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Nested Model Selection & ANOVA
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Comparing Nested Models

Consider the model:

Y = ω0 + ω1x1 + ω2x2 + ω3x3 + ω4x4 + ε.

This will always have higher R2 than the sub-model:

Y = ω0 + ω1x1 + ε.

Why? (think of geometry. . . )

The question is: is the first model significantly better than the second one?
ω→ i.e. does the first model explain the variation adequately enough, or should we

incorporate extra explanatory variables? Need a quantitative answer.
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Rephrasing The Question: Gaussian Linear Model

Model is Y = Xω + ε with ε → Nn(0,ϑ2
I ). Estimator:

ω̂ = (X→
X )↑1

X
→
Y .

Interpretation: Ŷ = X ω̂ = HY is the projection of Y into the column space of
X , M(X ). This subspace has dimension p, when X is of full column rank p.
Now for q < p write X in block notation as

X = ( X1
n↓q

X2
n↓(p↑q)

).

Interpretation: X1 is built by the first q columns of X and X2 by the rest.
Similarly write ω = (ω1 ω2)→ so that:

Y = Xω + ε = (X1 X2)

(
ω1

ω2

)
+ ε = X1ω1 + X2ω2 + ε.

Our question can now be stated as:

Is ω2 = 0?
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Residual Sums of Squares

Let H1 = X1(X→
1 X1)↑1

X
→
1 , and Ŷ1 = H1Y , e1 = Y ↑ Ŷ1.

Pythagoras tells us that:

↓Y ↑ Ŷ1↓
2

︸ ︷︷ ︸
RSS(ω̂1)=↔e1↔2

= ↓Y ↑ Ŷ ↓
2

︸ ︷︷ ︸
RSS(ω̂)=↔e↔2

+ ↓Ŷ ↑ Ŷ1↓
2

︸ ︷︷ ︸
RSS(ω̂1)↑RSS(ω̂)=↔e↑e1↔2

Notice that RSS(ω̂1) ↔ RSS(ω̂) always (think why!)

So the idea is simple: to see if it is worthwhile to include ω2 we will compare how
much larger RSS(ω̂1) is compared to RSS(ω̂).

Equivalently, we can look at a ratio like {RSS(ω̂1)↑ RSS(ω̂)}/RSS(ω̂)

This is in fact the likelihood ratio test statistic for our hypothesis.

To construct a test based on this quantity, we need to figure its sampling
distributions . . .
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Figure: Geometry Revisited
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Theorem (Sampling Distributions for Sums of Squares)

We have the following properties:

(A) e ↑ e1 ↗ e;

(B) ↓e↓
2 = RSS(ω̂) and ↓e1 ↑ e↓

2 = RSS(ω̂1)↑ RSS(ω̂) are independent;

(C) ↓e↓
2
→ ϑ2ϖ2

n↑p
;

(D) under the hypothesis H0 : ω2 = 0, ↓e1 ↑ e↓
2
→ ϑ2ϖ2

p↑q
.

Proof.

(A) holds since e ↑ e1 = Y ↑ Ŷ ↑ Y + Ŷ1 = ↑Ŷ + Ŷ1 ↘ M(X1,X2) but
e ↘ [M(X1,X2)]↗.

To show (B), we notice that

e1 = (I ↑ H1)Y = (I ↑ H1H)Y

because M(X1) ≃ M(X1,X2).
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Therefore,

e ↑ e1 = (I ↑ H)Y ↑ (I ↑ H1H)Y = Y ↑ HY ↑ Y + H1HY = (H1 ↑ I )HY .

But recall that Y → N (X1ω,ϑ2
I ). Therefore, to prove independence of

e ↑ e1 = (H1 ↑ I )HY and e = (I ↑ H)Y , we need to show that

(H1 ↑ I )H[ϑ2
I ](I ↑ H)→ = 0.

This is clearly the case since H(I ↑ H) = 0, proving (B).

(C) follows immediately, since we have already proven last time that ⇐ω (even
when ω2 = 0)

RSS(ω̂) → ϑ2ϖ2
n↑p
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To prove (D), we note that

e ↑ e1 = (H1 ↑ I )HY → N{(H1 ↑ I )HXω,ϑ2(H1 ↑ I )HH
→(H1 ↑ I )→︸ ︷︷ ︸

=H↑H1

}.

But HX = X (X→
X )↑1

X
→
X = X . So, in block notation,

e ↑ e1 → N ((H1 ↑ I )X1ω1 + (H1 ↑ I )X2ω2,ϑ
2(H ↑ H1)).

