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Two Important GLM

We will now consider two fundamental specific GLM families:

1 Logistic Regression for Binary Data (Bernoulli GLM with natural link)

2 Loglinear Regression for Count Data (Poisson GLM with natural link)

These will give us concrete situations to keep in mind, demonstrating concepts
already presented in generality.

We will conclude with remarks on the notion of a scale parameter.
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Binary Data

Very often have response → Y =

{
1, “success”
0, “failure”

So Y has a very simple Bernoulli structure:

P[Y = 1] = π = 1− P[Y = 0], E{Y } = π

Regression: need to connect response Y with an explanatory x .

Use GLM. Can postulate that g(π) = x⊤
i β for some link g . Why?

Intuition: Depending on circumstances, can imagine Y arising as

Y = 1{Z > 0} =⇒ P[Y = 1] = π = 1− FZ (0)

i.e. describing the level of a “hidden” variable Z :

Now suppose Z = x⊤α+ σε. Then

πi = 1− FZ (0) = 1− Fε
(
−x⊤(σ−1α)

)
= 1− Fε(−x⊤β)

((α, σ) unidentifiable, but β = σ−1α is ok)
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Link Functions for Binary Responses

So g(x) = −F−1(1− x) can serve as a link function

1− π = F (−x⊤β) =⇒ −F−1(1− π) = x⊤β

Choice of Link ⇐⇒ Choice of Error Distribution Fε

Distribution Fε(u) Link function g(π)
Logistic eu/(1 + eu) Logit log{π/(1− π)}
Normal Φ(u) Probit Φ−1(π)
Log Weibull 1− exp(− exp(u)} Log-log − log{− log(π)}
Gumbel exp{− exp(−u)} Complementary log-log log{− log(1− π)}

Logit and probit symmetric, hard to distinguish in practice

Log-log and complementary log-log are asymmetric

Logit (canonical link) is usual choice, with nice interpretation
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Bernoulli vs Binomial GLM

Assuming independence:

P[Yi = y ]
ind∼ πy

i (1− πi )
1−y , y ∈ {0, 1}, with g(πi ) = x⊤

i β, β ∈ Rp

▶Suppose {1, ...,N} = M1 ∪M2 ∪ ... ∪Mn, Mk ∩Mq = ∅, k ̸= q

with xi = ck for i ∈ Mk . Then we have a Binomial GLM:

Rj︸︷︷︸
∈[0,1]

|xj
ind∼ exp

[
mj

{
r

mj
log

(
πj

1− πj

)
+ log(1− πj)

}
+ log

(
mj

r

)]

→ g(πj) = x⊤
j β, β ∈ Rp, j = 1, ..., n

with mj = |Mj |, j = 1, ..., n (
∑

j mj = N).

M’s are called covariate classes - se why important later.
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Example (Challenger Catastrophe)

Challenger Space-shuttle exploded at launch on 28/1/1986, killing all seven astronauts on board.

US Presidential Commission (incuding Richard Feynman) concluded that the cause was the

leakage of gas due to behaviour of O-rings under low temp (temp at launch was an unusual

31◦F ).

Table: O-Ring Data

Mission # 1 2 3 4 5 6 7 8 9 10 11
Temp - ◦F 53 57 58 63 66 67 67 67 68 69 70
# Damaged 5 1 1 1 0 0 0 0 0 0 1
# Intact 1 5 5 5 6 6 6 6 6 6 5

Mission # 12 13 14 15 16 17 18 19 20 21 22 23
Temp - ◦F 70 70 70 72 73 75 76 76 76 78 79 81
# Damaged 0 1 0 0 0 0 1 0 0 0 0 0
# Intact 6 5 6 6 6 6 5 6 6 6 6 6
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Logistic Regression

Binary regression with natural (logit link): g(πi ) = log
(

πi

1−πi

)
= x⊤

i β

Interpretation?

Unit change in xjk yields additive change of logodds by βk .

Equivalently, unit change in xjk results in multiplicative change of odds by
eβk .

In terms of parameter:

πj =
exp{β0 + β1xj1 + ...+ βqxjq}

1 + exp{β0 + β1xj1 + ...+ βqxjq}
, p = q + 1

So

∂

∂xjk
πj = βkπj(1− πj) (logistic equation!)

