributions.

3 Stochastic convergence

Marginal Inference

1 Point Estimation and Likelihood Theory.

2 Hypothesis Testing and Confidence Intervals.

3 Nonparametric marginal inference and smoothing.

Inference with covariates (Regression)

1 Gaussian Linear Models.

2 Generalised Linear Models

3 Nonparametric regression and regularisation.
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Disclaimer

This is intended to be (and will be) a mathematical course.

There will be some proofs.

↪→ Proofs marked with an ∗ will not be examined, though.

We will start from first principles and build up our theory.

Reality is messy, complicated, and does not easily submit to narrative.
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What is Statistics?

Learning from Data under Uncertainty
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Statistics: a more eloquent attempt

We may at once admit that any inference from the
particular to the general must be attended with some
degree of uncertainty, but this is not the same as to ad-
mit that such inference cannot be absolutely rigorous, for
the nature and degree of the uncertainty may itself be
capable of rigorous expression.

Ronald A. Fisher
(Biologist and Mathematician)
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What is Data? Anything and Everything

Anything1

RECONSTRUCTION OF SPARSE PROTEINS 19

Fig 6: A sample of twelve projections from the Klenow fragment dataset.

that if it is a coarse first order approximation that we are interested in,
then the sparse radial model is quite reasonable. However, the approximate
nature of this representation will have certain implications:

1. The isotropic density function on which the radial representation is
based is unknown. In essence, this means that the deconvolution prob-
lem at hand is a blind deconvolution problem as the point spread
function itself is poorly determined. Fortunately, we will see that the
discrete deconvolution approach based on the LASSO remains success-
ful even when the convolution matrix is approximate.

2. It is likely that only a subset of the projections will be usable, because
several of the projections may involve projected means that lie close
to one another, hence pushing to the limit of unidentifiability.

3. The mixing proportions corresponding to the best fitting radial rep-
resentation have no guarantee of being well-separated. Therefore, we
will need to make use of the special geometry of the problem as the
estimated mixing weights will not be sufficient for labeling the com-

Figure 3: Centroids of recorded Los Angeles County wildfires, 1878–1996

ural ordering of the points that does not generally exist for spatial processes.
Indeed, it may often be convenient to view a spatial-temporal point pro-
cess as a purely temporal point process, with spatial marks associated with
each point. Sometimes investigating the purely temporal (or purely spatial)
behavior of the resulting marginalized point process is of interest.

The spatial region of interest is often a rectangular portion of R2 or R3,
but not always. For the data in Figure 2, for example, the focus is on just
one spatial coordinate, and in Figure 3 the region of interest is Los Ange-
les County, which has an irregular boundary. Cases where the points are
spatially distributed in a sphere or an ellipse are investigated by Brillinger
(1997) and Brillinger (2000). When the domain of possible spatial coordi-
nates is discrete (e.g. a lattice) rather than continuous, it may be convenient
to view the spatial-temporal point process as a sequence {Ni} of temporal
point processes which may interact with one another. For example, one may
view the occurrences of cars on a highway as such a collection, where Ni

represents observations of cars in lane i.

Any analytic spatial-temporal point process is uniquely characterized by

3

1That we can mathematically represent
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Learning: Statistics and Machine Learning

A subjective view (others might object):

Machine Learning ⊂ Statistics

(this does not mean that all machine learning was invented by statisticians!)

In some ways, machine learning corresponds one of two cultures in statistics2:
1 Inference/Modeling/Uncertainty

↪→ Focus on interpretability, reduction, and statistical efficiency.
↪→ Traditionally linked with science.

2 Prediction/Algorithms/Optimisation
↪→ Focus on emulation, automation, and computational efficiency.
↪→ Linked more with technology.

The two need not be mutually exclusive –
depends on the problem and intended use!

Cultural differences run deep – philosophy of mind:

what does it mean to know/learn?

2Breiman (2001), “Statistical Modeling: The Two Cultures” – make sure to read discussion.
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The Modeling Culture

A mathematical model is a simplified representation of reality expressed in
mathematical terms that, despite being an approximation, gives a fruitful
framework accounting for our empirical observations and generating further
conjectures not directly suggested by experience itself

Building/disputing/calibrating/refining/improving models is at the core of
the scientific method

Inextricably linked with the concept of “theory”.

