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Gauss-Markov & Optimal Estimation
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Gaussian Linear Model: Efficiency of LSE (Optimality)

Q: Geometry suggests that the LSE β̂ is a sensible estimator. But is it the best
we can come up with?

A: Yes, in that β̂ is the unique minimum variance unbiased estimator of β.

(β̂ is sufficient, in fact minimally sufficient, in exponential family)

Thus, in the Gaussian Linear model, the LSE are the best we can do as far as
unbiased estimators go.

(actually can show S2 is optimal unbiased estimator of σ2, by similar arguments)
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Optimality in a Weaker Setting?

The crucial assumption so far was:

Normality: ε ∼ Nn(0, σ
2I )

What if we drop this strong assumption and assume something weaker? (e.g. only
moment assumptions?)

Uncorrelatedness: E[ε] = 0 & cov[ε] = σ2I
(notice we do not assume any particular distribution.)

How well do our LSE estimators perform in this case?

(note that in this setup the observations may not be independent —
uncorrelatedness implies independence only in the Gaussian case.)
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For a start, we retain unbiasedness:

Lemma (Unbiasedness under Moment Assumptions)

If we only assume
E[ε] = 0 & var[ε] = σ2I

instead of
ε ∼ N (0, σ2I ),

then the following remain true:

1 E[β̂] = β;

2 cov[β̂] = σ2(X⊤X )−1;

3 E[S2] = σ2.

But what about optimality properties?
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The Gauss–Markov Theorem

Theorem (Gauss-Markov)

Let Yn×1 = Xn×pβp×1 + εn×1, with p < n, X having rank p, and

E[ε] = 0,

cov[ε] = σ2I .

Then, β̂ = (X⊤X )−1X⊤Y is the best linear unbiased estimator of β, that is, for
any linear unbiased estimator β̃ of β, it holds that

cov(β̃)− cov(β̂) ⪰ 0.
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Proof.

Let β̃ be linear and unbiased, in other words:

{
β̃ = AY , for some Ap×n,

E[β̃] = β, for all β ∈ Rp.

These two properties combine to yield,

β = E[β̃] = E[AY ] = E[AXβ + Aε] = AXβ, β ∈ Rp

=⇒ (AX − I )β = 0, ∀β ∈ Rp.

We conclude that the null space of (AX − I ) is the entire Rp, and so AX = I .

cov[β̃]− cov[β̂] = Aσ2IA⊤ − σ2(X⊤X )−1

= σ2{AA⊤ − AX (X⊤X )−1X⊤A⊤}
= σ2A(I − H)A⊤

= σ2A(I − H)(I − H)⊤A⊤

⪰ 0.
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(Approximate) Sampling Distribution of β̂ under Moment Assumptions

If we only assume E[ε] = 0 and cov[ε] = σ2I
↪→then Gauss-Markov says β̂ optimal linear unbiased estimator, regardless of distibution of ε.

Question: What can we say about the sampling distribution of β̂ when ε is not
necessarily Gaussian?

Note that we can always write

β̂ − β = (X⊤X )−1X⊤ε.

Since there is a huge variety of candidate distributions for ε that would be compatible with

the property cov(ε) = σ2I , we cannot say very much about the exact distribution of

β̂ − β = (X⊤X )−1X⊤ε.

Can we at least hope to say something about this distribution asymptotically, as the sample

becomes large?
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For this, we need an appropriate asymptotic framework for covariates:

We let n → ∞ (# rows of X tend to infinity)

# columns of X , i.e., p, (held fixed).

Theorem (Large Sample Distribution of β̂)

Let {Xn}n≥1 be a sequence of n × p design matrices, and {εn}n≥1 a sequence of
n-vectors, and define Yn = Xnβ + εn. If

1 Xn is of full rank p for all n ≥ 1

2 max1≤i≤n[x⊤
i (X⊤

n Xn)
−1xi ]

n→∞−→ 0,

(where x⊤
i is the ith row of Xn)

3 E[εn] = 0 and cov[εn] = σ2In×n for all n ≥ 1,

then the least squares estimator β̂n = (X⊤
n Xn)

−1X⊤
n Yn satisfies

(X⊤
n Xn)

1/2(β̂n − β)
d−→ Np(0, σ

2Ip×p).
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Conclusion can be interpreted as:

for n “large enough”, β̂
d
≈ N{β, σ2(X⊤

n Xn)
−1}

i.e. distribution of β̂ gradually becomes the same as what it would be if ε
were Gaussian

. . . provided design matrix X satisfies extra condition (2).