Now (I ↑ H1)X1ω1 = 0 always, since I ↑ H1 projects onto M
↗(X1). Therefore,

e ↑ e1 → N (0,ϑ2(H ↑ H1)), when ω2 = 0.

Now observe that (H ↑ H1)→ = (H ↑ H1) and (H ↑ H1)2 = (H ↑ H1) (because
M(X1) ≃ M(X1,X2)). Thus,

e ↑ e1 → N (0,ϑ2(H ↑ H1)
2) =⇒ e ↑ e1

d
= (H ↑ H1)ε

=⇒ RSS(ω̂1)↑ RSS(ω̂) = ↓e ↑ e1↓
2 d

= ε→(H ↑ H1)ε → ϑ2ϖ2
p↑q

.

since (H ↑ H1) is symmetric idempotent with trace p ↑ q and ε → N (0,ϑ2
In).
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Corollary
We conclude that, under the hypothesis ω2 = 0,

(
RSS(ω̂1)↑ RSS(ω̂)

p ↑ q

)

(
RSS(ω̂)

n ↑ p

) → Fp↑q,n↑p
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The F -Test

Distributional results suggest the following test:

Have Y → N (X1ω1 + X2ω2,ϑ2
I )

H0 : ω2 = 0

Data: (Y ,X1,X2).

Test statistic: T =

(
RSS(ω̂1)↑ RSS(ω̂)

p ↑ q

)

(
RSS(ω̂)

n ↑ p

)

Then, under H0, it holds that T → Fp↑q,n↑p. Suppose we observe T = ϱ . Then,

p = PH0 [T (Y ) ↔ ϱ ] = P[Fp↑q,n↑p ↔ ϱ ]

Reject the null hypothesis if p < ς, some small ς, usually 0.05.
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Example (Nested Models in Cement Data)

↭We fitted the model:

Y = ω0 + ω1x1 + ω2x2 + ω3x3 + ω4x4 + ε

↭ But would the following simpler model be in fact adequate?

Y = ω0 + ω1x1 + ε

↭ Intuitively: is the extra explanatory power of the “larger” model significant
enough in order to justify its use instead of a simpler model? (i.e., is the residual
vector for the “larger” model significantly smaller than that of the simpler model?)
↭ In this case, n = 13, p = 5, q = 2 and

RSS(ω̂) = 47.86, RSS(ω̂1) = 1265.7

yielding

ϱ =
(1265.7↑ 47.86)/(5↑ 2)

(47.86)/(13↑ 5)
= 67.86

↭p = P[F3,8 ↔ 67.86] = 4.95⇑ 10↑6, so we reject the hypothesis
H0 : ω2 = ω3 = ω4 = 0.
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The ANalysis Of VAriance (ANOVA)

↭ Let 1, X1, . . . ,Xr be groups of columns of X (the “terms”), such that

X = ( 1
n↓1

X1
n↓q1

X2
n↓q2

. . . Xr
n↓qr

), ω = ( ω0
1↓1

ω1
1↓q1

ω2
1↓q2

. . . ωr

1↓qr

)→

We have
Y = Xω + ε = 1ω0 + X1ω1 + · · ·+ Xrωr + ε

↭ Would like to do the same “F-test investigation”, but this time do it
term-by-term. That is, we want to look at the following sequence of nested
models:

Y = 1ω0 + ε

Y = 1ω0 + X1ω1 + ε

Y = 1ω0 + X1ω1 + X2ω2 + ε
...

Y = 1ω0 + X1ω1 + X2ω2 + · · ·+ Xrωr + ε
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Proceed similarly as before. Define:

X0 := 1 and Xk = (X0 X1 X2 . . . Xk), k ↘ {0, . . . , r}

Hk := Xk(X→
k
Xk)↑1

X
→
k
, k ↘ {0, . . . , r}

Ŷk := HkY , k ↘ {0, . . . , r}

ek = Y ↑ Ŷk , k ↘ {0, . . . , r}

Note that Ŷ0 = Ȳ 1.

