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Ridge Regression: From Rotation to Shrinkage

Multicollinearity problem is that det
[
X

→
X
]
→ 0

[i.e. X
→
X almost not invertible]

A Solution: add a “small amount” of a full rank matrix to X
→
X .

For reasons to become clear soon, we standardise the design matrix:

Write X = (1 W ), ω = (ω0 ω)→

Recentre/rescale the covariates (columns) defining: Zj =
↑
n

sd(Wj )
(Wj ↑ 1W j)

ω→ Coe!cients now have common scale

ω→ Interpretation of εj slightly di”erent: not “mean impact on response per unit

change of explanatory variable”, but now “mean impact on response per unit

deviation of explanatory variable from its mean, measured in units of standard

deviation”

The Zj are all orthogonal to 1 and are of unit norm.
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Since Zj ↓ 1 for all, j , we can estimate ω0 and ω by two separate regressions
(orthogonality).

Least squares estimators based on the standardized design matrix become

ω̂0 = Ȳ =
1

n

n∑

i=1

Yi , ε̂ = (Z→
Z )↓1

Z
→
Y .

Ridge regression replaces Z
→
Z by Z

→
Z + ϑI(p↓1)↔(p↓1) (i.e. adds a “ridge”)

ω̂0 = Ȳ , ω̂ = (Z→
Z + ϑI )↓1

Z
→
Y .

Adding ϑI(p↓1)↔(p↓1) to Z
→
Z makes inversion more stable

ϖ↔ ϑ called ridge parameter.
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↔ Ridge term ϑI seems slightly ad-hoc. Motivation?

ϖ↔ Can see that (ω̂0 ω̂) = (Ȳ (Z→
Z + ϑI )↓1

Z
→
Y ) minimizes

↗Y ↑ ω01↑ Zω↗22 + ϑ↗ω↗22
or equivalently

↗Y ↑ ω01↑ Zω↗22 subject to
p↓1∑

j=1

ε2

j = ↗ω↗22 ↘ r(ϑ)

instead of least squares estimator which minimizes

↗Y ↑ ω01↑ Zω↗22.

Idea: in the presence of collinearity, coe!cients are ill-defined: a wildly positive
coe!cient can be cancelled out by a largely negative coe!cient (many coe!cient
combinations can produce the same e”ect). By imposing a size constraint, we
limit the possible coe!cient combinations!
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Figure: L2
Shrinkage [Ridge Regression]
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Theorem

Let Zn↔q be a matrix of rank r ↘ q with centred column vectors of unit norm.

Given ϑ > 0, the unique minimiser of

Q(ϱ, ε) = ↗Y ↑ ϱ1↑ Zε↗22 + ϑ↗ε↗22

is

(ω̂0 , ω̂) = (Ȳ , (Z→
Z + ϑI )↓1

Z
→
Y ).

Proof.

Write
Y = (Y ↑ Ȳ 1)︸ ︷︷ ︸

=Y →↗M↑(1)

+ Ȳ 1︸︷︷︸
↗M(1)

Note also that by assumption 1 ≃ M↘(Z ). Therefore by Pythagoras’ theorem

↗Y ↑ ω̂01↑Z ω̂↗22 = ↗(Ȳ ↑ ω̂0)1︸ ︷︷ ︸
↗M(1)

+(Y ≃ ↑ Z ω̂)︸ ︷︷ ︸
↗M(Z)

↗22 = ↗(Ȳ ↑ ω̂0)1↗22+↗(Y ≃↑Z ω̂)↗22.
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Therefore, min
ω,ω

Q(ϱ, ε) = min
ω

↗(Ȳ ↑ ϱ)1↗22 +min
ω

{
↗(Y ≃ ↑ Zε)↗22 + ϑ↗ε↗22

}

Clearly, argminω →(Ȳ ↑ ω)1→2
2
= Ȳ while the second component can be written

min
ω↗Rq

∥∥∥∥

(
Z⇐
ϑIq↔q

)
ε ↑

(
Y

≃

0q↔1

)∥∥∥∥
2

2

using block notation. This is the usual least squares problem with solution

[
(Z→ ,

⇐
ϑIq↔q)

(
Z⇐
ϑIq↔q

)]↓1

(Z→ ,
⇐
ϑIq↔q)

(
Y

≃

0q↔1

)
= (Z→

Z + ϑI )↓1
Z

→
Y

≃

Note that Z→Z + εI is indeed invertible. Writing Z→Z = U!U→, we have

Z
→
Z + ϑI = U!U

→ + U(ϑIq↔q)U
→ = U(!+ ϑIq↔q)U

→

and ! = diag{ε1, . . . ,εr︸ ︷︷ ︸
>0

,εr+1, . . . ,εq︸ ︷︷ ︸
=0

} (Z→Z ↓ 0 & rank(Z→Z) = rank(Z)).