Thus effects larger when π near 1/2 than near endpoints of [0, 1].
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Example (Challenger Catastrophe, continued)

Logistic regression fit for probability of damage with temp as covariate:

log

(
π̂i

1− π̂i

)
= 11.663− 0.2162× ti

Estimate Std. Error z value Pr(>|z|)
(Intercept) 11.6630 3.2963 3.54 0.0004

Temperature −0.2162 0.0532 −4.07 0.0000
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The Effect of Sparseness

Sparseness: covariate classes {Mj}nj=1 are “small”:

i.e. n is of the order of N
↪→ extreme: continuous covariate, mk = 1 ∀k, so n = N.

Sparseness affects interpretability of deviance:

In extreme case deviance is only a function of π̂ (exercise)

↪→ No contrast with data! (no information about fit in absolute sense). Similar
problems with Pearson statistic. Problems with residuals also.

D ∼ χ2
N−p breaks down even in non-extreme case, as this requires mi → ∞

as N → ∞, so small m’s can hurt us.

Deviance reduction is reasonable for comparing nested models, though.

Interpretability and accuracy of estimators remains the same!

Rule of thumb: sparseness when mk ≤ 5 for several classes.

A solution: grouping data! (i.e. merge into covariate classes)
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The Problem of Separation

Suppose we have data:

xi -0.14 2.13 1.11 -0.53 -6.25 -3.29 -0.04 1.07 0.55
Yi 0 1 1 0 0 0 0 1 1

Logistic regression loglikelihood can be written as:

ℓ(β) =
n∑

i=1

Yi log (πi ) +
n∑

i=1

(1− Yi ) log(1− πi )

=
∑
j∈P

log

(
eβ0+xiβ1

1 + eβ0+xiβ1

)
−
∑
j∈Pc

log
(
1 + eβ0+xiβ1

)
.

where P = {i : xi > 0}. For given β0, what happens as β1 → ∞?

Loglikelihood converges to zero! (likelihood converges to 1).

So MLE does not exist!. Why? The problem is perfect separation.

∃ hyperplane perfectly separating covariates corresponding to 0’s and 1’s.

More likely to occur when p is large relative to n.
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Figure: β1 7→ ℓ(β1)
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Figure: Overlap (left) vs Complete Separation (right)

We have complete separation when there exists γ ∈ Rp such that for all i

{Yi = 1 ⇐⇒ x⊤
i γ > 0} & {Yi = 1 ⇐⇒ x⊤

i γ < 0}
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Theorem
In the complete separation regime, the logistic regression MLE does not exist, and

sup
β∈Rp

L(β) = 1.

Proof.

Let γ be such that {Yi = 1 ⇐⇒ x⊤
i γ > 0} & {Yi = 1 ⇐⇒ x⊤

i γ < 0}.
Then we may write the loglikelihood of tγ (for some t > 0) as

ℓ(tγ) =
∑
j∈P

log

(
et(x

⊤
i γ)

1 + et(x
⊤
i γ)

)
−
∑
j∈Pc

log
(
1 + et(x

⊤
i γ)
)
.

where P = {i : x⊤
i γ > 0} = {i : Yi = 1}. The proof is complete upon noting:

1 For t > 0, x⊤i γ > 0 ⇐⇒ t(x⊤i γ) > 0 and x⊤i γ < 0 ⇐⇒ t(x⊤i γ) < 0.

2 As t → ∞, ℓ(tγ) → 0.

3 For any β ∈ Rp, ℓ(β) < 0 (replace t(x⊤
i γ) by β above and verify).
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Ramifications:

IWLS will fail to converge, with weights converging to zero.

Standard errors will blow up.

In a sense a design issue.

In Gaussian linear regression, X full rank =⇒ MLE exists.

Binary regression is more subtle, and rank conditions alone do not suffice and
instabilities can manifest in ways more subtle than multicollinearity.

Diagnostics and Remedies?

Often get warning that iterations stopped after maxing out.

But best keep track both of the likelihood value and the parameter values as
the iteration evolves.

Can remedy by imposing a penalty. Motivates regularised logistic regression:

n∑
i=1

Yi (γ0 + x⊤
i γ)− log

(
1 + eγ0+x⊤

i γ
)
+ λ∥γ∥2q

for q = 2 (ridge) or q = 1 (lasso). Assuming X has been standardised, and

β⊤ = (γ0,γ
⊤).
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Can we at least hope that MLE exists in the overlapping regime?

