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Instructions

1. You have to hand in the exam as well as all your rough work before exiting the
exam room.

2. Calculators, mobile phones or any other electronic devices are not allowed. You are
entitled to have 2 handwritten A4 sheets. No additional material/format is allowed
further to that.

3. Always justify your calculations. If these miss important details, or if your notation
is inconsistent, you risk being penalised.

4. Your solutions may be written in English or in French.

5. You can use theorems/propositions/lemmas/corollaries from the course, provided
these are clearly stated and their conditions are veri�ed, unless otherwise required
by the question.

6. Page 2 contains a list of de�nitions, theorems or results from the course that may

or may not be useful for solving some of the exam questions. Please take some time
to consult it.

7. Answer all questions 1-3 to get full marks. Question 4 is a bonus and can be answered
for extra points but is not mandatory. All 4 questions are worth equal amounts of
points.

Good luck!



Selected results and de�nitions from the course

The de�nitions, theorems and results listed on that page may or may not be useful for
solving the exam questions. If you need to use any of them, you can simply do so by
citing it. For theorems/propositions/lemmas/corollaries make sure that their conditions
are veri�ed, unless otherwise required by the question.

De�nition 1 (Moment Generating Function). The MGF MX : R → R ∪ {∞} of a
real-valued random variable X is de�ned as

MX(t) = E
[
etX
]
, ∀t ∈ R.

Theorem 1 (Ratio of χ2 and Fisher Distribution). Let X ∼ χ2
k and Y ∼ χ2

n be inde-
pendent random variables. Then,

X/k

Y/n
∼ Fk,n.

Theorem 2 (Delta Method). Let Zn := an(Xn − θ)
d→ Z where an, θ ∈ R for all n and

an diverges to in�nity. Let g be continuously di�erentiable at θ. Then,

an(g(Xn)− g(θ))
d→ g′(θ)Z.

De�nition 2 (Density of Gaussian Distribution). The density function of the Gaussian
distribution N(0, 1) is given by

f(x) =
1√
2π
e−

x2

2 , x ∈ R.

Theorem 3 (Sum of Gaussian Squares and Chi-Square Distribution). LetX1, · · · , Xk
i.i.d.∼

N(0, 1). Then,
∑k

i=1X
2
i ∼ χ2

k.

De�nition 3 (Mean Squared Error). Let θ̂ be an estimator of a parameter θ. The mean
squared error of θ̂ is de�ned as

MSE(θ̂, θ) = E
[
‖θ̂ − θ‖2

]
.

De�nition 4 (Poisson Distribution). The probability density function f of a Poisson
distribution with rate λ > 0 is given by

f :

{
N ∪ {0} → R,
k 7→ e−λ λ

k

k!
.

Proposition 1 (Densities are Normalised). Let X be a continuous random variable with
probability density function f : R→ [0,+∞[. Then, we have∫ +∞

−∞
f(x)dx = 1.

Proposition 2 (MGF of Poisson Distribution). The moment generating function of the
Poisson distribution with rate λ is given by

M(t) = eλ(e
t−1), t ∈ R.
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Question 1

The goal of this exercise is to get an expression for the mean and variance of the chi-

squared distribution χ2
k with k ∈ N degrees of freedom. To this end, we will compute and

make use of its moment generating function (denoted by MGF hereafter).

(a) Let X ∼ N (0, 1). Show that the MGF of X2 is given by :

MX2(t) =

{
1√
1−2t , for t < 1/2,

∞, otherwise.

What is the distribution of X2 ?

Hint : A change of variable could help.

(b) Prove that, for two independent random variables Y and Z, we have

MY+Z(t) = MY (t)MZ(t), ∀t ∈ R.

(c) Use (a) and (b) to compute the MGF of a random variable U ∼ χ2
k, k ∈ N.

(d) Using the MGF computed in (c), compute the mean and variance of the χ2
k distribu-

tion.

Solution.

(a) From the de�nition of the MGF, we have :

MX2(t) =
1√
2π

∫
R
etx

2

e−
x2

2 dx

=
1√
2π

∫
R
e−(1−2t)

x2

2 dx, t ∈ R.

For t ≥ 1/2, the integral is unde�ned and the MGF in�nite. The domain of de�nition
of MX2 is hence ] − ∞, 1/2[. On this domain, we have 1 − 2t > 0. We can hence
perform the following change of variables :

z =
√

1− 2tx, dz =
√

1− 2tdx.

This yields :

MX2(t) =
1√

1− 2t

[
1√
2π

∫
R
e−

z2

2 dz

]
︸ ︷︷ ︸

=1

=
1√

1− 2t
, t <

1

2
,

which is indeed well-de�ned. We have hence

MX2(t) =

{
1√
1−2t , for t < 1/2,

∞, otherwise.

Finally, X2 being the square of a Gaussian distribution, we have X2 ∼ χ2
1. We have

hence characterised the MGF of a ∼ χ2
1 distribution.
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(b) We have
MY+Z(t) = E

[
et(X+Y )

]
= E

[
etXetY

]
, t ∈ R.

Since Y and Z are assumed independent then so are etX and etY as transformations
of independent random variables. Because of this independence, we have

E
[
etXetY

]
= E

[
etX
]
E
[
etY
]
, t ∈ R,

which yields the desired result :

MY+Z(t) = MY (t)MZ(t), t ∈ R.