To complete the proof, observe that Z→Y ↑ = Z→Y ↑ ȲZ→1 = Z→Y . ↭
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The E”ect of Shrinkage: Bias and Variance

Note that if the SVD of Z is Z = V!U
→, last steps of previous proof may be

used to show that

ω̂ =
q∑

j=1

ϑj

ϑ2

j + ϑ
(V→

j Y )Uj ,

where the Vj s and Uj s are the columns of V and U , respectively.

Compare this to the ordinary least squares solution, when ϑ = 0:

ω̂ =
q∑

j=1

1

ϑj
(V→

j Y )Uj ,

which is not even defined if Z is of reduced rank.

Role of ϑ is to reduce the size of 1/ϑj when ϑj becomes very small.
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Proposition

Let ω̂ be the ridge regression estimator of ω. Then

bias(ω̂,ω) = ↑ϑ
(
Z

→
Z + ϑIq↔q

↓1

ω

and

cov(ω̂) = ς2(Z→
Z + ϑI )↓1

Z
→
Z (Z→

Z + ϑI )↓1.

Proof.

Since E(ω̂) = (Z→
Z + ϑI )↓1

Z
→E(Y ) = (Z→

Z + ϑI )↓1
Z

→
Zω, the bias is

bias(ω̂,ω) = E(ω̂)↑ ω = {(Z→
Z + ϑI )↓1

Z
→
Z ↑ I}ε

=

(
1

ϑ
Z

→
Z + I

)↓1 ( 1

ϑ
Z

→
Z + I ↑ I

)
↑ I


ω

=


I ↑

(
1

ϑ
Z

→
Z + I

)↓1

↑ I


ε = ↑

(
1

ϑ
Z

→
Z + I

)↓1

ω.

The covariance term is straightforward.
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Corollary (Domination over Least Squares)

Assume that rank(Zn↔q) = q and let

ω̃ = (Z→
Z )↓1

Z
→
Y & ω̂ε = (Z→

Z + ϑI )↓1
Z

→
Y

be the least squares estimator and ridge estimator, respectively. Then,

E

(ω̃ ↑ ω)(ω̃ ↑ ω)→


↑ E


(ω̂ε ↑ ω)(ω̂ε ↑ ω)→


⇒ 0

for all ϑ ≃ (0, 2ς2/↗ω↗2).

Ridge estimator uniformly better than least squares! How can this be?
(What happened to Gauss-Markov?)

Gauss-Markov only covers unbiased estimators – but ridge estimator biased.

A bit of bias can improve the MSE by reducing variance!

Also, there is a catch! The “right” range for ϑ depends on unknowns.

Choosing a good ϑ is all about balancing bias and variance.
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Proof.

From our bias/variance calculations on the ridge estimator, we have

E
{
(ω̃ ↑ ω)(ω̃ ↑ ω)→

}
↑ E

{
(ω̂ε ↑ ω)(ω̂ε ↑ ω)→

}
=

ϑ2(Z→Z)↓1 ↑ (Z→Z + εI )↓1ϑ2Z→Z(Z→Z + εI )↓1 ↑ ε2
(
Z→Z + εI

)↓1
ωω→ (

Z→Z + εI
)↓1

= ε(Z→Z + εI )↓1

(
ϑ2

(2I + ε(Z→Z)
↓1

)↑ εωω→
)
(Z→Z + εI )↓1.

To go from 2nd to 3rd line, we wrote

ϑ2
(Z→Z)

↓1
= ϑ2

(Z→Z + εI )↓1
(Z→Z + εI )(Z→Z)

↓1
(Z→Z + εI )(Z→Z + εI )↓1

= (Z→Z + εI )↓1
(ϑ2Z→Z + 2ϑ2εI + ϑ2ε2

(Z→Z)
↓1

)(Z→Z + εI )↓1

and did the tedious (but straighforward) algebra. The final term can be made positive definite if

2ϑ2I + ϑ2ε(Z→Z)
↓1 ↑ εωω→ ↓ 0.

