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Ridge Regression: From Rotation to Shrinkage

Multicollinearity problem is that det [X T X] ~ 0
[i.e. XT X almost not invertible]

A Solution: add a “small amount” of a full rank matrix to X T X.

For reasons to become clear soon, we standardise the design matrix:
o Write X = (1 W), 3= (60~)"

@ Recentre/rescale the covariates (columns) defining: Z; = W\/;/,)(VVJ -1w))

< Coefficients now have common scale

— Interpretation of 3; slightly different: not “mean impact on response per unit
change of explanatory variable”, but now “mean impact on response per unit
deviation of explanatory variable from its mean, measured in units of standard
deviation”

@ The Z; are all orthogonal to 1 and are of unit norm.
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@ Since Z; L 1 for all, j, we can estimate By and « by two separate regressions
(orthogonality).

@ Least squares estimators based on the standardized design matrix become

=Y = 12 =(Z2'2)Z"y.

o Ridge regression replaces Z'Z by Z" Z + M,_1)x(p—1) (i-e. adds a “ridge”)

A=(Z"Z+XN)71ZTY|

Bo =

Adding M(,_1)x(p-1) to ZT Z makes inversion more stable
— )\ called ridge parameter.
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— Ridge term Al seems slightly ad-hoc. Motivation?

N

< Cansee that (Fo #)= (Y (Z"Z+XI)"*Z"Y) minimizes

1Y = Bol = Z~[3 + A3
or equivalently

p—1

IY — ol — Zy|3 subjectto Y~ ~7 = [[3 < r(3)
j=1

instead of least squares estimator which minimizes
2
1Y — Bol — Z|f3.

Idea: in the presence of collinearity, coefficients are ill-defined: a wildly positive
coefficient can be cancelled out by a largely negative coefficient (many coefficient
combinations can produce the same effect). By imposing a size constraint, we
limit the possible coefficient combinations!
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Figure: L Shrinkage [Ridge Regression]



Theorem

Let Z,« 4 be a matrix of rank r < q with centred column vectors of unit norm.
Given A > 0, the unique minimiser of

Q(a,€) = [IY — al — Zg||3 + A[€]3

N

(Bo,d) = (Y, (Z"Z+A)71ZTY).

Proof.
Write

Y=(Y-Y1)+ V1
=Y*eML(1) eM(1)
Note also that by assumption 1 € M= (Z). Therefore by Pythagoras’ theorem
1Y =Bl = Z45 = (Y = Bo)1+ (Y™ — ZA) |15 = (Y = Bo)LIB+]I(Y* = ZH)I5-
—_——— ——

eM(1) eM(Z)
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Therefore, min Qo £) = min (¥ — )13 +min {[[(Y* ~ Z&)|5 + Al }

)

Clearly, arg ming ||(Y — @)1||2 = Y while the second component can be written

(ite)e~ (o)

using block notation. This is the usual least squares problem with solution

@ V)i )] (2" Vlyes)

Note that ZT Z + Al is indeed invertible. Writing ZTZ = UAUT, we have

2
min
E€R9

2

Y ) =(Z"Z+A)1Z7T Yy
qul
ZTZ 4 M =UAUT + UMy )UT = U(A + Mgy q)UT

and A =diag{\1,.. ., Ar, A1, Ag} (Z7Z = 0 & rank(Z T Z) = rank(Z)).
— —™ ——

>0 =0
To complete the proof, observe that ZTY* =ZTY —YZT1=2ZTY. O
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The Effect of Shrinkage: Bias and Variance

Note that if the SVD of Z is Z = VAU, last steps of previous proof may be
used to show that .
Aj T
y = V.'Y)U;
K ; Ny NREE

where the Vs and U;s are the columns of V and U, respectively.

Compare this to the ordinary least squares solution, when A = 0:

1
’YZ)\* s

Jj=1

<

which is not even defined if Z is of reduced rank.

Role of X is to reduce the size of 1/\; when \; becomes very small.
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Proposition

Let 4 be the ridge regression estimator of y. Then
PN |
bias(9,v) = A (Z7Z + Mgxq) v

and
cov(§) =0 (Z"Z+N)1ZTZ(ZTZ + A1)

Proof.
Since E(§) = (ZTZ + M)2ZTE(Y) = (Z7Z + M)~1ZT Z~, the bias is

bias(¥,7) = E(R)-v={(ZTZ+\)"'Z7Z -1}y

177z - 1zrzii-0) -
) ) v
1 -t 1 -t
= {I—(AZTZ—H) —I}W:—(/\ZTZ—&-I) ~.