Constructed combining empirical observations, mathematical considerations,
and philosophical principles.

Can be seen as a vehicle for learning – parsimoniously reduces complexity and
diversity of observations and makes accurate predictions.
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Uncertainty: Probability and Statistics

Uncertainty may stem from many sources:
1 Sampled data (observe the particular but not the general).
2 Measurement error.
3 Chaos.
4 Intrinsic stochasticity.
5 Fundamental limitations to precision.
...

We will use Kolmogorov’s axiomatic system of probability theory to
mathematically encapsulate uncertainty.

Probability:
1 Process of interest conceptualised as a probability model
2 Use model to learn about probability of potential outcomes.

Statistics:
1 Process of interest conceptualised as a probability model
2 Data viewed as observed outcomes from model
3 Use outcomes to learn about the model.
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Probability and Statistics

The Job of the Probabilist

Given a probability model P on a space Ω find the probability P[A] that the
outcome of the experiment is A ⊂ Ω.

The Job of the Statistician

Given an outcome of A ⊂ Ω (the data) of a probability experiment on Ω, tell me
something interesting∗ about the (uknown) probability model P that generated it.

(∗something in addition to what was known before observing the outcome A)

Such interesting questions can be:

1 Are the data more more consistent with one or another model?

2 Given a family of models, can we determine which model generated the data?

3 What range of models are consistent with a given set of data?

4 How to best answer these questions? (is there even a best way?)
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Example (A Probabilist and a Statistician Flip a Coin)

Let Y1, ...,Y10 denote the results of flipping a coin ten times, with

Yi =

{
0 if heads ,

1 if tails
, i = 1, ..., 10.

A plausible model is Yi
iid∼ Bernoulli(θ). We record the outcome

(0, 0, 0, 1, 0, 1, 1, 1, 1, 1).

Probabilist Asks:

Probability of outcome as function of θ?

Probability of k-long run?

If keep tossing, how many k-long runs? How long until k-long run?

What about the sum of observations? How does it behave? How does it
scale?
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Example (A Probabilist and a Statistician Flip a Coin (cont’d))

Statistician Asks:

Is the coin fair?

What is a good guess of the value of θ on the basis of the observations?

What range of θ is plausible on the basis of the observations?

How much error do we make when trying to decide the above from the
observations?

How does our answer change if the observations are perturbed?

Is there a “best” solution to the above problems?

How sensitive are our answers to departures from the model?

How do our “answers” behave as # tosses −→ ∞?

How many tosses would we need until we can get “accurate answers”?
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Example (A Probabilist and a Statistician invest in the stock market)

Let Y1, ...,Yt denote the price of a certain stock, say AAPL, over a period of t
days A plausible model for the stock price is Yi ∼ Black-Scholes(µ, σ). Probabilist

Asks:

Probability of the price crossing $300 in the next year?

What about any known function of the stock prices in a week? How does it
behave? How does it scale?
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Example (A Probabilist and a Statistician invest in the stock market
(cont’d))

Statistician Asks:

Is the mean price of AAPL equal to 200 in the last 5 years?

What is a good guess of the value of σ on the basis of the observations?

What range of µ is plausible on the basis of the observations?

How much error do we make when trying to estimate the parameters from
the observations?

How does our answer change if we know our observations are noisy?

Is there a “best” solution to the above problems?

How sensitive are our answers to departures from the model?

How do our “answers” behave as t −→ ∞?
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General Framework

1 Model phenomenon by distribution F (y1, ..., yn; θ) on Yn, some n ≥ 1.

2 Distributional form is known but θ ∈ Θ is unknown.

3 Observe realisation of (Y1, ...,Yn)
⊤ ∈ Yn from this distribution.

4 Use the realisation {Y1, . . . ,Yn} in order to make assertions concerning the
true value of θ, and quantify the uncertainty associated with these assertions.

Seems too simple?