↭ As before, Pythagoras implies

↓Y ↑ Ŷ0↓
2

︸ ︷︷ ︸
↔e0↔2

= ↓Y ↑ Ŷr↓
2

︸ ︷︷ ︸
↔er↔2

+ ↓Ŷ ↑ Ŷr↑1↓
2

︸ ︷︷ ︸
↔er↑er→1↔2

+ · · ·+ ↓Ŷ1 ↑ Ŷ0↓
2

︸ ︷︷ ︸
↔e1↑e0↔2

︸ ︷︷ ︸
↔er↑e0↔2

= ↓er↓
2

︸ ︷︷ ︸
RSSr

+
r↑1∑

k=0

↓ek+1 ↑ ek↓
2

︸ ︷︷ ︸
RSSk↑RSSk+1

with RSSk the residual sum of squares for Ŷk , with φk degrees of freedom.
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Some observations:

RSSk ↑ RSSk+1 is the reduction in residual sum of squares caused by adding
Xk+1, when the model already contains X0, . . . ,Xk .

RSSr and {RSSk ↑ RSSk+1}
r↑1
k=0 are all mutually independent.

Obviously, φ0 ↔ φ1 ↔ φ2 ↔ · · · ↔ φr

φk+1 = φk if Xk+1 ↘ M(Xk).

↭Given this information, we want to see how adding each term in the model
sequentially, a!ects the explanatory capacity of the model.

↼⇓ In other words, we want to investigate the reduction in the residual sum of
squares (RSS) achieved by adding each term to the model. Is this significant?
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ANOVA Table

Terms df Residual Terms df Reduction F-test
RSS added in RSS

1 n → 1 RSS0

1,X1 ω1 RSS1 X1 n → 1→ ω1 RSS0 → RSS1

1,X1,X2 ω2 RSS2 X2 ω1 → ω2 RSS1 → RSS2

...
...

...
...

...
...

1,X1, . . . ,Xr ωr RSSr Xr ωr→1 → ωr RSSr→1 → RSSr

The F -statistic for testing the significance of the reduction in RSS when Xk is
added to the model containing terms 1,X1, . . . ,Xk is

Fk =
(RSSk↑1 ↑ RSSk)/(φk↑1 ↑ φk)

RSSr/φr
,

and Fk → Fωk→1↑ωk ,ωr
under the null hypothesis H0 : ωk = 0.

Recall that large values of Fk relative to the null distribution are evidence against
H0.
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Example
Nested Sequence in Cement Data

Reductions in overall sum of squares when sequentially entering terms x1, x2,
x3 and x4.

Does adding extra variables improve model significantly?

Df Red Sum Sq F value (ϱ) p-value
x1 1 1450.08 242.37 2.88⇑10↑7

x2 1 1207.78 201.87 5.86⇑10↑7

x3 1 9.79 1.64 0.2366
x4 1 0.25 0.04 0.8441
Residual SSq 8 47.86

↭ In this case, each term is a single column (variable).
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Warning!

Significance of entering a term depends on how the sequence is defined:
when entering terms in di!erent order get di!erent results! (why?)

When a term is entered “early” and is significant, this does not tell us much
(why?)

When a term is entered “late” is significant, then this is quite informative
(why?)

↭ Why is this true? Are there special cases when the order of entering terms
doesn’t matter?
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The E!ect of Orthogonality

↭Consider terms X0,X1,X2 from X , so

X = (X0
n↓1

X1
n↓q1

X2
n↓q2

), ω = ( ω0
1↓1

ω1
1↓q1

ω2
1↓q2

)→

↭Assume orthogonality of terms, i.e. X
→
i

Xj = 0, i ⇔= j

Notice that in this case

ω̂ =




X

→
0 X0 0 0
0 X

→
1 X1 0

0 0 X
→
2 X2




↑1

(
X0 X1 X2

)→
Y

=⇒ ω̂0 = Ȳ , ω̂1 = (X→
1 X1)

↑1
X

→
1 Y , ω̂2 = (X→

2 X2)
↑1

X
→
2 Y

It follows that the reductions of sums of squares are unique, in the sense that they
do not depend upon the order of entry of the terms in the model. (show this!)

Intuition: Xi contains completely linearly independent information from Xj for Y ,
i ⇔= j
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Model Selection / Collinearity /

Regularisation
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Theory VS Practice

↭ Theory: We are given a relationship

Y = Xω + ε

and asked to provide estimators, tests, confidence intervals, optimality properties
. . .

. . . and we can do it with complete success!

↭ Practice: We are given data (Y ,X ) and suspect a linear relationship between
Y and some of the columns of X . We don’t know a priori which exactly!