Noting that we can always write

I =
ωω↓

↔ω↔2 +
∑q↓1

j=1
εjε→

j

for {ω/→ω→,ε1, ...,εq↓1} an orthonormal basis of Rq we see that ε ↔ (0, 2ϑ2/→ω→2) su!ces for

positive definiteness to hold true.
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Bias–Variance Tradeo”, Again.

Role of ϑ: Regulates Bias–Variance tradeo”
ϑ ⇑ decreases variance (collinearity) but increases bias
ϑ ⇓ decreases bias but variance inflated if collinearity exists

Recall:

E↗ω̂ ↑ ω↗2 = E↗ω̂ ↑ ω↗2︸ ︷︷ ︸
bias2

+ E↗ω̂ ↑ Eω̂↗2︸ ︷︷ ︸
variance=trace[cov(ε̂)]

+ 2(Eω̂ ↑ ω)→E[ω̂ ↑ Eω̂]︸ ︷︷ ︸
=0

Writing Z
→
Z = U!U

→ trace{cov(ω̂)} =
q

j=1

εi

ε2

i +ε
ς2

So choose ϑ so as to optimally to balance bias/variance

Use cross validation!
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L1
Shrinkage

Motivated from Ridge Regression formulation can consider:

min! ↗Y ↑ ω01↑ Zω↗22 subject to
p↓1∑

j=1

|εj | = ↗ω↗1 ↘ r(ϑ)

⇔↖

min! ↗Y ↑ ω01↑ Zω↗22 + ϑ↗ω↗1.

Shrinks coe!cient size by di”erent version of magnitude.

Resulting estimator non–linear in Y

No explicit form available (unless Z
→
Z = I ), needs quadratic programming

algorithm

Why choose a di”erent type of norm?
L
1 penalty (almost) produces a “continuous” model selection!
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When the explanatory variables are orthogonal (i.e. Z
→
Z = I ), then the LASSO1

exactly performs model selection via thresholding:

Theorem (Orthogonal Design ↙ Model Selection)

Consider the linear model

Y
n↔1

= ω0

1↔1

1
n↔1

+ Z
n↔(p↓1)

ω
(p↓1)↔1

+ ϑ
n↔1

where Z
→1 = 0 and Z

→
Z = I . Let ω̂ be the least squares estimator of ω,

ω̂ = (Z→
Z )↓1

Z
→
Y = Z

→
Y .

Then, the unique solution to the LASSO problem

minϑ0↗R,ϖ↗Rp↔1


↗Y ↑ ω01↑ Zω↗2

2
+ ϑ↗ω↗1



is given by (ω̂0, ω̌) = (ω0, ε̌1, . . . , ε̌p↓1), defined as

ω̂0 = Ȳ & ω̌i = sgn(ε̂i )

(
|ε̂i |↑

ϑ

2

)

+

, i = 1, ..., p ↑ 1.

1Least Absolute Shrinkage and Selection Operator.
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Proof (∝).
Note that since Z

→1 = 0 and since ω0 does not appear in the L
1 penalty, we have

ω̂0 = (1→1)↓11Y = Ȳ .

Thus, the LASSO problem reduces to

min
ϑ0↗R,ε↗Rp↔1


↗Y ↑ ω01↑ Zω↗22 + ϑ↗ω↗1


= min

ε↗Rp↔1


↗u ↑ Zω↗22 + ϑ↗ω↗1


.

where u = Y ↑ Ȳ 1 for tidiness. Expanding ↗u ↑ Zω↗2
2
gives

u
→
u ↑ 2u→

Zω + ω→(Z→
Z )︸ ︷︷ ︸

=I

ε = u
→
u ↑ 2Y→

Z︸ ︷︷ ︸
=ε̂↓

ω + 2Ȳ 1→Z︸︷︷︸
=0

ω + ω→ω

Since u
→
u does not depend on ω, we see that the LASSO objective function is

↑2ω̂→ω + ↗ω↗22 + ϑ↗ω↗1.

Clearly, this has the same minimizer if multiplied across by 1/2, i.e.

↑ω̂→ω + 1

2
↗ω↗2

2
+ 1

2
ϑ↗ω↗1 =

p↓1

i=1

(
↑ε̂iεi +

1

2
ε2

i +
ε
2
|εi |


.
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Notice that we now have a sum of p ↑ 1 objective functions, each depending only
on one εi . We can thus optimise each separately. That is, for any given i ↘ p ↑ 1,
we must minimise

↑ε̂iεi +
1

2
ε2

i +
ϑ

2
|εi |.