→ Spans essence of most of the ideas used in the most complex of problems!

→ In principle, Yn and Θ can be quite complicated, though:

Almost always Yn ⊆ Rn.

Typically Θ ∈ Rp, some fixed p. Sometimes Θ is a function space. These are
the parametric vs nonparametric regimes.
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Prototypical Statistical Inference Tasks

1 Estimation. Given realisation (Y1, . . . ,Yn)
⊤ from F (y1, ..., yn; θ), how can

we produce an educated guess for the unknown true parameter θ?

2 Hypothesis Testing. Given two disjoint regions Θ0 and Θ1, which is more
plausible to contain the true θ that generated our observation (Y1, . . . ,Yn)

⊤?

3 Confidence Intervals. Instead of estimating a unique θ that may have
generated (Y1, . . . ,Yn)

⊤, how can we give a whole range of θ that are
plausible on the basis of (Y1, . . . ,Yn)

⊤?

Additional tasks that can be formulated as versions/extensions of the above are:

Prediction. Given data (Y1, . . . ,Yn)
⊤ from a distribution F (y1, ..., yn; θ)

where θ is unknown, predict a future outcome from the same distribution.

Classification. Given observations (Y
(i)
1 , . . . ,Y

(i)
n )⊤ from various

distributions F (y1, ..., yn; θi ) (where i = 1, ..., k) depending on unknown
parameters, and given a new observation Y , declare which of these
distribution generated the observation Y .
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Absence or Presence of Covariates

Can distinguish between two broad types of inference settings:

1 Marginal Inference. Here (Y1, ...,Yn)
⊤ has i.i.d. entries each from the same

distribution F (y ; θ) with the same parameter θ.

In other words, all observations were obtained under identical experimental
conditions, and thus depend in the same way on the same unknown θ.

2 Regression. Here (Y1, ...,Yn)
⊤ has independent entries, each with

distribution F (y ; θi ) of the same family but with different parameters.

Each observation was generated under slightly different experimental
conditions. They depend in a similar way on different θi .

These θi correspond to different experimental conditions, say xi .

Each xi is called a covariate/feature, and is an input that the experimenter can
vary. They are known (non-random). The index i reminds us that it
corresponds to the ith observation Yi .

Usually θi is postulated to have a special relationship to xi , for example
θi = exp{α+ βxi}, for (α, β) uknown parameters.

The goal, then, is to understand how the distribution of Y depends on
covariates/features x .
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Example
1 Marginal Inference. Here we have independent realisations (Y1, ...,Yn) each

from the same distribution Fθ.

For instance, Yi represents the outcome of flipping the same coin
independently, and we wish to understand the probability of success.

Then we can model Y1, . . . ,Yn
iid∼Bernoulli(θ).

2 Regression. Here we have independent realisations (Y1, ...,Yn) each from a
distribution Fθi of the same family but with different parameters.

For instance, Yi represents the voting intention of the ith voter on a
referendum. The corresponding feature may be his/her income level xi .

We may model the probability of the ith voter voting 1 as Bernoulli(θi ) with

θi =
eα+βxi

1 + eα+βxi

for (α, β) a pair of unknown parameters.

Note the parsimony: even though each θi is different, there are not n unknown
parameters but only 2 unknown parameters α, β.
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Introduction to probability
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Algebra of Events

Random experiment: process whose outcome is uncertain.
Outcomes and any statement involving them must be expressed via set theory.

A possible outcome ω of a random experiment is called an elementary event.

The set of all possible outcomes, Ω, is assumed non-empty (Ω ̸= ∅).
An event is a subset A ⊂ Ω of Ω. An event A “is realised” (or “occurs”)
whenever the outcome of the experiment is an element of A.