The covariance term is straightforward. ]
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Corollary (Domination over Least Squares)
Assume that rank(Z,«4) = q and let
4=(2'2)'2'Y & A=(Z'zZz+M)'Z'Y
be the least squares estimator and ridge estimator, respectively. Then,
E{F-NE -} -E{m-MNE-7"}=0
for all X € (0,202%/]]7]?).

Ridge estimator uniformly better than least squares! How can this be?

(What happened to Gauss-Markov?)
@ Gauss-Markov only covers unbiased estimators — but ridge estimator biased.
@ A bit of bias can improve the MSE by reducing variance!
@ Also, there is a catch! The “right” range for A\ depends on unknowns.

@ Choosing a good A is all about balancing bias and variance.
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Proof.

From our bias/variance calculations on the ridge estimator, we have
E{F -G -1} -E{G - -} =

oA(ZTZ) L —(ZTZ+ M) 22T Z(ZTZ 4+ M) =X (ZTZ+ M) Ty T (ZTZ 407

=NZTZ+ D! (02(21 +XZT2)Y) - /\'y'yT>(ZTZ £t
To go from 2nd to 3rd line, we wrote
AZT2) P =c2(ZTZ+ AN ZTZ+ M) (ZTZ2) T ZTZ+ M) ZTZ 4+ 27
=(ZTZ+ M) "N ?ZTZ+ 202N +PN(ZTZ2) Y)W ZTZ+ )
and did the tedious (but straighforward) algebra. The final term can be made positive definite if
2021+ a?XMZ7TZ)7t — Ayy T = 0.

Noting that we can always write

= T + S 056]

for {v/||¥ll, 61, .-, 84—1} an orthonormal basis of R9 we see that A € (0,202/||v||?) suffices for
positive definiteness to hold true.

O
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Bias—Variance Tradeoff, Again.

Role of A: Regulates Bias—Variance tradeoff

@ ) T decreases variance (collinearity) but increases bias

@ )\ | decreases bias but variance inflated if collinearity exists
Recall:

E|§ —~I> =E[EY —~|>+ EIF —EAI? +2(EY —~)"E[y —E4]

bias? variance=trace[cov(¥)] =0
Writing ZTZ = UAUT trace{cov(§)} = Y7, 58502

So choose A so as to optimally to balance bias/variance
Use cross validation!

20 20
40 40
60 60
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L' Shrinkage

Motivated from Ridge Regression formulation can consider:

p—1
minl Y = ol = Z7|3 subjectto Y|yl = [v]x < r(A)
j=1
—
min! [|Y = ol — Z5[3 + Al

Shrinks coefficient size by different version of magnitude.

@ Resulting estimator non—linear in Y

@ No explicit form available (unless ZTZ = I), needs quadratic programming
algorithm

Why choose a different type of norm?
L' penalty (almost) produces a “continuous” model selection!
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When the explanatory variables are orthogonal (i.e. ZTZ = I), then the LASSO!
exactly performs model selection via thresholding:

Theorem (Orthogonal Design <> Model Selection)

Consider the linear model

Y = 1 Z
nx1 1ﬁ><01n><1+n><(p—1)(p_’z)><1+ nil

where ZT1=0and ZTZ = I. Let #4 be the least squares estimator of 7,
A=(Z"2)'z2'y=2"Y.
Then, the unique solution to the LASSO problem
ming,cz Hero-t {|Y = Bol = Zv|3 + Allv1}
is given by (Bo,’?) = (Bos M1, - - - ¥p—1), defined as

N - N N A .
ﬂo =Y & ’\71' = Sgn(’}/i) <’YI| - 2) , 1= 17"'7p_ i
+

ILeast Absolute Shrinkage and Selection Operator.
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Proof (x).

Note that since Z'1 = 0 and since [y does not appear in the L! penalty, we have
Bo=1T1) MYy =Y.
Thus, the LASSO problem reduces to

min Y — Bol — Z~2 + A = min u—Z~|2+ A )
poamin Y = ol = Z3I3 + Nyl } = _min, {llu = Z13 + Ayl }

where u = Y — Y1 for tidiness. Expanding ||u — Z~||3 gives

v'u—2u"Zy+~y(Z"Z)y=u"u - YTZ'y+2Y1TZ'y+'y ~y
~—— ~—~—~

=l =47 :0
Since u' u does not depend on =, we see that the LASSO objective function is
28Ty + (1715 + Al vl
Clearly, this has the same minimizer if multiplied across by 1/2, i.e.