We distinguish 3 cases:
1 Case ε̂i = 0. In this case, the objective function becomes 1

2
ε2

i +
ε
2
|εi | and it

is clear that it is minimised when εi = 0. So in this case ε̌i = 0.
2 Case ε̂i > 0. In this case, the objective function ↑ε̂iεi +

1

2
ε2

i +
ε
2
|εi | is

minimised somewhere in the range εi ≃ [0,′) because the term ↑ε̂iεi is
negative there (and all other terms are positive). But when εi ∞ 0, the
objective function becomes

↑ε̂iεi +
1

2
ε2

i +
ϑ

2
εi =

(
ϑ

2
↑ ε̂i

)
εi +

1

2
ε2

i .

If ε
2
↑ ε̂i ∞ 0, then the minimum over εi ≃ [0,′) is clearly at εi = 0.

Otherwise, when ε
2
↑ ε̂i < 0, we di”erentiate and find the minimum at

εi = ε̂i ↑ ϑ/2 > 0. In summary, ε̌i = (ε̂i ↑ ϑ/2)+ = sgn(ε̂i )(|ε̂i |↑ ϑ/2)+.
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3 Case ε̂i < 0. In this case, the objective function ↑ε̂iεi +
1

2
ε2

i +
ε
2
|εi | is

minimised somewhere in the range εi ≃ (↑′, 0] because the term ↑ε̂iεi is
negative there (and all other terms are positive). But when εi ↘ 0, the
objective function becomes

↑ε̂iεi +
1

2
ε2

i +
ϑ

2
(↑εi ) =

(
ϑ

2
+ ε̂i

)
(↑εi )+

1

2
ε2

i =

(
ϑ

2
↑ |ε̂i |

)
(↑εi )+

1

2
ε2

i .

If ε
2
↑ |ε̂i | ∞ 0, then the minimum over εi ≃ (↑′, 0] is clearly at εi = 0,

since ↑εi ranges over [0,′). Otherwise, when ε
2
↑ |ε̂i | < 0, we di”erentiate

and find the minimum at εi = ↑|ε̂i |+ ϑ/2 < 0, which we may re-write as:

↑|ε̂i |+ ϑ/2 = ↑ (|ε̂i |↑ ϑ/2) = sgn(ε̂i ) (|ε̂i |↑ ϑ/2) .

In summary, ε̌i = sgn(ε̂i )(|ε̂i |↑ ϑ/2)+.

The proof is now complete, as we can see that all three cases yield

ε̌i = sgn(ε̂i )

(
|ε̂i |↑

ϑ

2

)

+

, i = 1, ..., p ↑ 1.
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Figure: L1
Shrinkage (the LASSO)
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LASSO as the Relaxation of Best Subsets

Intuition: L1 norm induces “sharp” balls!

Balls more concentrated around the axes

Induces model selection by regulating the LASSO (through ϑ)

Extreme case: L0 “Norm”, gives best subset selection!

↗ω↗0 =
p↓1∑

j=1

|εj |0 =
p↓1∑

j=1

1{ϖj ⇐=0} = #{j : εj ∈= 0}

Generally: ↗ω↗qq =
p↓1

j=1
|εj |q, sharp balls for 0 < q ↘ 1

But L1 gives sharpest convex ball among these.
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Some final remarks

Regularization achieves smaller variance at the price of non-zero bias

Need to find the best trade-o” between variance/bias

The larger the parameter ϑ, the greater the shrink (so di”erent values of ϑ
imply di”erent estimates for ε)

Ridge regression is a convex objective risk, and works well when there is a
subset of coe!cients that are small

LASSO is used as feature selection method, as it yields estimates of
parameters to be exactly equal to 0

The tuning parameter ϑ tailors the strength of the penalization

Choosing numerically the tuning parameter is often by k-fold cross validation
(and NOT based on training error): we want to avoid over-/under-fitting
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Generalised Linear Models
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Generalised Linear Models (GLM)

Back to the big picture:

Y (random output)
whose law is influenced by→↑ x (non-random input)

General formulation:

Yi
independent↓ Distribution

{
g(xi )︸ ︷︷ ︸
=ωi

}
, i = 1, ..., n.