The union of two events F1 and F2, written F1 ∪F2 occurs if and only if either
of F1 or F2 occurs. Equivalently, ω ∈ F1 ∪ F2 if and only if ω ∈ F1 or ω ∈ F2,

F1 ∪ F2 = {ω ∈ Ω : ω ∈ F1 or ω ∈ F2}

The intersection of two events F1 and F2, written F1 ∩ F2 occurs if and only
both F1 and F2 occur. Equivalently, ω ∈ F1 ∩ F2 if and only if ω ∈ F1 and
ω ∈ F2,

F1 ∩ F2 = {ω ∈ Ω : ω ∈ F1 and ω ∈ F2}
Unions and intersections of several events, F1 ∪ . . . ∪ Fn and F1 ∩ . . . ∩ Fn are
defined iteratively from the definition for unions and intersections of pairs.
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The complement of an event F , denoted F c , contains all the elements of Ω
that are not contained in F ,

F c = {ω ∈ Ω : ω /∈ F}.

Two events F1 and F2 are called disjoint if the contain no common elements,
that is F1 ∩ F2 = ∅.
A partition {Fn}n≥1 of Ω is a collection of events such that Fi ∩ Fj = ∅ for all
i ̸= j , and ∪n≥1Fn = Ω.

The difference of two events F1 and F2 is defined as F1 \ F2 = F1 ∩ F c
2 . It

contains all the elements of F1 that are not contained in F2. Notice that the
difference is not symmetric: F1 \ F2 ̸= F2 \ F1.

It can be checked that the following properties hold true

(i) (F1 ∪ F2) ∪ F3 = F1 ∪ (F2 ∪ F3) = F1 ∪ F2 ∪ F3

(ii) (F1 ∩ F2) ∩ F3 = F1 ∩ (F2 ∩ F3) = F1 ∩ F2 ∩ F3

(iii) F1 ∩ (F2 ∪ F3) = (F1 ∩ F2) ∪ (F1 ∩ F3)
(iv) F1 ∪ (F2 ∩ F3) = (F1 ∪ F2) ∩ (F1 ∪ F3)
(v) (F1 ∪ F2)

c = F c
1 ∩ F c

2 and (F1 ∩ F2)
c = F c

1 ∪ F c
2
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Venn Diagrams
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Probability Measures

Probability measure P: real function defined over the events of Ω, assigning a
probability to any event.

Interpreted as a measure of how certain we are that the event will occur.

Postulated to satisfy the following properties (known as axioms of probability):

1 P(F ) ≥ 0, for all events F .

2 P(Ω) = 1.

3 If an event F is a countable union F = ∪n≥1Fn of disjoint events {Fn}n≥1,

P (F ) =
∑
n≥1

P(Fn).
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The following properties are immediate consequences of the probability axioms:

P(F c) = 1− P(F ).

P(F1 ∩ F2) ≤ min{P(F1),P(F2)}.

P(F1 ∪ F2) = P(F1) + P(F2)− P(F1 ∩ F2).

Continuity from below: let {Fn}n≥1 be nested events, such that Fj ⊆ Fj+1 for

all j , and let F = ∪n≥1Fn. Then P(Fn)
n→∞−→ P(F ).

Continuity from above: let {Fn}n≥1 be nested events, such that Fj ⊇ Fj+1 for

all j , and let F = ∩n≥1Fn. Then P(Fn)
n→∞−→ P(F ).

If Ω = {ω1, ..., ωK}, K < ∞, is a finite set, then for any event F ⊆ Ω, we
have P(F ) =

∑
j :ωj∈F P(ωj).
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Conditional Probability and Independence

Suppose we don’t know the precise outcome ω ∈ Ω that has occurred, but we are
told that ω ∈ F2 for some event F2, and are asked to now calculate the probability
that ω ∈ F1 also, for some other event F1.

For any pair of events F1,F2 such that P(F2) > 0, we define the conditional
probability of F1 given F2 to be

P(F1|F2) =
P(F1 ∩ F2)

P(F2)
.

Let G be an event and {Fn}n≥1 be a partition of Ω such that P(Fn) > 0 for
all n. We then have:

- Law of total probability: P(G) =
∞∑
n=1

P(G |Fn)P(Fn)

- Bayes’ theorem: P(Fj |G) =
P(Fj ∩ G)

P(G)
=

P(G |Fj)P(Fj)∑∞
n=1 P(G |Fn)P(Fn)

The events {Gn}n≥1 are called independent if and only if for any finite
sub-collection {Gi1 , . . . ,GiK }, K < ∞, we have:

P(Gi1 ∩ · · · ∩ GiK ) = P(Gi1)× P(Gi2)× . . .× P(GiK )
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Random Variables and Distribution Functions

Random variables: numerical summaries of the outcome of a random experiment.