↼⇓ Need to select a “most appropriate” subset of the columns of X

↼⇓ General principle: parsimony (Latin parsimōnia: sparingness; simplicity and
least number of requisites and assumptions; economy or frugality of
components and associations).
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Figure: Albert Einstein (1879–1955): ‘Everything should be made as simple as possible,
but no simpler.’
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William of Ockham (?1285–1347): ‘It is vain to do with more what can be done with
fewer’ (Occam’s razor: Given several explanations of the same phenomenon, we should
prefer the simplest.)
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Beyond Exploratory Data Analysis

Graphical exploration ↫ provides initial picture:

plots of Y against candidate variables;

plots of transformations of Y against candidate variables;

plots of transformations of certain variables against Y ;

plots of pairs of candidate variables.

This will often provide a starting point, but:

Automatic Model Selection: Need objective model comparison criteria, as a
screening device.
ω→ We saw how to do an F -test, but what if models to be compared are not

nested?

Automatic Model Building: Situations when p large, so there are lots of
possible models.
ω→ Automatic methods for building a model? We saw that ANOVA depends on

the order of entry of variables in the model . . .
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Automatic Model Selection

Consider design matrix X with p variables.

2p possible models!

Denote set of all models generated by X by 2X (model powerset)

If wish to consider k di!erent transformations of each variable, then p

becomes (1 + k)p

Fast algorithms (branch and bound, leaps in R) exist to fit them, but they
don’t work for large p, and anyway . . .

. . . need criterion for comparison.

So given a collection of models, we need an automatic (objective) way to pick out
a “best” one (unfortunately cannot look carefully at all of them, but nothing can
replace careful scrutiny of the final model by an experienced researcher).
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Model Selection Criteria

Many possible choices, none universally accepted. Some (classical) possibilities:

Prediction error based criteria (CV)

Information criteria (AIC, BIC, . . . )

Mallow’s Cp statistic

Before looking at these, let’s introduce terminology: Suppose that the truth is

Y = Xω + ε but with ωr = 0 for some subset ωr of ω.

The true model contains only the columns for which ωr ⇔= 0
ω→ Equivalently, the true model uses X↑ as the design matrix, the latter being the

matrix of columns of X corresponding to non-zero coe”cients.

A correct model is the true model plus extra columns.
ω→ Equivalently, a correct model has a design matrix X↓, such that

M(X↑) ↑ M(X↓).

A wrong model is a model that does not contain all the columns of the true
model.
ω→ Equivalently, a wrong model has a design matrix X↓, such that

M(X↑) ↓M(X↓) ↔= M(X↑).
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Expected Prediction Error

↭ We may wish to choose a model by minimising the error we make on average,
when predicting a future observation given our model.
Our “experiment” is:

Design matrix X

response Y at X

Every model f ↘ 2X , will yield fitted values Ŷ (f ) = Hf Y . And suppose we now
obtain new independent responses Y+ for the same “experimental setup” X .
Then, one approach is to select the model

f
↘ = argmin

f≃2X

1

n
E

↓Y+ ↑ Ŷ (f )↓2



︸ ︷︷ ︸
!(f )

,

where expectation is taken over both Y and Y+.
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The Bias/Variance Tradeo!, Again.

Let X be a design matrix, and let X⇐ (n ⇑ p) and X⇒ (n ⇑ q) be matrices built
using columns of X . Suppose that the true relationship between Y and X is

Y = X⇒ω︸︷︷︸
µ

+ ε

but we use the matrix X⇐ instead of X⇒ (i.e., we fit a di!erent model). Therefore
our fitted values are

Ŷ = (X→
⇐ X⇐)

↑1
X

→
⇐ Y = H⇐Y .

Now suppose that we obtain new observations Y+ corresponding to the same
design X

Y+ = X⇒ω + ε+ = µ+ ε+.

Then, observe that

Y+ ↑ Ŷ = µ+ ε+ ↑ H⇐(µ+ ε)

= (I ↑ H⇐)µ+ ε+ ↑ H⇐ε.
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It follows that

↓Y+ ↑ Ŷ ↓
2 = (Y+ ↑ Ŷ )→(Y+ ↑ Ŷ )

= µ→(I ↑ H⇐)µ+ ε→H⇐ε+ ε→+ε+ + [cross terms].

Since E[cross terms] = 0 (why?), we observe that

” =






n
↑1µ→(I ↑ H⇐)µ+ (1 + p/n)ϑ2, if model wrong,

(1 + p/n)ϑ2, if model correct,
(1 + q/n)ϑ2, if model true.

Selecting a correct model instead of the true model brings in additional
variance, because q < p.

Selecting a wrong model instead of the true model results in bias, since
(I ↑ H⇐)µ ⇔= 0 when µ is not in the column space of X⇐.