Theorem (Existence and Uniqueness)

In logistic regression with an intercept term and full rank design, the maximum
likelihood estimator uniquely exists if and only if the covariates overlap.

The theorem actually applies more generally to other link functions than logit.

If the model postulates that πi = g(x⊤
i β), and the design includes an intercept,

then overlap is a necessary and sufficient provided that:

1 − log(g−1(t)) and − log(1− g−1(t)) are convex.

2 g−1(t) is strictly increasing at every t.

3 0 < g−1(t) < 1 for all t.
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2× 2 Tables

Special case of Bernoulli/Binomial GLM: 2× 2 Contingency Tables

How does a single binary covariate affect a binary response?

Say x ∈ {0, 1} (control/case), y ∈ {0, 1} (failure/success)

Simple model: individuals are independent, with m0 and m1 persons in
categories of x ∈ {0, 1} and with success probabilities

π0 =
eλ

1 + eλ
, π1 =

eλ+ψ

1 + eλ+ψ

Yields independent binomial variables

W1 ∼ Binomial(m1, π1), W0 ∼ Binomial(m0, π0)

and likelihood

L(ψ, λ) ∝ e(r0+r1)λ+r1ψ

(1 + eλ+ψ)m1(1 + eλ)m0
.
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Key question: Does treatment affect success probability?

In mathematics: is it true that π1 = π0? If not, by how much do they differ?

Could consider absolute difference of risks, or probability ratio

π1 − π0, π1/π0

More common to consider difference of log odds

ψ = log

(
π1

1− π1

)
− log

(
π0

1− π0

)
.

This is natural parameter of exponential family.

One must be quite careful with 2× 2 tables – as the next example will
illustrate.
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Example (Women and Smoking)

Data gathered by surveying people on electoral register in 1972–74.habits, . . .

Follow-up study 20 years later: see how many people had died.

162 women had smoked before 1972 but had stopped by 1972, and smoking
habits were unknown for 18 women; these 180 women were excluded.

Table: Twenty-year survival and smoking status for 1314 women . The smoker and
non-smoker columns contain number dead/total (% dead).

Age (years) Smokers Non-smokers
Overall 139/582 (24%) 230/732 (31%)

18–24 2/55 (4%) 1/62 (2%)
25–34 3/124 (2%) 5/157 (3%)
35–44 14/109 (13%) 7/121 (6%)
45–54 27/130 (21%) 12/78 (15%)
55–64 51/115 (44%) 40/121 (33%)
65–74 29/36 (81%) 101/129 (78%)
75+ 13/13 (100%) 64/64 (100%)
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Example (Women and Smoking, continued)

Smoking data

Women and smoking

> data(smoking)

> summary(glm(cbind(dead,alive)~smoker,data=smoking,binomial))

Call:

glm(formula = cbind(dead, alive) ~ smoker, family = binomial,

data = smoking)

..

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.78052 0.07962 -9.803 < 2e-16 ***

smoker -0.37858 0.12566 -3.013 0.00259 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 641.5 on 13 degrees of freedom

Residual deviance: 632.3 on 12 degrees of freedom

Anthony Davison: Regression Models, Week 11 19

Figure: Women and Smoking - Simpson’s Paradox
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Simpson’s paradox

Problem: Smoking seems to reduce the death rate! Why?

Explanation: Inappropriate marginalisation!

Interested in how x affects Y , but a third binary variable z is lurking
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Marginalisation over z gives misleading inference about how Y depends on x :
E[Y |X = x ,Z = z ] increases with x for each z (left panel), but E[Y |X = x ]
decreases with x (right panel)
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Example (Women and Smoking, continued)

Smoking data

Women and smoking

> summary(glm(cbind(dead,alive)~age+smoker-1,data=smoking,binomial))

Call:

glm(formula = cbind(dead, alive) ~ age + smoker - 1, family = binomial,

data = smoking)

..