They allow us to not worry too much about precise structure of outcome ω ∈ Ω

We can concentrate on range of a random variable, rather than consider Ω.

A random variable is a real function X : Ω → R.
We write {a ≤ X ≤ b} to denote the event

{ω ∈ Ω : a ≤ X (ω) ≤ b}.
More generally, if A ⊂ R is a generic subset, we write {X ∈ A} to denote the
event

{ω ∈ Ω : X (ω) ∈ A}.

If we have a probability measure defined on the events of Ω, then X induces
a new probability measure on subsets of the real line. This is described by the
distribution function (or cumulative distribution function) FX : R → [0, 1] of
a random variable X (or the law of X ),

FX (x) = P(X ≤ x).
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By its definition, a distribution function satisfies the following properties:

(i) x ≤ y ⇒ FX (x) ≤ FX (y)

(ii) limx→∞ FX (x) = 1, limx→−∞ FX (x) = 0

(iii) limy↓x FX (y) = FX (x), that is, FX is right-continuous.

(iv) limy↑x FX (y) exists, that is, FX is left-limited.

(v) P(a < X ≤ b) = FX (b)− FX (a).

(vi) P(X > a) = 1− F (a).

(vii) Let DX := {x ∈ R : FX (x)− limy↑x FX (y) > 0} be the set of points where FX

is not continuous.

- DX is a countable set.
- If P({X ∈ DF }) = 1 then X is called a discrete random variable (equivalently, X
has a finite or countable range, with probability 1).

- If DX = ∅ then X is called a continuous random variable (the distribution
function FX is continuous).

- It may very well happen that a random variable may be neither discrete nor
continuous.
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Quantile Functions and Quantiles

Given a probability α ∈ (0, 1), which is the (smallest) real number x such that
P[X ≤ x ] = α?

Let X be a random variable and FX be its distribution function. We define the
quantile function of X (or equivalently of FX ) to be the function

F−
X : (0, 1) → R

F−
X (α) = inf{t ∈ R : FX (t) ≥ α}.

If FX is strictly increasing and continuous, then F−
X = F−1

X

Given an α ∈ (0, 1), the α-quantile of X (or equivalently of FX ) is the real number

qα = F−
X (α).
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The pictures that say it all:
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Random Number Generation

Lemma

Let Y ∼ Unif (0, 1) and let F be a distribution function. Then, the distribution
function of the random variable X = F−(Y ) is given precisely by F .

Can be used to generate realisations from any distribution

Provided we can generate realsations from uniform on [0, 1].
Can do this with binary expansions and Bernoulli draws.
Reduces problem to infinite coin flipping.

Partial Converse
Let X be a random variable with strictly increasing and continuous distribution
function FX . Then, FX (X ) ∼ Unif (0, 1)
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Probability Mass Functions

The probability mas function (or frequency function) fX : R → [0, 1] of a discrete
random variable X is defined as

fX (x) = P(X = x)

and the set X = {x ∈ R : fX (x) > 0} is the support of X .
By its definition, a probability mass function satisfies

(i) P(X ∈ A) =
∑

t∈A∩X fX (t), for A ⊆ R.
(ii) FX (x) =

∑
t∈(−∞,x]∩X fX (t), for all x ∈ R.

(iii) An immediate corollary is that FX (x) is piecewise constant with jumps at the
points in X .
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Probability Density Functions

A continuous random variable X has probability density function
fX : R → [0,+∞) if

FX (b)− FX (a) =

∫ b

a

fX (t)dt.

for all real numbers a < b. By its definition, a probability density satisfies

(i) FX (x) =
∫ x

−∞ fX (t)dt

(ii) fX (x) = F ′
X (x), whenever fX is continuous at x .