Must find a balance between small variance (few columns in the model) and
small bias (all columns in the model).
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Cross Validation, Again.

↭ Impossible to calculate ” (depends on unknown µ and ϑ2), so we must find a
proxy (estimator) ”.

Suppose that n is large so that we can split the data in two pieces:

X
↘, Y

↘ used to estimate the model

X
⇑, Y

⇑ used to estimate the prediction error for the model

The estimator of the prediction error will be

” = (n⇑)↑1
↓Y

⇑
↑ X

⇑ω̂↘
↓
2.

In practice n might be small and we often cannot a!ord to split the data (variance
of ”̂ is too large).
Instead we use the leave-one-out cross validation:

n”CV = CV =
n∑

j=1

(Yj ↑ x
→
j
ω̂↑j)

2,

where ω̂↑j is the estimate produced when dropping the jth case (line).

Does this mean we need to fit n di!erent models?
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No! Rank 1 perturbation theory proves that

CV =
n∑

j=1

(Yj ↑ x
→
j
ω̂)2

(1↑ hjj)2
,

so the full regression may be used! Alternatively one may use a more stable
version:

GCV =
n∑

j=1

(Yj ↑ x
→
j
ω̂)2

(1↑ trace(H)/n)2
,

where “G” stands for “generalised”, and we guard against any hjj ↖ 1.
It can be shown that:

E[GCV ] =
µ→(I ↑ H)µ

(1↑ p/n)2
+

nϑ2

1↑ p/n
↖ n”.

↬ Suggests strategy: pick variables to minimise (G)CV.
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Akaike’s Information Criterion

Criteria can be obtained based on the notion of relative entropy (KL divergence).

Same basic idea as for prediction error: aim to choose candidate model f (y)
to minimise information distance:


log


g(y)

f (y)


g(y)dy ↔ 0,

where g(y) represents true model—equivalent to maximising expected log
likelihood 

log f (y)g(y)dy .

Can show that (apart from constants) information distance is estimated by

AIC = ↑2↽̂+ 2p (↙ n log ϑ̂2 + 2p in linear model)

where ↽̂ is maximised log likelihood for given model, and p is number of
parameters.
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There are many flavours of such critera:

Improved (corrected) version of AIC for regression problems:

AICc ↙ AIC +
2p(p + 1)

n ↑ p ↑ 1
.

Also can use Bayes’ information criterion

BIC = ↑2↽̂+ p log n.

Mallows suggested

Cp =
SSp

s2
+ 2p ↑ n,

where SSp is RSS for fitted model and s
2 estimates ϑ2.

Comments:
AIC tends to choose models that are too complicated, buts AICc cures this
somewhat;
BIC is model selection consistent—if the true model is among those fitted,
BIC chooses it with probability → 1 as n → ↗ (for fixed p).
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Example (Simulation Experiment)
For each n ↑ {10, 20, 40} we construct 20 n ↓ 7 design matrices. We multiply each of these
design matrices from the right with ε = (1, 2, 3, 0, 0, 0, 0)↔ and we add a n ↓ 1 Gaussian error.
We do this independently 50 times, obtaining 1000 regressions with p = 3. Selected models with
1 or 2 covariates have a bias term, and those with 4 or more covariates have excess variance.

n Number of covariates
1 2 3 4 5 6 7

10 Cp 131 504 91 63 83 128
BIC 72 373 97 83 109 266
AIC 52 329 97 91 125 306
AICc 15 398 565 18 4

20 Cp 4 673 121 88 61 53
BIC 6 781 104 52 30 27
AIC 2 577 144 104 76 97
AICc 8 859 94 30 8 1

40 Cp 712 107 73 66 42
BIC 904 56 20 15 5
AIC 673 114 90 69 54
AICc 786 105 52 41 16
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Automatic Model Building: Forward, Backward, Stepwise

↭ We saw so far:
Automatic Model Selection: build a set of models and select the “best” one.

↭ Now look at di!erent philosophy:
Automatic Model Building: construct a single model in a way that would
hopefully provide a good one.

There golden oldies for doing this are:

Forward Selection

Backward Elimination

Stepwise Selection

Caution: Although widely used, these have little theoretical basis. Element of
arbitrariness . . .
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Forward selection: starting from the model with constant only,
1 add each remaining term separately to the current model;
2 if none of these terms is significant, stop; otherwise
3 update the current model to include the most significant new term; go to

step 1.

Backward elimination: starting from the model with all terms,
1 if all terms are significant, stop; otherwise
2 update current model by dropping the term with the smallest F statistic; go to

step 1.