Coefficients:

Estimate Std. Error z value Pr(>|z|)

age18-24 -3.8601 0.5939 -6.500 8.05e-11 ***

age25-34 -3.7401 0.3715 -10.067 < 2e-16 ***

age35-44 -2.5190 0.2499 -10.079 < 2e-16 ***

age45-54 -1.7468 0.2157 -8.097 5.62e-16 ***

age55-64 -0.6793 0.1621 -4.190 2.78e-05 ***

age65-74 1.2279 0.1934 6.349 2.17e-10 ***

age75+ 23.9472 11293.1430 0.002 0.9983

smoker 0.4274 0.1770 2.414 0.0158 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 902.7701 on 14 degrees of freedom

Residual deviance: 2.3809 on 6 degrees of freedom

..
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Figure: Women and Smoking - Age Included
Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 31 / 45



Count Data

Assume response variables of interest Yi takes values y ∈ {0, 1, 2, . . .}
– perhaps with upper bound m
↪→ depending on sampling scheme/experiment

Three standard models:

unconstrained responses Yi
indep∼ Poisson(µi )

constrained responses (Y1, . . . ,Yd) subject to
∑d

j=1 Yj = m having
multinomial distribution, with probabilities (π1, . . . , πd) and denominator m.
constrained responses (Y1, . . . ,Yd) subject to

∑
j∈Ik

Yj = mk (for disjoint
index parition sets {Ik : k = 1, ...,K}) having product multinomial.

These models are very closely related.

Lemma (Poisson and Multinomial)

Let Y1, ...Yd be independently distributed as Poisson, with means µ1, ..., µd ,
respectively. Then the conditional distribution of

(Y1, ...,Yd) given
∑d

k=1 Yi = m

is multinomial with denominator m and probabilities πi = µi/
∑

j µj .
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Proof.

Using Bayes’ formula, P
[⋂d

i=1{Yi = yi}
∣∣∣∑j Yj = m

]
equals

=
P[
∑

j Yj = m|
⋂d

i=1{Yi = yi}]P[
⋂d

i=1{Yi = yi}]
P[
∑

j Yj = m]

= 1[Σd
j=1yj = m]

∏d
j=1 e

−µj
µ
yj
j

yj !

e−
∑
µj

(
∑
µj )m

m!

= 1[m = Σd
j=1yj ]

∏d
j=1 e

−µj
µ
yj
j

yj !

e−
∑
µj

(
∑
µj )

∑
yj

m!

= 1[Σd
j=1yj = m]

m!

y1! . . . yd !

d∏
i=1

(
µi∑d
j=1 µj

)yi
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Example (Example: Smoking data (Doll and Hill))

Table: Lung cancer deaths in British male physicians. The table gives man-years at risk
T/number of cases y of lung cancer, cross-classified by years of smoking t, taken to be
age minus 20 years, and number of cigarettes smoked per day, d .

Years of Daily cigarette consumption d
smoking t

Nonsmokers 1–9 10–14 15–19 20–24 25–34 35+
15–19 10366/1 3121 3577 4317 5683 3042 670
20–24 8162 2937 3286/1 4214 6385/1 4050/1 1166
25–29 5969 2288 2546/1 3185 5483/1 4290/4 1482
30–34 4496 2015 2219/2 2560/4 4687/6 4268/9 1580/4
35–39 3512 1648/1 1826 1893 3646/5 3529/9 1336/6
40–44 2201 1310/2 1386/1 1334/2 2411/12 2424/11 924/10
45–49 1421 927 988/2 849/2 1567/9 1409/10 556/7
50–54 1121 710/3 684/4 470/2 857/7 663/5 255/4
55–59 826/2 606 449/3 280/5 416/7 284/3 104/1
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Example (Jacamar Data)

Table: Response (N=not sampled, S = sampled and rejected, E = eaten) of a
rufous-tailed jacamar to individuals of seven species of palatable butterflies with
artifically coloured wing undersides. Data from Peng Chai, University of Texas.

Aphrissa Phoebis Dryas Pierella Consul Siproeta
boisduvalli argante iulia luna fabius stelenes†
N/S/E N/S/E N/S/E N/S/E N/S/E N/S/E

Unpainted 0/0/14 6/1/0 1/0/2 4/1/5 0/0/0 0/0/1
Brown 7/1/2 2/1/0 1/0/1 2/2/4 0/0/3 0/0/1
Yellow 7/2/1 4/0/2 5/0/1 2/0/5 0/0/1 0/0/3
Blue 6/0/0 0/0/0 0/0/1 4/0/3 0/0/1 0/1/1
Green 3/0/1 1/1/0 5/0/0 6/0/2 0/0/1 0/0/3
Red 4/0/0 0/0/0 6/0/0 4/0/2 0/0/1 3/0/1
Orange 4/2/0 6/0/0 4/1/1 7/0/1 0/0/2 1/1/1
Black 4/0/0 0/0/0 1/0/1 4/2/2 7/1/0 0/1/0
† includes Philaethria dido also.
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The Log-Linear Model (Poisson GLM)