(iii) Note that fX (x) ̸= P(X = x) = 0. In fact, it can be f (x) > 1 for some x . It
can even happen that f is unbounded.
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Transformed Mass Functions

Let X be discrete, taking values in X , and define Y = g(X ). Then, Y takes
values in Y = g(X ) and

FY (y) = P[g(X ) ≤ y ] =
∑
x∈X

fX (x)1{g(x) ≤ y}, ∀y ∈ Y

fY (y) = P[g(X ) = y ] =
∑
x∈X

fX (x)1{g(x) = y}, ∀y ∈ Y.
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Transformed Density Functions

Let X be continuous, taking values in X ⊆ R and g : X → R a transformation
that is

1 monotone,

2 continuously differentiable,

3 with non-vanishing derivative.

If Y = g(X ), then Y takes values in Y = g(X ) and

fY (y) =

∣∣∣∣ ∂∂y g−1(y)

∣∣∣∣ fX (g−1(y)), y ∈ Y.
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Random Vectors and Joint Distributions

A random vector X = (X1, . . . ,Xd)
⊤ is a finite collection of random variables

(arranged as the coordinates of a vector)

We may want to make probabilistic statements on the joint behaviour of all these
random variables.

The joint distribution function of a random vector X = (X1, . . . ,Xd)
⊤ is

defined as:
FX (x1, . . . , xd) = P(X1 ≤ x1, . . . ,Xd ≤ xd).

Correspondingly, one defines the
- joint frequency function, if the {Xi}di=1 are all discrete,

fX (x1, . . . , xd) = P(X1 = x1, . . . ,Xd = xd).

- the joint density function, if there exists fX : Rd → [0,+∞) such that:

FX (x1, . . . , xd) =

∫ x1

−∞
· · ·

∫ xd

−∞
fX (u1, . . . , ud)du1 . . . dud

In this case, when fX is continuous at the point x ,

fX (x1, . . . , xd) =
∂d

∂x1 . . . ∂xd
FX (x1, . . . , xd)
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Marginal Distributions

Given the joint distribution of the random vector X = (X1, . . . ,Xd)
⊤, we can

isolate the distribution of a single coordinate, say Xi .

discrete case, the marginal frequency function of Xi is given by

fXi (xi ) = P(Xi = xi ) =
∑
x1

· · ·
∑
xi−1

∑
xi+1

· · ·
∑
xd

fX (x1, . . . , xi−1, xi , xi+1, . . . , xd)

In the continuous case, the marginal density function of Xi is given by

fXi (xi ) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
fX (y1, . . . , yi−1, xi , yi+1, . . . , yd)dy1 . . . dyi−1dyi+1dyd .

More generally, we can define the joint frequency/density of a random vector
formed by a subset of the coordinates of X = (X1, . . . ,Xd)

⊤, say the first k
Discrete case: fX1,...,Xk (x1, ..., xk) =

∑
xk+1

· · ·
∑

xd
fX (x1, . . . , xk , xk+1, . . . , xd).

Continuous case
fX1,...,Xk (x1, ..., xk) =

∫ +∞
−∞ · · ·

∫ +∞
−∞ fX (x1, . . . , xk , xk+1, . . . , xd)dxk+1 . . . dxd .

i.e. to marginalise we integrate/sum out the remaining random variables from
the overall joint density/frequency.

Marginals do not uniquely determine the joint distribution.
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Conditional Distributions

We may wish to make probabilistic statements about the potential outcomes of
one random variable, if we already know the outcome of another.

For this we need the notion of a conditional density/frequency function.

If (X1, ...,Xd) is a continuous/discrete random vector, we define the conditional
probability density/frequency function of (X1, ...,Xk) given
{Xk+1 = xk+1, ...,Xd = xd} as

fX1,...,Xk |Xk+1,...,Xd
(x1, ..., xk |xk+1, ..., xd) =

fX1,...,Xd
(x1, . . . , xk , xk+1, . . . , xd)

fXk+1,...,Xd
(xk+1, ..., xd)

provided that fXk+1,...,Xd
(xk+1, ..., xd) > 0.
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Independent Random Variables

The random variables X1, . . . ,Xd are called independent if and only if for all
x1, . . . , xd ∈ R

FX1,...,Xd
(x1, . . . , xd) = FX1(x1)× . . .× FXd

(xd).