Stepwise: starting from an arbitary model,
1 consider three options—add a term, delete a term, swap a term in the model

for one not in the model, and choose the most significant option;
2 if model unchanged, stop; otherwise go to step 1.
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Some thoughts:

Each procedure may produce a di!erent model.

Systematic search minimising Prediction Error, AIC or similar over all possible
models is preferable— BUT not always feasible (e.g., when p large).

Stepwise methods can fit ‘highly significant’ models to purely random data!
Main problem is lack of objective function.

Can be improved by comparing Prediction Error/AIC for di!erent models at
each step — uses objective function, but no systematic search.
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Example (Nuclear Power Station Data)

Data on light water reactors (LWR) constructed in the USA. The covariates are date
(date construction permit issued), T1 (time between application for and issue of permit),
T2 (time between issue of operating license and construction permit), capacity (power
plant capacity in MWe), PR (=1 if LWR already present on site), NE (=1 if constructed
in north-east region of USA), CT (=1 if cooling tower used), BW (=1 if nuclear steam
supply system manufactured by Babcock–Wilcox), N (cumulative number of power plants
constructed by each architect-engineer), PT (=1 if partial turnkey plant).

cost date T1 T2 capacity PR NE CT BW N PT
1 460.05 68.58 14 46 687 0 1 0 0 14 0
2 452.99 67.33 10 73 1065 0 0 1 0 1 0
3 443.22 67.33 10 85 1065 1 0 1 0 1 0
4 652.32 68.00 11 67 1065 0 1 1 0 12 0
5 642.23 68.00 11 78 1065 1 1 1 0 12 0
6 345.39 67.92 13 51 514 0 1 1 0 3 0
7 272.37 68.17 12 50 822 0 0 0 0 5 0
8 317.21 68.42 14 59 457 0 0 0 0 1 0
...

32 270.71 67.83 7 80 886 1 0 0 1 11 1
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Example (Nuclear Power Station Data, continued)

Full model Backward Forward
Est t Est t Est t

Int. ↑14.24 ↑3.37 ↑13.26 ↑4.22 ↑7.62 ↑2.66
date 0.2 3.21 0.21 4.91 0.13 3.38
logT1 0.092 0.38
logT2 0.29 1.05
logcap 0.694 5.10 0.72 6.09 0.67 4.75
PR ↑0.092 ↑1.20
NE 0.25 3.35 0.24 3.36
CT 0.12 1.82 0.14
BW 0.033 0.33
log(N) ↑0.08 ↑1.74 ↑0.08 ↑2.11
PT ↑0.22 ↑1.83 ↑0.22 ↑1.99 ↑0.49 ↑4.77
s (df) 0.164 (21) 0.159 (25) 0.195 (28)
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Dangers of “Big” Models

Recall: Ŷ is projection of Y onto M(X )

↼⇓ Adding more variables (columns) into X “enlarges” M(X )
. . . if the rank increases by the # of new variables

Consider two extremes

Adding a new variable (column) Xp+1 ↘ M
↗(X )

ω→ Gives us completely “new” information.

Adding a new variable (column) Xp+1 ↘ M(X )
ω→ Gives no “new” information — cannot even do least squares (why not?)

What if we are between the two extremes? What if

Xp+1 /↘ M(X ) but X (X→
X )↑1

X
→
Xp+1 = HXp+1 ∝ Xp+1?

We can certainly fit the regression, but what will happen?
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Using block matrix properties, have

var(ω̂) = ϑ2

(X Xp+1)

→(X Xp+1)
↑1

with


(X Xp+1)

→(X Xp+1)
↑1

=


A B

C D



where

A = (X→
X )↑1 + (X→

X )↑1
X

→
Xp+1

⇑(X→
p+1Xp+1 ↑ X

→
p+1HXp+1)

↑1
X

→
p+1X (X→

X )↑1,

B = ↑(X→
X )↑1

X
→
Xp+1(X

→
p+1Xp+1 ↑ X

→
p+1HXp+1)

↑1,

C = ↑(X→
p+1Xp+1 ↑ X

→
p+1HXp+1)

↑1
X

→
p+1X (X→

X )↑1,

D = (X→
p+1Xp+1 ↑ X

→
p+1HXp+1)

↑1.
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Multicollinearity

Multicollinearity: when p covariates concentrate around a subspace of dimension
q < p

[simplest case: pairs of variables that are correlated]

But: might exist even if pairs of variables appear uncorrelated!