Assume that Yi
indep∼ Pois(µi )

P[Yi = y ] = e−µ
µy

y !
, y ∈ Z+, µ > 0

Exponential family

Natural parameter ϕ = logµ

Can fit GLM via some link function g(µ)

Yi︸︷︷︸
∈Z+

|xi
ind∼ Poisson(µi ) such that g(µi ) = x⊤

i β, β ∈ Rp, i = 1, ..., n.

Log-linear model

↕

Poisson GLM with canonical logarithmic link:

x⊤
i β = logµi
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Occasionally Yi counts the events of a Poisson process up to time Ti , so

E[Yi ] = µi = λiTi

with λi the intensity of the process. In this case one sets

g(µi ) = logµi = x⊤
i β + logTi

logTi is the so-called offset term and is treat as a known constant.

Looks fairly straightforward. What’s the big deal?
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Connection with Categorical Data and Contingency Tables

Earlier lemma suggests intimate relationship with categorical data.

↪→ Consider again the binary case, d = 2.

Y2|{Y1 + Y2 = m} ∼ Binomial

(
m, π =

µ2

µ1 + µ2

)

Hence if µ1 = exp(γ + x⊤
1 β), µ2 = exp(γ + x⊤

2 β),

π =
µ2

µ1 + µ2
=

µ2µ
−1
1

1 + µ2µ
−1
1

=
exp{(x2 − x1)⊤β}

1 + exp{(x2 − x1)⊤β}
.

So we can estimate β using either a loglinear model or logistic model

↪→ but can’t estimate γ from logistic model (lose absolute information)

This is particularly convenient for fitting more general contingency tables.
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Contingency table entries: count data cross-classified by different categories

↪→ Example: jacamar data cross-classify butterflies by

6 species × 8 colours × 3 fates

yielding 144 categories total, each with count ∈ {0, 1, . . . , 14}. Sampling
scheme may fix certain totals — in the jacamar data the total for each species
and colour is fixed, so reponses are trinomial: (not eaten, sampled, eaten)

Poisson vs multinomial vs product multinomial likelihoods (r=row, c=column):

Poisson
(∏

r ,c

{
e−µrc µ

Yrc
rc

Yrc !

})
↪→ Just collect data, then arrange into table. Yields poisson distribution for each

cell.

Multinomial
(

m!∏
r,c Yrc !

∏
r ,c π

Yrc
rc ,

∑
r ,c πrc = 1

)
↪→ Keep collecting until m =

∑
rc Yrc is reached. Yields multinomial distribution

for table entries.

Product multinomial
(∏

r

{
mr !∏
c Yrc !

∏
c π

Yrc
rc

}
,
∑

c πrc = 1,∀r
)

↪→ Fix row totals alone in advance (e.g. fix # of butterflies in each colour/species
category). In effect this treats row categories as independent subpopulations,
i.e. independent multinomials for table entries of each row.
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Contingency Tables via Poisson GLM

All three models can be easily fitted using Poisson GLM (with appropriate offsets).

For multinomial settings, arrange as two-way layout with row totals fixed
(single row in multinomial layout, several rows in product multinomial).
↪→ In Jacamar data, create new variable species*colour with 48 categories –

yields 48 rows r , and leaves 3 columns c corresponding to fate.

Model (r , c)-the cell as independent Poisson with mean

µrc = exp(γr + x⊤
rcβ)

γr acounts for the overall mean row count.
xrc is such that

∑
c x⊤

rc β = βrc which accounts for deviations of the cth
column from the overall row count.
Interest focuses on β, not γr , so will not worry about identifiability constraints.

Conditioning on row totals being mr get (product) multinomial model with
probabilities {πrc : πrc ≥ 0,

∑
c πrc = 1},

πrc =
µrc∑
d µrd

=
exp(γr + x⊤

rcβ)∑
d exp(γr + x⊤

rdβ)
=

exp(x⊤
rcβ)∑

d exp(x
⊤
rdβ)

,

and the {γr} parameters become irrelevant.
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Thus multinomial loglikelihood is (up to constants)

ℓMult

(
β; y

∣∣∣∣∣∑
c

Yrc = mr

)
≡

∑
r ,c

Yrc log πrc

=
∑
r

{∑
c

Yrcx⊤
rcβ −mr log

(∑
c

ex⊤
rc β

)}
.