Distribution / Function g g(x→
i ) = x

→
i ω g nonparametric

Gaussian Linear Regression↭ Smoothing
Exponential Family GLM → GAM
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Generalised Linear Models: regression with exponential family responses!

GLM for Y1, ...,Yn

Response vector Y = (Y1, . . . ,Yn)→ has independent entries with joint law

f (y ;ε) =
n∏

i=1

exp{ωiyi ↑ ε(ωi ) + S(yi )} = exp

{
ε→

y ↑
n∑

i=1

ε(ωi ) +
n∑

i=1

S(yi )

}
,

where ε ↔ ! ↗ Rn is the natural parameter with ! open. The parameter varies as
a function of the covariates via

ε = Xnω,

for Xn the n ↘ p covariate matrix of rank p and ω a p-dimensional parameter.

In our general notation

Yi
independent↓ f (yi ;ωi ) = exp{(x→

i ω)︸ ︷︷ ︸
=εi

yi ↑ ε( x→
i ω︸︷︷︸
=εi

) + S(yi )}, i = 1, ..., n.

where the row vector x
→
i is the ith row of Xn.
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Comments:

Notice that the the su”cient statistic for each marginal distribution f (y ;ωi )
was taken to be the identity T (Y ) = Y .

This does not incur any loss of generality for two reasons:

1 In the three main GLM of interest (Gaussian, Bernoulli, and Poisson) the

natural statistic is for f (y ;ωi ) is indeed the identity.

2 More generally, since we only observe a single observation from each f (y ;ωi ),

if the natural statistic were T (Yi ) →= Yi , we could re-define the response to

just be Ti = T (Yi ). The sampling distribution of Ti can be shown to also be

a one-parameter exponential family with the same natural parameter.

Recall from our sampling theory results:

µi = E[Yi ] =
ε
εωi

ϑ(ωi )

var[Yi ] =
ε2

εω2

i

ϑ(ωi )

So if ϑ is invertible (which it is for the three main examples), the variance can

be written as a function of the mean:

var[Yi ] = ϑ→→
([ϑ→

]
↑1

(µi )) = V (µi ).
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Interpretation of ωi = x
→
i ω ?

In key cases ωi is directly interpretable. If not, can switch perspective using
the mean µi as defining parameter, connected to the linear predictor x

→
i ω via

[ε↑]↓1(µi ) = x
→
i ω = ωi

The function [ε↑]↓1(·) is called the natural link function.

Instead of [ε↑]↓1 can use other link functions g(·) and postulate

g(µi ) = x
→
i ω.

This will also yield a GLM, but now the natural parameter will not be equal
to the linear predictor but to some function u(x→

i ω) of it.

In summary, the nomenclature is:
g(·) is the link function

h = g↑1
is the inverse link function

g(·) = [ϑ→
]
↑1

(·) is the natural link function

Will focus on natural links but methods/results generalise quite easily.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 26 / 38

Qo

17
-

-

E

-

-

-



Likelihood and IRLS

With natural link, the loglikelihood (up to constants w.r.t. ω) is

ϑn(ω) = ω→
X

→
n Y ↑

n∑

i=1

ε(x→
i ω)

for x
→
i the ith row of Xn. The corresponding p ↘ 1 derivative (score function) is

≃ωϑn(ω) = X
→
n Y ↑

n∑

i=1

xiε
↑(x→

i ω) =
n∑

i=1

xi (Yi ↑ µi ) = X
→
n (Y ↑ µ)

with p ↘ p covariance equaling the information matrix and given by

cov {≃ωϑn(ω)} =
n∑

i=1

x
→
i cov {Yi ↑ µi} xi = X

→
n V (ω)Xn

= ↑≃2

ωϑn(ω) = In(ω),

where cov{Y } = V (ω) ⇐ 0 is diagonal, with ith diagonal element

var{Yi} = ε↑↑(ωi ) = ε↑↑(x→
i ω).
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Thus, if the MLE ω̂ exists it is also unique, and must satisfy:

n∑

i=1

xi

(
Yi ↑ ε↑(x→

i ω̂)
)
= 0

By a first order Taylor expansion of ε↑, we have

ε↑(x→
i ω̂) ⇒ ε↑(x→

i ω̃) + x
→
i (ω̃ ↑ ω̂)ε↑↑(x→

i ω̃)

for some guesstimate ω̃ near ω̂. Plugging into the score equation yields

n∑

i=1

x
→
i

(
Yi ↑ ε↑(x→

i ω̃) + x
→
i (ω̃ ↑ ω̂)ε↑↑(x→

i ω̃)
)
⇒ 0

=⇑
n∑

i=1

ε↑↑(x→
i ω̃)x→

i (Zi ↑ x
→
i ω̂) = X

→
n V (ω̃)(Z̃ ↑ Xnω̂) ⇒ 0

where we defined Z̃ = (Z̃1, ..., Z̃n)→ to be the adjusted response

Z̃i = x
→
i ω̃ +

1

ε↑↑(x→
i ω̃)