Can be caused by:

Poor design [can try designing again],

Inherent relationships [other remedies needed].

So what are the results?

Huge variances of the estimators!
ω→ Can even flip signs for di!erent data, to give the impression of inverse e!ects.

Individual coe#cients insignificant:
ω→ t-test p-values inflated.

But global F -test might give significant result!
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Figure: The Picket-Fence (Hocking & Pendleton)
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Diagnosing Multicollinearity: Variance Inflation Factors

Simple first steps:

Look at scatterplots,

Look at correlation matrix of covariates,

Might not reveal more complex linear constraints, though.

Look at the variance inflation factors:

VIFj =
var(ω̂j)↓Xj↓

2

ϑ2
= ↓Xj↓

2

(X→

X )↑1

jj
.

Can show that

VIFj =
1

1↑ R2
j

where R
2
j
is the coe#cient of determination for the regression

of Xj on {X1, . . . ,Xj↑1,Xj+1, . . . ,Xp},

measuring linear dependence of Xj on the other columns of X .
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Let X↑j be the design matrix without the j-th variable. Then

R
2
j
=

↓X↑j(X→
↑j

X↑j)↑1
X

→
↑j

Xj↓
2

↓Xj↓
2

↘ [0, 1]

is close to 1 if X↑j(X
→
↑j

X↑j)
↑1

X↑j︸ ︷︷ ︸
H→j

Xj ∝ Xj .

Large values of VIFj indicate that Xj is linearly dependent on the other columns of
the design matrix.

Interpretation: how much the variance is inflated when including variable j as
compared to the variance we would obtain if Xj were orthogonal to the other
variables—how much worse are we doing as compared to the ideal case.

Rule of thumb: VIFj > 5 or VIFj > 10 considered to be “large”.
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Diagnosing Multicollinearity: Condition Indices and Numbers

Consider the spectral decomposition of X
→
X , X

→
X = U!U

→ with
! = diag{⇀1, . . . ,⇀p} and U

→
U = I . Then

rank(X→
X ) = #{j : ⇀j ⇔= 0}, det(X→

X ) =
p

j=1

⇀j .

Hence “small” ⇀j ’s mean “almost” reduced rank, revealing the e!ect of
collinearity. Measure using condition index:

CIj(X
→
X ) :=


⇀max/⇀j

Global “instability” measured by the condition number,

CN(X→
X ) =


⇀max/⇀min

Rule of thumb: CN > 30 indicates moderate to significant collinearity, CN > 100
indicates severe collinearity (choices vary).
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Remedies?
If design faulty, may redesign.

↼⇓ Otherwise? Inherent relationships between covariates.

Variable deletion - attempt to remove problematic variables
→ E.g., by backward elimination.

Choose an orthogonal basis for M(X ) and use its elements as covariates
→ Use columns of U from spectrum, X↔X = U!U↔

→ OK for prediction
→ Problem: lose interpretability

Other approaches?
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Example (Body Fat Data)

Body fat is measure of health ⇓ not easy to measure!
Collect 252 measurements on body fat and some explanatory variables.

Can we use measuring tape and scales only to find body fat?

Explanatory variables:

age

weight

height

biceps

neck

chest

abdomen

forearm

hip

thigh

knee a

ankle

wrist
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wrist

Figure: Some Scatterplots [library(car);scatterplot.matrix( . . . )]. Looks like we’re in
trouble. Let’s go ahead and fit anyway . . .
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Model Fit Summary

Estimate Std. Error t value Pr(>|t|)
(Intercept) ↑18.1885 17.3486 ↑1.05 0.2955

age 0.0621 0.0323 1.92 0.0562
weight ↑0.0884 0.0535 ↑1.65 0.0998
height ↑0.0696 0.0960 ↑0.72 0.4693
neck ↑0.4706 0.2325 ↑2.02 0.0440
chest ↑0.0239 0.0991 ↑0.24 0.8100

abdomen 0.9548 0.0864 11.04 0.0000
hip ↑0.2075 0.1459 ↑1.42 0.1562

thigh 0.2361 0.1444 1.64 0.1033
knee 0.0153 0.2420 0.06 0.9497
ankle 0.1740 0.2215 0.79 0.4329
biceps 0.1816 0.1711 1.06 0.2897

forearm 0.4520 0.1991 2.27 0.0241
wrist ↑1.6206 0.5349 ↑3.03 0.0027

R
2 = 0.749, F -test: p < 2.2⇑ 10↑16.
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Split Data in Two and Fit Separately (Picket Fence)