ATy 4+ Yy[B + Iyl = 55 (A + 32+ 2 il) -
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Notice that we now have a sum of p — 1 objective functions, each depending only
on one ;. We can thus optimise each separately. That is, for any given | < p —1,
we must minimise

191+ 277 + Sl
Yi%Yi 27[ 2 Yil-

We distinguish 3 cases:

o

o

Case 4; = 0. In this case, the objective function becomes %fy? + %|7,-| and it
is clear that it is minimised when v; = 0. So in this case ¥; = 0.

Case 4; > 0. In this case, the objective function —§;v; + 372 + 5 |vi| is
minimised somewhere in the range v; € [0, 00) because the term —5;7; is
negative there (and all other terms are positive). But when 7; > 0, the
objective function becomes

S SPINE. S 2 NP SUR
Yivi 27; 271 {3 Yi) Vi 27; .
If % —4; > 0, then the minimum over v; € [0, 00) is clearly at v; = 0.

Otherwise, when % — 4; < 0, we differentiate and find the minimum at

v =% — A/2>0. In summary, ¥; = (5 — A/2)4 = sgn(5:)(|5i] — A/2)+-
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@ Case 4; < 0. In this case, the objective function —4;v; + 372 + %|"y,-| is
minimised somewhere in the range v; € (—00, 0] because the term —4;7; is
negative there (and all other terms are positive). But when 7; < 0, the
objective function becomes

1, A, (X, 1, (A N
it 3+ 5m) = (543 (3 + 37 = (5 - ) (=m0 + 37

If 2 —|4i| > 0, then the minimum over ~; € (—o0, 0] is clearly at ; = 0,
since —7; ranges over [0,00). Otherwise, when 3 — [4;| < 0, we differentiate
and find the minimum at v; = —|4;| + A\/2 < 0, which we may re-write as:

=il + A2 = = (il = A/2) = sgn(%:) (1%l = A/2) .

In summary, ¥; = sgn(5:) (|5 — A\/2)+.
The proof is now complete, as we can see that all three cases yield

. N A A :
Vi = sgn(fy,') <|r}/l| - 2) ) = 17 e P i
+
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Figure: L' Shrinkage (the LASSO)



LASSO as the Relaxation of Best Subsets

Intuition: Ly norm induces “sharp” balls!

@ Balls more concentrated around the axes
@ Induces model selection by regulating the LASSO (through \)

Extreme case: L% “Norm”, gives best subset selection!

p—1 p—1
Ivllo =D 1l° =D Lpysoy = #4j: 7 # 0}
j=1 j=1

Generally: [|v[|7 = J’:ll |7;19, sharp balls for 0 < g <1

qg=1 qg=2

DO+ +

But L! gives sharpest convex ball among these.
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LASSO
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Figure: LASSO and CV for different values of r())/[|9|1 for the bodyfat data (LARS
algorithm), on the right: fraction of the final L' norm
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Some final remarks

@ Regularization achieves smaller variance at the price of non-zero bias
@ Need to find the best trade-off between variance/bias

@ The larger the parameter ), the greater the shrink (so different values of A
imply different estimates for )

o Ridge regression is a convex objective risk, and works well when there is a
subset of coefficients that are small

@ LASSO is used as feature selection method, as it yields estimates of
parameters to be exactly equal to 0

@ The tuning parameter A tailors the strength of the penalization

@ Choosing numerically the tuning parameter is often by k-fold cross validation
(and NOT based on training error): we want to avoid over-/under-fitting
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Generalised Linear Models
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Generalised Linear Models (GLM)

Back to the big picture:

whose law is influenced by

Y (random output) x (non-random input)

General formulation:

independent

Y; ~ Distribution{g(x,-)}7 i=1,..,n
—~—

=0;
Distribution / Function g | g(x) =x'3 | g nonparametric
Gaussian Linear Regressionv’ Smoothing
Exponential Family GLM « GAM
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Generalised Linear Models: regression with exponential family responses!

GLM for Yi, ..., Y,

Response vector Y = (Y1,...,Y,)" has independent entries with joint law
n n n
Fy: ¢) = [[exp{oivi — ¥(¢i) + S(y1)} = exp {qu IR CORDD 5(%)} :
i=1 i=1 i=1

where ¢ € ® C R” is the natural parameter with ® open. The parameter varies as
a function of the covariates via

d) = Xnﬂa

for X, the n X p covariate matrix of rank p and 3 a p-dimensional parameter.