Can be shown equivalent to: diagonal elements of Hn = Xn(X⊤
n Xn)

−1X⊤
n ,

say hjj(n) converge to zero uniformly in j as n → ∞

Note that trace(H) = p, so that the average
∑

hjj(n)/n → 0 — the question
is do all the hjj(n) → 0 uniformly?

Has a very clear interpretation in terms of the form of the design that we will see
when we discuss the notions of leverage and influence.
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To understand Condition (2), consider simple linear model

Yi = β0 + β1ti + εi , i = 1, . . . , n.

Here, p = 2. Can show that

hjj(n) =
1

n
+

(tj − t̄ )2∑n
k=1(tk − t̄ )2

Suppose ti = i , for i = 1, . . . , n (regular grid). Then

hjj(n) =
1

n
+

{j − (n + 1)/2}2

(n2 − n)/12

so max
1≤j≤n

hjj(n) = hnn(n) =
1

n
+

6(n − 1)

n(n + 1)
n→∞−→ 0.
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Now consider ti = 2i (grid points spread apart as n grows).
The centre of mass and sum of squares of the grid points is now

t̄ =
2(2n − 1)

n
,

n∑
i=1

(ti − t̄ )2 =
4n+1 − 4

3
− 4n+1 + 4− 2n+3

n

and so

max
1≤j≤n

hjj(n) = hnn(n)
n→∞−→ 3

4
.
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Proof.

Recall that β̂n − β = (X⊤
n Xn)

−1X⊤
n εn. We will show that for any unit vector u,

u⊤(X⊤
n Xn)

−1/2X⊤
n εn

d→ N(0, σ2),

and then the theorem will be proven by the Cramér-Wold devicea. Now notice that

u⊤(X⊤
n Xn)

−1/2X⊤
n εn = γ⊤

n εn

where:

1 γn = (γn,1, . . . , γn,n)
⊤ =

(
u⊤(X⊤

n Xn)
−1/2x1, . . . ,u⊤(X⊤

n Xn)
−1/2xn

)⊤
2 γ2

n,i ≤ ∥u∥2
∥∥(X⊤

n Xn)
−1/2xi

∥∥2 = x⊤
i (X⊤

n Xn)
−1xi (Cauchy-Schwarz)

3 γ⊤
n γn = u⊤(X⊤

n Xn)
−1/2(X⊤

n Xn)(X⊤
n Xn)

−1/2u = 1.

Consequently, the result follows from the weighted sum CLT upon noticing:

max1≤i≤n γ
2
n,i

/∑n
k=1 γ

2
n,k ≤ max1≤i≤n x⊤

i (X⊤
n Xn)

−1xi → 0

aCramér-Wold: ξn
d→ ξ in Rd if and only if u⊤ξ

d→ u⊤ξ in R for all unit vectors u.
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Diagnostics
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Assumptions to Check for

Four basic assumptions inherent in the Gaussian linear regression model:

Linearity: E[Y ] is linear in X .

Homoskedasticity: var[εj ] = σ2 for all j = 1, . . . , n.

Gaussian Distribution: errors are Normally distributed.

Uncorrelated Errors: εi uncorrelated with εj for i ̸= j .

When one of these assumptions fails clearly, then Gaussian linear regression is
inappropriate as a model for the data.

Isolated problems, such as outliers and influential observations also deserve
investigation. They may or may not decisively affect model validity.
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How do we check these assumptions?

Scientific reasoning: impossible to validate model assumptions.

Cannot prove that the assumptions hold. Can only provide evidence in favour (or
against!) them.

Strategy:

Find implications of each assumption that we can check graphically (mostly
concerning residuals).

Construct appropriate plots and assess them (requires experience).

“Magical Thinking”: Beware of overinterpreting plots!
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Basic recipe for regression - Spoiler!!

Diagnostic plots usually constructed:
1 Y against columns of X

↪→ check for linearity and outliers

2 standardized residual r against columns of X
↪→ check for linearity

3 r against covariates not included

↪→ check for variables left out

4 r against fitted value Ŷ
↪→ check for homoskedasticity

5 Normal quantile plot

↪→ check for normality

6 Cook’s distance plot

↪→ check for influential observations
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Residuals Revisited

Residuals e: Basic tool for checking assumptions.