Equivalently, X1, . . . ,Xd are independent if and only if, for all x1, . . . , xd ∈ R

fX1,...,Xd
(x1, . . . , xd) = fX1(x1)× . . .× fXd

(xd).

For two random variables X and Y , we denote their independence as X⊥⊥Y .

Note that when random variables are independent, conditional distributions reduce
to the corresponding marginal distributions.

Knowing the value of one of the random variables gives us no information about
the distribution of the rest.
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Conditionally Independent Random Variables

The random vector X in Rd is called conditionally independent of the random
vector Y given the random vector Z , written

X⊥⊥ZY or X⊥⊥Y |Z ,

if and only if, for all x1, . . . , xd ∈ R

FX1,...,Xd |Y ,Z (x1, . . . , xd) = FX1,...,Xd |Z (x1, . . . , xd).

Equivalently, if and only if, for all x1, . . . , xd ∈ R

fX1,...,Xd |Y ,Z (x1, . . . , xd) = fX1,...,Xd |Z (x1, . . . , xd).

Knowing Y in addition to knowing Z gives us no more information about X .

Consequence: if X is conditionally independent of Y given Z , then

FX ,Y |Z = FX |Y ,ZFY |Z = FX |ZFY |Z

Consequence: X⊥⊥ZY ⇐⇒ Y⊥⊥ZX
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Transformed Multivariate Density Functions

Let g : Rn → Rn be a differentiable bijection,

g(x) = (g1(x), . . . , gn(x)), x = (x1, . . . , xn)
⊤ ∈ Rn.

Let X = (X1, . . . ,Xn)
⊤ have joint density fX (x), x ∈ Rn, and define

Y = (Y1, . . . ,Yn)
⊤ = g(X ). Then, Y takes values in Yn = g(X n), and

fY (y) = fX (g
−1(y))

∣∣∣ det [Jg−1(y)
]∣∣∣, for y = (y1, . . . , yn)

⊤ ∈ Yn,

and zero otherwise, whenever Jg−1(y) is well-defined. Here, Jg−1(y) is the
Jacobian of g−1, i.e. the n × n matrix-valued function,

Jg−1(y) =


∂
∂y1

g−1
1 (y) . . . ∂

∂yn
g−1
1 (y)

...
. . .

...
∂
∂y1

g−1
n (y) . . . ∂

∂yn
g−1
n (y)

 .
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Example (Convolution of densities)

Let X and Y be independent, continuous random variables with densities fX and
fY . The density of X + Y is the convolution of fX with fY :

fX+Y (u) =

∫ +∞

−∞
fX (u − v)fY (v)dv .

Define g : R2 → R2, (x , y)
g7→ (x + y , y) (u, v)

g−1

7→ (u − v , v).
The Jacobian of the inverse is (

1 −1
0 1

)
and its determinant is 1. It follows that

fX+Y ,Y (u, v) = fX ,Y (u − v , v) = fX (u − v)fY (v),

and we integrate out v to find the marginal fX+Y :

fX+Y (u) =

∫ +∞

−∞
fX (u − v)fY (v)dv .
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Moments

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 43 / 49



Expectation

The expectation (or expected value) of a random variable X formalises the notion
of the “average” value taken by that random variable.

- For continuous variables:

E[X ] =

∫ +∞

−∞
x fX (x)dx .

- For discrete variables:

E[X ] =
∑
x∈X

x fX (x), X = {x ∈ R : fX (x) > 0}.

The expectation satisfies the following properties:

Linearity: E[X1 + αX2] = E[X1] + αE[X2].

E[h(X )] =
∑

x∈X h(x)fX (x) (discrete case)
or
E[h(x)] =

∫ +∞
−∞ h(x)f (x)dx (continuous case).
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Expectations of Random Vectors

Let X = (X1, . . . ,Xd)
⊤ be a random vector in Rd with joint density function

fX (x1, . . . , xd). For any g : Rd → R, we define

E {g(X1, . . . ,Xd)} =

∫ +∞

−∞
. . .