In our general notation

independen [
Y; "R F (v i) = exp{(x B) vi — v(x B) + S(vi)}, i=1,..,n
N——" ~~
=i =i

where the row vector x;' is the ith row of X,.
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Comments:
o Notice that the sufficient statistic for each marginal distribution f(y; ¢;) was
taken to be the identity T(Y) =Y.

@ This does not incur any loss of generality for two reasons:

@ In the three main GLM of interest (Gaussian, Bernoulli, and Poisson) the
natural statistic is for f(y; ¢;) is indeed the identity.

@ More generally, since we only observe a single observation from each f(y; ¢i),
if the natural statistic were T(Y;) # Y, we could re-define the response to
just be T; = T(Y;). The sampling distribution of T; can be shown to also be
a one-parameter exponential family with the same natural parameter.

@ Recall from our sampling theory results:

o 1= E[Y] = 5-9(6)

02
o var[Y] = 557(0)

e So if 7 is invertible (which it is for the three main examples), the variance can
be written as a function of the mean:

var[Yi] =" (v () = V().
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Interpretation of ¢; = xiTﬁ ?

@ In key cases ¢; is directly interpretable. If not, can switch perspective using
the mean 4; as defining parameter, connected to the linear predictor x," 3 via

V1 M) = x' B = ¢i

@ The function [y']71(:) is called the natural link function.

e Instead of [y/]~! can use other link functions g(-) and postulate

g(w) = x'B.

This will also yield a GLM, but now the natural parameter will not be equal
to the linear predictor but to some function u(x;" 3) of it.
@ In summary, the nomenclature is:

e g(-) is the link function
o h=g ! is the inverse link function
o g(-) = [ 7*(-) is the natural link function

@ Will focus on natural links but methods/results generalise quite easily.
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Likelihood and IRLS
With natural link, the loglikelihood (up to constants w.r.t. 3) is
G(B)=B"X Y = > (x"B)
i=1
for x,” the ith row of X,,. The corresponding p x 1 derivative (score function) is

Vala(B) = X) Y =Y xv/(x'B) = xi(Yi— ) = X, (Y — )
i=1 i=1

with p X p covariance equaling the information matrix and given by

cov {Vala(B)} = S xTcov{¥i - i} x; = X V(B)X,
i=1

= —Vila(B) = Zs(B).

where cov{Y} = V(3) > 0 is diagonal, with ith diagonal element

var{ Y} = ~"(¢:) = 7" (x;' B).
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Thus, if the MLE ,é' exists it is also unique, and must satisfy:
n
>oxi(Yi—(x"8)) =0
i=1
By a first order Taylor expansion of 4/, we have

Y (%' B) =+ (xB) +x" (B - By (x'B)

for some guesstimate 3 near B. Plugging into the score equation yields

Zx (Y~ T B) + 5T (B~ B (<7 B)) ~

= Zv” (x' B)x" (Zi = x| B) = X, V(B)(Z - XoB) = 0
where we defined Z = (Zy, ..., Z,)" to be the adjusted response
= ~ 1
Z,' = X,-Tﬁ 4+ —
7"(x"B)
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The last expression for the score expression now yields:

B~ (X, V(B)X,) X, V(B)Z

Just a weighted least squares estimate! Where's the catch?

o Weight matrix V/(3) requires specification of an initial guesstimate x;," 3
sufficiently close to x;' 3.

@ Luckily we can give such a guesstimate by recalling that p; = 7/(x; 3) so
that estimating p; by Y; yields the guesstimate x;,' 3 = (7/)~( ;).

@ Suggests the following lteratively Reweighted Least Squares (IRLS)

IRLS

o : _ A (xT 3O
Q Initialize with x;" 8 «+ (v)71(Y7) and ZI.(O) =x' B8O + 7()/’7,;2)(5-’;'&5)) )
@ Update with gV « (X, v(B8)X,)1 X, v(BY))z")
o Equivalent to Newton-Raphson iteration.

@ Not always guaranteed to converge.
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(Approximate) Sampling Distribution of MLE in GLM

Heuristics:

@ Suppose we had started iteration at true 3 and stopped at first iterate:

B= (X, V(B)X,) X, V(B)Z

V(%" B)

@ This would give us,

(Yi=+'(x'B)) so Z=X,B+VB)Y —u(B))

B=B+(X] V(B)X) X, (Y — (B))
e So we would expect E[3] = 3 and cov[8] = (X V1(8)X,)"! = Z,1(3).
@ And we would conjecture a Gaussian limiting law (paralleling the 11D setting)

Under conditions, this is indeed what we obtain.