The unconstrained Poisson model, would give loglikelihood (up to constants)

ℓPoiss(β,γ) =
∑
r ,c

Yrc logµrc − µrc =
∑
r

(
Mrγr +

∑
c

Yrcx⊤
rcβ − eγr

∑
c

ex⊤
rc β

)
where Mr =

∑
c Yrc is not given (i.e. is Poisson random variable). Writing

τr =
∑
c

µrc = eγr
∑
c

ex⊤
rc β = E[Mr ]

for the row total means and using1 γr = log τr − log
{∑

c exp(x
⊤
rcβ)

}
yields

ℓPoiss(β, τ ) =

(∑
r

Mr log τr − τr

)
+
∑
r

{∑
c

Yrcx⊤
rcβ −Mr log

(∑
c

ex⊤
rc β

)}
.

1Under identifiability constraints γ ↔ τ is 1-1 function.
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So using Bayes’ theorem, we obtain:

ℓPoiss(β, τ ) = ℓPoiss(τ ;m) + ℓMult(β;Y |M = m)

Hence inferences on β using the multinomial model are equivalent to those
based on the Poisson model, provided the row parameters γr are included.

A more detailed calculation shows that the MLE β̂ and its sampling
distribution are identical under the two models.
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Example (Smoking Data (Doll and Hill), continued.)

Table: Lung cancer deaths in British male physicians. The table gives man-years at risk
T/number of cases y of lung cancer, cross-classified by years of smoking t, taken to be
age minus 20 years, and number of cigarettes smoked per day, d .

Years of Daily cigarette consumption d
smoking t

Nonsmokers 1–9 10–14 15–19 20–24 25–34 35+
15–19 10366/1 3121 3577 4317 5683 3042 670
20–24 8162 2937 3286/1 4214 6385/1 4050/1 1166
25–29 5969 2288 2546/1 3185 5483/1 4290/4 1482
30–34 4496 2015 2219/2 2560/4 4687/6 4268/9 1580/4
35–39 3512 1648/1 1826 1893 3646/5 3529/9 1336/6
40–44 2201 1310/2 1386/1 1334/2 2411/12 2424/11 924/10
45–49 1421 927 988/2 849/2 1567/9 1409/10 556/7
50–54 1121 710/3 684/4 470/2 857/7 663/5 255/4
55–59 826/2 606 449/3 280/5 416/7 284/3 104/1
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Example (Smoking Data (Doll and Hill), continued.)

Suppose number of deaths y has Poisson distribution, mean Tλ(d , t), where
T is man-years at risk, d is number of cigarettes smoked daily and t is time
smoking (years).

Log-linear model

λrc = exp(γr + βc)
deviance 51.47 on 48 df, one parameter for each row and column

Model taking into account nature of rows/columns:

λ(d , t) = {eγ0 + exp(γ1 + β2 log d)} exp(β3 log t)

deviance is 59.58 on 59 df with just 4 parameters overall

Table: Parameter estimates (standard errors) for lung cancer data.

γ0 γ1 β2 β3
Smokers only 0.96 (25.4) 2.15 (1.45) 1.20 (0.40) 4.50 (0.34)
All data 2.94 (0.58) 1.82 (0.66) 1.29 (0.20) 4.46 (0.33)
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Perfect Separation – Again

Perfect Separation can also affect multinomial regression:

If any one class is separated from all the rest by a covariate hyperplane, then
by reduction to the binary case we can see that the MLE for that class will
fail to exist.

Detection more subtle: now there are

(
p

2

)
cases to determine.

Simple heuristic: insist that the iterative method used to maximize the
likelihood terminate only after both the value of the likelihood function and
the parameter vector stop changing.

Different inference approaches such as extended logistic regression (Clarkson
& Jennrich, 1991), bias-reduced ML (Firth, 1993), and exact logistic
regression (Mehta & Patel, 1995) can be used that are stable to separation
(as long as we know we have a problem!).

Can also fit penalised loglinear regression with ridge/lasso penalty.
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