Estimate Pr(>|t|)
(Intercept) ↑32.6564 0.1393

age 0.1048 0.0153
weight ↑0.1285 0.0502
height ↑0.0666 0.5207
neck ↑0.5086 0.0721
chest 0.0168 0.9002

abdomen 0.9750 0.0000
hip ↑0.2891 0.1265

thigh 0.3850 0.0565
knee 0.2218 0.5111
ankle 0.4377 0.0694
biceps ↑0.1297 0.5485

forearm 0.8871 0.0174
wrist ↑1.7378 0.0309

Estimate Pr(>|t|)
↑1.2221 0.9730
0.0256 0.6252

↑0.0237 0.8223
↑0.1005 0.7284
↑0.4619 0.2635
↑0.0910 0.5877
0.8924 0.0000

↑0.0265 0.9130
0.0334 0.8793

↑0.1310 0.7366
↑0.5037 0.3516
0.4458 0.1179
0.2247 0.3750

↑1.5902 0.0560
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Diagnostic Check

VIF
age 2.25

weight 33.51
height 1.67
neck 4.32
chest 9.46

abdomen 11.77
hip 14.80

thigh 7.78
knee 4.61
ankle 1.91
biceps 3.62

forearm 2.19
wrist 3.38

CI
1 1.00
2 17.47
3 25.30
4 58.61
5 83.59
6 100.63
7 137.90
8 175.29
9 192.62
10 213.01
11 228.16
12 268.21
13 555.67

Eigenvalue Roots
●

● ● ● ● ● ● ● ● ● ● ● ● ●

2 4 6 8 10 12 14

0
20
00

40
00

Singular Values

Index
va
lu
es

Condition Number ∝ 556 !
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Variable Deletion: Backward Elimination

Multiple R-Squared: 0.7466,
F-statistic p-value: < 2.2e-16

Estimate Std. Error t value Pr(>|t|) VIF
(Intercept) ↑22.6564 11.7139 ↑1.93 0.0543

age 0.0658 0.0308 2.14 0.0336 2.05
weight ↑0.0899 0.0399 ↑2.25 0.0252 18.82
neck ↑0.4666 0.2246 ↑2.08 0.0388 4.08

abdomen 0.9448 0.0719 13.13 0.0000 8.23
hip ↑0.1954 0.1385 ↑1.41 0.1594 13.47

thigh 0.3024 0.1290 2.34 0.0199 6.28
forearm 0.5157 0.1863 2.77 0.0061 1.94

wrist ↑1.5367 0.5094 ↑3.02 0.0028 3.09
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Variable Transformation: Eigenvector Basis

Define Z = XU as design matrix. R2=0.749, F-test p-value<2.2⇑ 10↑16

Estimate Std. Error t value Pr(>|t|)
(Intercept) ↑18.1885 17.3486 ↑1.05 0.2955

Z[, 1] ↑0.1353 0.0619 ↑2.19 0.0297
Z[, 2] ↑0.0168 0.0916 ↑0.18 0.8546
Z[, 3] 0.2372 0.1070 2.22 0.0276
Z[, 4] ↑0.7188 0.0571 ↑12.58 0.0000
Z[, 5] 0.0248 0.0827 0.30 0.7649
Z[, 6] 0.4546 0.1001 4.54 0.0000
Z[, 7] 0.5903 0.1366 4.32 0.0000
Z[, 8] ↑0.1207 0.1742 ↑0.69 0.4890
Z[, 9] ↑0.0836 0.1914 ↑0.44 0.6627

Z[, 10] 0.5043 0.2082 2.42 0.0162
Z[, 11] ↑0.5735 0.2254 ↑2.54 0.0116
Z[, 12] 0.3007 0.2628 1.14 0.2536
Z[, 13] 1.5168 0.5447 2.78 0.0058
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• Eigenvector approach rotates space so as to “free” the dependence of one
coe#cient ωj on others {ωi}i ⇓=j

↼⇓ Imposes constraint on X (orthogonal columns)

Problem: lose interpretability! (prediction OK)

Example: most significant “rotated” term in fat data: Z[,4]=-0.01*age
-0.058*weight -0.011*height +0.46*neck -0.144*chest
-0.441*abdomen +0.586*hip +0.22*thigh -0.197*knee
-0.044*ankle -0.07*biceps -0.33*forearm -0.249*wrist

• Other approach to reduce this strong dependence?

↼⇓ Impose constraint on ω! How? (introduces bias)
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