Recall: e = Y − Ŷ = Y − X β̂ = (I − H)Y = (I − H)ε

Intuition: the residuals represent the aspects of Y that cannot be explained by the
columns of X .

Since ε ∼ Nn(0, σ
2I ), if the model is correct we should have

e ∼ Nn{0, σ2(I − H)}. (if model correct, residuals are ancillary)

So if assumptions hold →
{

ei ∼ N{0, σ2(1− hii )}
cov(ei , ej) = −σ2hij

Note the residuals are correlated, and that they have unequal variances.

=⇒ Define the standardised residuals:

ri :=
ei

S
√
1− hii

, i = 1, . . . , n.

These are still correlated but have variance ≈ 1.
(can decorrelate by U⊤e, where H = UΛU⊤) – why?
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Checking for Linearity

A first impression can be drawn by looking at plots of the response against each of
the explanatory variables.

Other plots to look at?

Notice that under the assumption of linearity we have

X⊤e = 0.

Hence, no correlation should appear between explanatory variables and
residuals.

1 Plot standardised residuals r against each covariate (columns of X ).

↪→ No systematic patterns should appear in these plots. A systematic pattern
would suggest incorrect dependence of the response on the particular
explanatory (e.g. need to add a transformation of that explanatory as an
additional variable).

2 Plot standardised residuals r against covariates left out of the model.

↪→ No systematic patterns should appear in these plots. A systematic pattern
suggests that we have left out an explanatory variable that should have been
included.
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Figure: Linearity OK
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Figure: Linearity NOT OK – need to add sin(x1) in model
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Figure: Important Covariate Left out
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Checking for Homoskedasticity

Homoskedastic = óµo︸︷︷︸
same

+σκεδασµòς︸ ︷︷ ︸
spread

According to our model assumptions, the variance of the errors εj should be the
same across indices:

var(εj) = σ2

Plot r against the fitted values Ŷ . (why not against Y ?)

↪→ A random scatter should appear, with approximately constant spread of the
values of r for the different values of Ŷ . “Trumpet” or “bulging” effects
indicate failure of the homoskedasticity assumption.

↪→ Since Ŷ ⊤e = 0, this plot can also be used to check linearity, as before.
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Figure: Homoskedasticity OK
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Figure: Heteroskedasticity (i.e. lack of Homoskedasticity) - ‘Trumpet’ effect
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Checking for Normality

Idea: compare the distribution of standardised residuals against a Normal
distribution.

How?

Compare empirical vs theoretical quantiles . . .

Reminer: The α-quantile (α ∈ [0, 1]) of a distribution F is the value F−(α)
defined as

F−(α) := inf{t ∈ R : F (t) ≥ α}.

Given a sample W1, . . . ,Wn, the empirical α quantile is the value defined as

F̂−(α) := inf{t ∈ R : F̂ (t) ≥ α} = inf

{
t ∈ R :

#{Wi ≤ t}
n

≥ α

}
.

where F̂ is the empirical distribution function (as defined before).
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A quantile plot for a given sample plots certain empirical quantiles against the
corresponding theoretical quantiles (i.e. those under the assumed distribution).

If the sample at hand originates from F , then we expect that the points of the
plot fall close to the 45◦ line.

Plot the empirical {k/n}nk=1 quantiles of standardised residuals

r(1) ≤ r(2) ≤ · · · ≤ r(n)

against theoretical quantiles Φ−1{1/(n + 1)}, . . . ,Φ−1{n/(n + 1)} of a
N (0, 1) distribution.

↪→ Think why we pick Φ−1
(

k
n+1

)
instead of Φ−1

(
k
n

)
.

↪→ If the points of the quantile plot deviate significantly from the 45◦ line, there
is evidence against the normality assumption. Outliers, skewness and heavy
tails easily revealed.

↪→ If we plot the empirical quantiles of the unstandardised residuals against those
of a N(0, 1), then we compare against a line with slope equal to stdev(e) and
intercept zero.

Beware of overinterpretation when n is small!