(c) If U ∼ χ2
k with k ∈ N, we know that U =

∑k
i=1X

2
i where Xi

i.i.d.∼ N (0, 1). Gene-
ralising the result proven in (b) to k random variables (trivial) and using (a) yields
immediately

M∑k
i=1X

2
i
(t) =


(

1√
1−2t

)k
, for t < 1/2,

∞, otherwise.

(d) Let U ∼ χ2
k. Di�erentiating the MGF derived in (c) yields :

M ′
U(t) = k

(
1√

1− 2t

)k+2

, t <
1

2
,

and

M ′′
U(t) = k(k + 2)

(
1√

1− 2t

)k+4

, t <
1

2
.

We have hence
E[U ] = M ′

U(0) = k,

and

Var(U) = E[U2]− E[U ]2

= M ′′
U(0)− k2

= k2 + 2k − k2

= 2k.
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Question 2

Let X1, . . . , Xn be i.i.d. random variables with distribution Poisson(λ) and rate λ > 0.

(a) Find the maximum likelihood of λ, denoted by λ̂, and its asymptotic distribution.

(b) Let X = 1
n

∑n
i=1Xi. Find a function g such that

√
n
(
g(X)− g(λ)

) d→ N(0, 1).

(c) Use the asymptotic distributions in (a) and (b) to derive two con�dence intervals. Are
they comparable or is one of them better than the other ?

Solution.

(a) MLE is the sample mean and we have by the CLT that
√
n(Xn − λ)→ N(0, varX1)

with varX1 = λ. Alternatively, students can use the asymptotic distribution of the
MLE. This yields the same result since I1(λ) = 1/λ.

(b) The delta method tells us that
√
n(g(Xn) − g(λ)) → N(0, [g′(λ)]2λ), hence we want

g such that g′(λ) = 1√
λ
. By integration, g(λ) = 2

√
λ.

(c) Using LLN and Cramer-Slutzsky on (a) we have
√
nXn−λ√

λ̂
→ N(0, 1). CI follows

easily :

(Xn ±
1√
n
q1−α

2

√
Xn) .

Part (b) can be used readily. We gradually update the CI's for

2
√
λ . . . (2

√
Xn ±

1√
n
q1−α

2
)

√
λ . . . (

√
Xn ±

1

2
√
n
q1−α

2
)

λ . . .
(

max(0,

√
Xn −

1

2
√
n
q1−α

2
)2, (

√
Xn +

1

2
√
n
q1−α

2
)2
)

The CI's are not really comparable, the second one is shifted to the right compared
to the �rst one (easy to see), but we can't really say which one is better. They both
contain one element slowing down the asymptotics of CLT.
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Question 3

Let X1, . . . , Xn be i.i.d. random variables with Gaussian distribution N(0, σ2). We are
interested in testing the hypothesis pair

H0 : σ2 = 1 vs. H1 : σ2 6= 1.

(a) Find the maximum likelihood estimate of σ2, denoted σ̂2. What is the exact distribu-
tion of nσ̂2 under H0 ?
In the following, denote by F the cumulative distribution function of this distribution

and treat it as a known function.

(b) Use the distribution derived in (a) to construct a statistical test. Express the p-value
of the test in terms of F .

(c) Assuming that the true value of the variance is σ2 = 2, express the power of the test
in terms of F .

Solution.

(a) We �nd by the usual calculation that σ̂2 = 1
n

∑
X2
i (full points awarded for this, the

exact distribution is rather tied with (c)). The distribution under H0 is nσ̂
2 ∼ χ2

n.

(b) We reject on level α if nσ̂2 ≥ q1−α, where q = F−1. p-value is the smallest level on
which we reject, i.e.

p-value = inf
{
α, nσ̂2 = q1−α

}
= inf{α, F (nσ̂2) = 1− α} = 1− F (nσ̂2) .

(c)

power = PH1(nσ̂
2 ≥ q1−α) = PH1

(
n∑
i=1

X2
i ≥ q1−α

)

= PH1

(∑
X2
i

2
≥ q1−α

2

)
= P

(
χ2
n ≥

n

2

)
= 1− F

(q1−α
2

)
.
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Question 4 (Bonus) :

Let X1, . . . , Xn
i.i.d.∼ N(θ, 1) with θ ∈ Θ =] − ∞, b], for a known b < +∞. Given this

restriction on the parameter space, can you construct an estimator of θ that performs
better than the empirical mean X in terms of mean squared error ?
Be sure to prove your claims !

Solution. Let θ̂ = X̄1{X̄ ≤ b}+ b1{X̄ > b} and note that X̄ = θ̂ + (X̄ − b)+. It follows
that

MSE(X̄, θ) = E(X̄ − θ)2 = E(θ̂ − θ)2︸ ︷︷ ︸
=MSE(θ̂,θ)

+ E((X̄ − b)+)2︸ ︷︷ ︸
>0

+ 2E[(θ̂ − θ)(X̄ − b)+]︸ ︷︷ ︸
≥0

The second term is strictly positive because Pθ[X̄ > b] > 0 for any θ. To see that the
last term on the right is non-negative, we note that when (X̄ − b)+ > 0 then (θ̂ − θ) =
(b − θ) ≥ 0 yielding a non-negative product. Otherwise, the product is zero. Hence the
random variable inside the expectation is non-negative.

������� END OF THE EXAM PAPER �������
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