∫ +∞

−∞
g(x1, . . . , xd)fX (x1, . . . , xd)dx1 . . . dxd .

Similarly, in the discrete case,

E {g(X1, . . . ,Xd)} =
∑
x1∈X1

. . .
∑

xd∈Xd

g(x1, . . . , xd)fX (x1, . . . , xd).

The mean vector or a random vector X = (X1, . . . ,Xd) is defined as

E[X ] =

 E[X1]
...

E[Xd ]


i.e. it is the vector of means.
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Variance, Covariance, Correlation

The variance of a random variable X expresses how the realisations of X are
spread around its expectation.

Var(X ) = E
[
(X − E(X ))2

]
(if E[X 2] < ∞).

Furthermore, the covariance of a random variable X1 with another random
variable X2 expresses the degree of linear dependency between the two.

cov(X1,X2) = E [(X1 − E(X1))(X2 − E(X2))] (if E[X 2
i ] < ∞).

The correlation between X1 and X2 is defined as

Corr(X1,X2) =
cov(X1,X2)√
Var(X1) Var(X2)

.

Conveys equivalent dependence information to covariance. Advantages: (1) it is
invariant to changes of scale, (2) can be be understood in absolute terms (ranges
in [−1, 1]), as a result of the correlation inequality (itself a consequence of the
Cauchy-Schwarz inequality):

|Corr(X1,X2)| ≤
√

Var(X1) Var(X2).
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Some useful formulae relating expectations, variance, and covariances are:

Var(X ) = E[X 2]− (E[X ])2 = cov(X ,X )

Var(aX + b) = a2 Var(X )

Var(
∑

i Xi ) =
∑

i Var(Xi ) +
∑

i ̸=j cov(Xi ,Xj)

cov(X1,X2) = E[X1X2]− E[X1]E[X2]

cov(aX1 + bX2,Y ) = acov(X1,Y ) + bcov(X2,Y )

if E[X 2
1 ] + E[X 2

2 ] < ∞, then the following are equivalent:

(i) E[X1X2] = E[X1]E[X2]
(ii) cov(X1,X2) = 0
(iii) Var(X1 ± X2) = Var(X1) + Var(X2)

Independence will imply these three last properties, but none of these
properties imply independence.
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Example (Corr(X ,Y ) = 0 ̸⇒ Independence)

Let X ∼ Unif[−π, π] and define

Y = cos(X ).

Clearly X and Y are not independent.

To the contrary, they are perfectly dependent.

Their covariance is, nevertheless, zero!

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

x

x*
co
s(
x)

The function x cos(x)

Concretely, we calculate

P[Y > 0] = 1/2 and P[Y > 0|X ∈ (−π,−2)] = 1.

Despite this, we have

Cov(X ,Y ) = E[XY ]− E[X ]E[Y ] =

∫ +π

−π

x cos(x)
1

2π
dx − 0 = 0.

Why: Because some non-linear dependencies cannot be detected by covariance...

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 48 / 49



Example (Corr(X ,Y ) = 0 ̸⇒ Independence)

Let X and Y have joint density

fXY (x , y) =

{
1/π if x2 + y2 ≤ 1,

0 otherwise.

Note that E[X ] = E[Y ] = 0 by symmetry. Hence, Cov(X ,Y ) = E[XY ]. But

E[XY ] =

∫∫
x2+y2=1

xy
1

π
dxdy =

∫∫
x2+y2=1,y≥0

xy
1

π
dxdy +

∫∫
x2+y2=1,y<0

xy
1

π
dxdy

The two terms are equal, by symmetry. Moreover,

∫∫
x2+y2=1,y≥0

xy
1

π
dxdy =

1

π

∫ 1

−1

x

∫ 1−x2

0

ydydx =
1

π

∫ 1

−1

x
(1− x2)2

2
dx = 0

and so the correlation is zero. But X and Y are clearly dependent, since knowing
X restricts the possible values of Y .
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