(Yi ↑ ε↑(x→
i ω̃)) so Z̃ = Xnω̃ + V

↓1(ω̃)(Y ↑ µ(ω̃)).
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The last expression for the score expression now yields:

ω̂ ⇒ (X→
n V (ω̃)Xn)

↓1
X

→
n V (ω̃)Z̃

Just a weighted least squares estimate! Where’s the catch?

Weight matrix V (ω̃) requires specification of an initial guesstimate x
→
i ω̃

su”ciently close to x
→
i ω̂.

Luckily we can give such a guesstimate by recalling that µi = ε↑(x→
i ω) so

that estimating µi by Yi yields the guesstimate x
→
i ω̃ ⇓ (ε↑)↓1(Yi ).

Suggests the following Iteratively Reweighted Least Squares (IRLS)

IRLS

1 Initialize with x↓
i ω(0) ↑ ϑ→

(Yi ) and Z (0)

i = x↓
i ω(0)

+
(Yi↑ω→

(x↑i ω(0)
))

ω→→(x↑i ω(0))

2 Update with ω(j+1) ↑ (X↓
n V (ω(j)

)Xn)
↑1X↓

n V (ω(j)
)Z (j)

Equivalent to Newton-Raphson iteration.

Not always guaranteed to converge.
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(Approximate) Sampling Distribution of MLE in GLM

Heuristics:

Suppose we had started iteration at true ω and stopped at first iterate:

ω̂ = (X→
n V (ω)Xn)

↓1
X

→
n V (ω)Z

where

Zi = x
→
i ω+

1

ε↑↑(x→
i ω)

(Yi ↑ ε↑(x→
i ω)) so Z = Xnω+V

↓1(ω)(Y ↑µ(ω))

This would give us,

ω̂ = ω + (X→
n V (ω)Xn)

↓1
X

→
n (Y ↑ µ(ω))

So we would expect E[ω̂] = ω and cov[ω̂] = (X→
n V

↓1(ω)Xn)↓1 = I↓1
n (ω).

And we would conjecture a Gaussian limiting law (paralleling the IID setting)

Under conditions, this is indeed what we obtain.

Result stated in form valid for more general (su”ciently regular) link functions.
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Theorem (Asymptotic Normality of MLE in GLM)

In the same context and notation as before, assume that:

(C1) ω ↔ B for B an open convex subset of Rp
.

(C2) The p ↘ p matrix X
→
n Xn is of full rank for all n.

(C3) The information diverges, i.e. ϖmin

(
In(ω)

)
⇔ ↖ as n ⇔ ↖ for ϖmin(·) the

smallest eigenvalue.

(C4) Given any parameter ω ↔ Rp
it holds that

sup
ε↔Nω(ϑ)

∥∥∥I↓1/2
n (ω)I1/2

n (ϑ)↑ Ip↗p

∥∥∥ ⇔ 0

↙ ϱ > 0, where Nϖ(ς) =
{
ϑ ↔ Rp : (ϑ↑ ω)→In(ω)(ϑ↑ ω) ∝ ϱ

}
.

Then, as n ⇔ ↖, provided it exists, the MLE ω̂n of ω0 is unique & satisfies

I1/2
n (ω0)(ω̂n ↑ ω0)

d⇔ N(0, Ip↗p).

Recall that under canonical link In(ω) = X
→
n V (ω)Xn.
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Comments on conditions:

(C1) implies that Xnω ranges over an open set, and so ε is infinitely
di#erentiable, and our exponential family possesses all moments.

(C2) is as with our linear model, and essentially means that our covariates
should not be perfectly correlated.

(C3) is similar to the “balanced design” assumption we had for the
asymptotics of a non-Gaussian linear model.

(C1-C3) are up to us: they depend on the design matrix Xn, which in
principle is for us to choose.