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 28 / 43



Figure: QQ Plot for n = 50
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Figure: QQ Plot for n = 100
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Figure: QQ Plot for n = 300
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Figure: Normality not OK
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Checking for Uncorrelatedness

It is assumed that cov[ε] = σ2I .
Under assumption of normality this is equivalent to independence

Difficult to check this assumption in practice.

One thing to check for is clustering, which may suggest dependence.

↪→ e.g. identifying groups of related individuals with correlated responses

When observations are time-ordered can look at correlation corr[rt , rt+k ] or
partial correlation corr[rt , rt+k |rt+1, . . . , rt+k−1]. When such correlations
exist, we enter the domain of time series.

Existence of correlation:

seriously affects estimator reliability

inflates standard errors
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Identifying Influential Observations

An influential observation can usually be categorised as an:

outlier (relatively easier to spot by eye)

OR

leverage point (not as easy to spot by eye)

Influential observations

May or may not decisively affect model validity.

Require scrutiny on an individual basis and consultation with the data expert.

David Brillinger (Berkeley): You will not find your Nobel prize in the fit, you will
find it in the outliers!

Influential observations may reveal unanticipated aspects of the scientific problem
that are worth studying, and so must not simply be scorned as “non-conformists”!
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Outliers

An outlier is an observation that stands out in some way from the rest of the
observations, causing Surprise! Exact mathematical definition exists (Tukey) but
we will not pursue it.

In regression, outliers are points falling far from the cloud surrounding the
regression line (or surface).

They have the effect of “pulling” the regression line (surface) toward them.

Outliers can be checked for visually through:

The regression scatterplot.

↪→ Points that can be seen to fall relatively far from the point cloud surrounding
the regression line (surface)

Residual Plots.

↪→ Points that fall beyond (−2, 2) in the (Ŷ , r) plot.

Outliers may result from a data registration error, or a single extreme event. They
can, however, result because of a deeper inadequacy of our model (especially if
there are many!).
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Figure: An Outlier
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Figure: Professor’s Van: Outliers

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 38 / 43



Leverage and Leverage Points

Outliers may be influential: they “stand out” in the “y -dimension”.

However an observation may also be influential because of unusual values in
the “x-dimension”.

Such influential observations cannot be so easily detected through plots.

Call (x⊤
j ,Yj) the j -th case and notice that

var(Yj − Ŷj) = var(ej) = σ2(1− hjj).

If hjj ≈ 1, then the model is constrained so Ŷj = x⊤
j β̂ ≃ Yj ! (i.e., need a separate

parameter entirely devoted to fitting this observation!)

hjj is called the leverage of the j-th case.

since trace(H) =
∑n

j=1 hjj = p, cannot have low leverage for all cases

a good (=balanced) design corresponds to hjj ≃ p/n for all j

(i.e. assumption maxj≤n hjj
n→0→ 0 satisfied in asymptotic thm).

Leverage point: (rule of thumb) if hjj > 2p/n observation needs further scrutiny—e.g.,
fitting again without j-th case and studying effect.
Outlier+Leverage Point = TROUBLE
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Figure: A (very) Noticeable Leverage Point
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Assessing the Influence of an Observation

How to find cases having strong effect on fitted model?

Idea: see effect when case j , i.e., (x⊤
j ,Yj), is dropped.

Let β̂−j be the LSE when model is fitted to data without case j , and let

Ŷ−j = X β̂−j be the corresponding fitted value.

Define Cook’s distance

Cj =
1

pS2
(Ŷ − Ŷ−j)

⊤(Ŷ − Ŷ−j),

which measures scaled distance between Ŷ and Ŷ−j .

Can show that

Cj =
r2j hjj

p(1− hjj)
,

so large Cj implies large rj and/or large hjj .

Cases with Cj > 8/(n − 2p) worth a closer look (rule of thumb)

Plot Cj against index j = 1, . . . , n and compare with 8/(n − 2p) level.

Myrto Limnios and Rajita Chandak (EPFL) Statistics for Data Science 41 / 43



Figure: A Cook Distance Plot
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Summary

Diagnostic plots usually constructed:

Y against columns of X
↪→ check for linearity and outliers

standardized residual r against columns of X
↪→ check for linearity

r against covariates not included

↪→ check for variables left out

r against fitted value Ŷ
↪→ check for homoskedasticity

Normal quantile plot

↪→ check for normality

Cook’s distance plot

↪→ check for influential observations
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