ExAM SOLUTIONS (1/2019)

Q1

(i)-

(iii).

We have : X1,---, X,, ~ Unif|0, 9].

n
1 1
L(Xl, .. 7Xn) = H g]‘XjS@ = —1max{Xj}§9

J=1

E[X] = g

So, = max{X;} and 6 =2X.

. Clearly, for j5 = E[f] and o2 = Var [{]

F(z) = P{max{X;} <z} = H]P’{Xj <z}

= [%} ! Lio<acoy + 1iz>0

1

And since, pup = 0 and 0% = [n%] = %, we can use the Central Limit Theorem to

n?
conclude that for large n,

f(m)=P{2ng}:p{X—u2 é\/gx—e}

(o] 0

z—0

1 \/3?( 0 ) 7{E2/2
~ \/ﬁ/ e dz| 1io<z<o} + 1{z>0

Clearly, for p; = E[f] and o2 = Var [0]

_ /Mx L
=, " le T+l
2402 —/0332 n [x]nil dr = L
o= gl n+2
2 n 2
= 0
T it )¥(n+ 2)
So, the bias is niﬂ and the variance is as above.
- Let = (14 ) max{X;}. Then E[f] = 0 and Var[f] = L6
. We calculate the Fisher information as follows :
7,0 =E | (L 10 na" 17\’ ol =E | Llg| = 2
O Al T — Ve 02

So,
V(0 —0) = N(0,6)

By delta method we get, 5
V(0 —60) — N(0,6%)
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Q2

Ep= ZEXY EXY =p,
=1
so we have unbiasedness. For consistency, define Z; := X,;Y;. Then p = %Z;;l Z;, thus by
SLLN for the sample Z1,...,Z, we have p — E Z; = p, where the convergence is almost
sure, which gives us consistency.
(b) This depends on which formula for CLT students have in their cheat-sheet. I think it will
be easy for them to read the formula wrong. For example,

PP N0,1).
var(p)

Using the hint, var(p) = tvar(X1, Y1) = 1((1+2p%) — p?) = L(1 + p?), leading to

b)

\/%—M\f(o 1).

(c¢) Using the Slutzsky’s theorem, we can replace p in the denominator by p, using the fact that
p is consistent (this is minimally sufficient justification). Then it is standard algebra to get
the answer :

vn

P(—qo.975 < \f < —qo.975) = 0.95

m
- -2
.. Clyos(p) = (p £ qo.975 \/ﬁ)

N
Q3
(a) Write F,(z) = 2 3% 11x,<,- Then
~ 1 & 1 <« 1 & jx—X;
J(@) = thi_zll[Xie(xh,erh]] = onh 2 M) = nth( )

where K (y) = %1[\y|S1]' So the kernel corresponds to U[—1, 1] distribution.
(b) .
E f(z) = 2h[ Fo(z + h) —EFn(x—h)} - %[F(Hh) —F(x—h)]
If h — 0, then the previous expression is the definition for derivative of F, thus Ef(m) —
f(z) for h — 0. This leads to bias(f(x)) — 0.

Note that students will probably start by writing down the definition of bias. This leads to
the same conclusion.

Q4

(a) As explained on slide 342 of the course, the uncentered coefficient of determination measures
the proportion of the squared norm of Y explained by the fitted values Y. As a ratio of
two positive quantities, R0? is necessarily positive. Moreover, we have :

Y=HY+(I-H)Y =Y +(I-H)Y

where the hat matrix H = X (X7 X)~!X7 is an orthogonal projection operator. We can
hence apply the Pythagorean theorem to obtain

Y[ = Y]+ (I - H)Y|?,
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and hence | Y2 > ||[Y|]2 = R2 < 1.
Alternative solution : Use spectral norm of H :

IY|* = |HY|* < |H[3]IY]*
Since H = X(XTX)~'X" is an orthogonal projection it has mazximal eigenvalue 1, yiel-
ding |H||3 =1 and finally R? < 1.
The inequality is saturated when p = n indeed, is this case X is square and hence invertible
from the full-rank assumption, yielding H = X(X7X) !XT = XX !X TXT = I and
trivially Y =Y = RZ = 1.

The new fitted values are given by

Y = X(XTX)"'XTy

= (X,a:p+1)< (XT(?()_l 1/H:c2+1\2 ) ( ;z%jl >Y

T
1Y

= X(XT"X)"'XTYy + ||‘1§)+1 %

p+1
T
. T, 1Y
=Y + bt Lp+1,
lp ]2

since X Tmpﬂ = 0 by assumption. From Pythagore again we get
112 112 T 2
IY[|" = Y]" + [z, YT,
which yields : .
[Y|> _ Y|
Y[ = Y]?
A higher uncentered coefficient of determination R% is not necessarily desirable. Indeed,
when we add too many covariates to the model, we explain more and more of the variations

in the data, including after a certain threshold the noise variations, which is of course
undesirable. This phenomenon is called overfitting.

We have 8 = (XTX)' XTY and
Y ~ N(XB7 0'21”)’

<

by assumption of the Gaussian linear model. From properties of Gaussian random vector,
we know that 3 is again a Gaussian random vector (as linear transformation of a Gaussian
rv), with exact distribution given by

B~N(@B, o (XTX)™).
Similarly the distribution of ¢’ for some arbitrary vector ¢ € R? is Gaussian and given by
c'B~ N3, 02T (XTX) Le).
Choosing ¢ = e; where e; is the ith canonical vector of RP, we get
Bi = G?B-

From the previous question and the symmetry of the standard normal distribution we hence
get that

A~

Bi — Bi
2 XTX);!

S(I)a/Q =1l-q
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where ®,, /5 denotes the quantile /2 of the standard normal distribution. We get hence the
following confidence intervals for each i =1,...,p,

ICi_o(Bi) = [@ — By (/02 XTX) ;" B +‘1>a/2\/02(XTX)£1} :

(e) The width of the confidence interval is 20, 51/ 0?(XT X )7 Notice that it is proportional to

\/(XTX );1 In the event of multicollinearity, the matrix (X X)) will be very ill-conditioned
and hence the numerical inversion very unstable, yielding inaccurate and potentially very

large coefficients /(X7 X);;', which may blow up the width of the confidence interval.
Q5

a) By plugging the given value for u; into the Poisson density function one has :
y H

L(yi|ov, B) = c.exp(—e*T77) exp(ay; + Briyi)
where ¢ is a constant.
Therefore the loglikelihood is

n n
o, B) = — Z e AT 4 Z oy; + Bxiy; + constant
=1 =1

b) By factorization theorem ¢; = ; and to = > ax;y; are sufficient statistics for o and .
Y

(c) Since
n
o, B) = =Y e®™ + aty + Bty + constant
i=1
thus
LU N zn:e‘”ﬁxi
oo
i=1
and

ol -
— =01 = Z‘a+'3$i
8,3 2 ;xe

(d) if B=0,(a, B) = — >, e*+aty. This is maximized with respect to o with o* = log(t1/n)

(e) One could refer to R
2{l(&, B) — U(a”,0)}
having x? distribution by Wilk’s theorem.

Bonus Q Let Y,, ~ Bernoulli(1/n) and define X,, = nY,,. Let € > 0. Then

1
Pl| X, | > €] = P[|Y,| > 0] = o

for all n > . It follows that
X, 5 o0.

On the other hand, for all n,

1 1
E[Xn]:nx+0><<1—>:1.
n n