(C4) asks that the (root) information matrix converge uniformly on compact
ellipsoids centred at the true parameter.
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Comments on conclusion:

Can also be read as saying that for n su”ciently large,

ω̂n
d⇒ N(ω, I↓1

n (ω))

Conclusion also immediately implies that

(ω̂n ↑ ω)→In(ω)(ω̂n ↑ ω)
d⇔ φ2

p.

Allows adapting testing/CI developed before using LR and Wald statistics.
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Goodness of Fit and Nested Models: Deviance

In Gaussian linear regression we used sums of squares to measure fit and compare
nested models. What about in GLM?

Idea: compare best possible to observed maximised loglikelihood

Let ϑn(ω̂) = ω̂→
X

→
Y +

∑n
i=1

ε(x→
i ω̂) be the maximised loglikelihood.

Define the saturated model to be that which has

#parameters = #observations

i.e. where we replace Xnω by some unconstrained ϖ = (↼1, ..., ↼n)→ ↔ Rn.
(and thus we also replace x

→
i ω by ↼i ).

Let ϖ̂ be the maximiser of ϑn(ϖ) = ϖ→
Y +

∑n
i=1

ε(↼i ) w.r.t. ϖ.

Define the saturated loglikelihood as ϑn(ϖ̂).
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Definition ((Scaled) Deviance)

D = 2
(
ϑn(ϖ̂)↑ ϑn(ω̂)


= 2

(
(ϖ̂ ↑ Xnω̂)

→
Y +

n∑

i=1

(ε(↼̂i )↑ ε(x→
i ω̂))

)

Comments:

Always D ′ 0 (why?)

Small D implies a good model fit (Xnω̂ ⇒ ϖ̂).

Large D implies poor fit.

In Gaussian case: deviance ⇓ residual sum of squares (exercise).

Can now use deviance di#erences to mimic sum-of-square ratios and
construct a GLM variant of the F-test.
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Deviance Comparisons for Nested Models

Consider the problem of comparing two nested models:

Model A: ω = (ϖ1, . . . ,ϖp)
↓ ↓ Rp

vary freely — MLE ω̂A

Model B: for q < p, (ϖ1, . . . ,ϖq) ↓ Rq
vary freely, but ϖq+1, . . . ,ϖp are fixed

— hence only q free parameters, with MLE ω̂B

Model B is nested within model A: B can be obtained by restrictions on A

More generally, could have Model B with ω constrained to vary in a subspace

V of dimension q < p, which we can write as ω = Qp↔q ε︸︷︷︸
q↔1

for M(Q) = V.

Likelihood ratio test statistic for comparing the models is

2
(
ϑn(ω̂

A)↑ ϑn(ω̂
B)

= DB ↑ DA,

and when model B is correct DB ↑ DA
d⇔ φ2

p↓q.
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Diagnostics

Main idea: use deviance instead of sums-of-squares and use final iterate of IWLS
to get hat matrix

Leverage hjj defined as jth diagonal element of

H = V
1/2(ω̂)Xn(X

→
n V (ω̂)Xn)

↓1
X

→
n V

1/2(ω̂),

Cook statistic now becomes the change in deviance

2p↓1


ϑ(ω̂)↑ ϑ(ω̂↓j)


,

where ω̂↓j is MLE when jth case (x→
j ,Yj) is dropped.

Cook statistic can be approximated by

Cj =
hjj

p(1↑ hjj)
r
2

Pj ,

where rPj is standardised Pearson residual (to be defined in next slide).
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Deviance residual:

dj = sgn(↼̂j ↑ x
→
i ς̂j)


2{↼jYj + ε(↼j)︸ ︷︷ ︸

ϱj (ϑ̂)

↑ [(x→
j ω)Yj + ε(x→

j ω)]
︸ ︷︷ ︸

ϱj (ω̂)

}
1/2

,

for which we note that
n∑

j=1

d
2

j = D

gives the deviance (in analogy with RSS in Gaussian linear regression).

Pearson residual:

pj =
Yi ↑ ε↑(x→

i ω̂)
ε↑↑(x→

i ω̂)
=

Yi ↑ µ̂i
V (µ̂i )

so rP = V
↓1/2(ω̂)(Y ↑ µ(ω̂)).

Standardised versions:

rDj =
dj

(1↑ hjj)1/2
& rPj =

pj

(1↑ hjj)1/2
.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 38 / 38