Result stated in form valid for more general (sufficiently regular) link functions.
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Theorem (Asymptotic Normality of MLE in GLM)
In the same context and notation as before, assume that:
(C1) B € B for B an open convex subset of R”.

(C2) The p x p matrix X' X,, is of full rank for all n.

(C3) The information diverges, i.e. Amin (I,,(ﬁ)) — 00 as n — o0 for Amin(+) the
smallest eigenvalue.

(C4) Given any parameter 3 € RP it holds that

sup |2, 2(B)TE3 () ~ I
a€eNs(B)

’*)0

V4 >0, where Ns(8) = {a € RP : (a — B) " Zn(B)(cx — B) < 6}.
Then, as n — oo, provided it exists, the MLE ﬁ,, of By is unique & satisfies
ZY2(B0)(Bn — Bo) % N(O, lpxp).
@ Recall that under canonical link Z,(8) = X, V(B)X,.
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Comments on conditions:

@ (C1) implies that X,3 ranges over an open set, and so - is infinitely
differentiable, and our exponential family possesses all moments.

@ (C2) is as with our linear model, and essentially means that our covariates
should not be perfectly correlated.

@ (C3) is similar to the “balanced design” assumption we had for the
asymptotics of a non-Gaussian linear model.

@ (C1-C3) are up to us: they depend on the design matrix X, which in
principle is for us to choose.

@ (C4) asks that the (root) information matrix converge uniformly on compact
ellipsoids centred at the true parameter.
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Comments on conclusion:

@ Can also be read as saying that for n sufficiently large,

Bn % N(Bo, T; (Bo))

@ Conclusion also immediately implies that

(Bn — Bo) "Za(Bo) (B — Bo) > X5

@ Allows adapting testing/Cl developed before using LR and Wald statistics.
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Goodness of Fit and Nested Models: Deviance

In Gaussian linear regression we used sums of squares to measure fit and compare
nested models. What about in GLM?

Idea: compare best possible to observed maximised loglikelihood

o Let £,(B) = BTXTY + 3.7, v(x;” B) be the maximised loglikelihood.
@ Define the saturated model to be that which has
F#£parameters = #observations

i.e. where we replace X,3 by some unconstrained 7 = (11, ...,7,) " € R".
(and thus we also replace x;' 3 by 7;).

o Let 7) be the maximiser of £,(n) =" Y + Y1 v(n;) w.r.t. n.

@ Define the saturated loglikelihood as £,(%).
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Definition ((Scaled) Deviance)

Comments:
Always D > 0 (why?)

Small D implies a good model fit (X,3 ~ 7).

Large D implies poor fit.

In Gaussian case: deviance = residual sum of squares (exercise).

@ Can now use deviance differences to mimic sum-of-square ratios and
construct a GLM variant of the F-test.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 35/38



Deviance Comparisons for Nested Models

@ Consider the problem of comparing two nested models:

o Model A: B=(B1,...,8,)" €RP vary freely — MLE B*

e Model B: for g < p, (B1,--.,84) € R vary fAreer, but Bg+1,. .., Bp are fixed
— hence only g free parameters, with MLE (38

@ Model B is nested within model A: B can be obtained by restrictions on A

e More generally, could have Model B with 3 constrained to vary in a subspace
V of dimension g < p, which we can write as 8 = Qpxq ¢ for M(Q) = V.
~—

gx1

o Likelihood ratio test statistic for comparing the models is
2(£5(B") = €a(B%)) = D — Da,
and when model B is correct Dg — Da Xa g
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Diagnostics

Main idea: use deviance instead of sums-of-squares and use final iterate of IWLS
to get hat matrix

@ Leverage hj; defined as jth diagonal element of

H = V2(8)X, (X, V(8)X,) X, V/2(B),

@ Cook statistic now becomes the change in deviance
207 {UB) - B}
where ,é_j is MLE when jth case (ij, Y;) is dropped.
o Cook statistic can be approximated by

hi
Ci=—2Lr2,
T p(—hy) P

where rp; is standardised Pearson residual (to be defined in next slide).
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@ Deviance residual:

d = sen(i; — 7 B)[20mY; +(n) - [0 B)Y; + 405 8]

£;(1)

S
=
@
=

for which we note that .
2 _
D d=
j=1
gives the deviance (in analogy with RSS in Gaussian linear regression).

@ Pearson residual:

Yi—9(x'B) Y-

= fi re = VY2(B8)(Y = u(B)).
p_l \/,Y//(XITI@) \/V ,0/ SO rp (/6)( ”(IB))

e Standardised versions:
dj

_ L Pj
Gk R G

(1—hy)t/2
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