
Exam Solutions (1/2019) Statistics for Data Science Prof. Victor Panaretos

Q1

(i). We have : X1, · · · , Xn ∼ Unif[0, θ].

L(X1, · · · , Xn) =
n∏
j=1

1

θ
1Xj≤θ =

1

θn
1max{Xj}≤θ

E[X] =
θ

2

So, θ̂ = max{Xj} and θ̃ = 2X.

(ii). Clearly, for µ2 = E[θ̃] and σ22 = Var [θ̃]

F̂ (x) = P {max{Xj} ≤ x} =
n∏
j=1

P {Xj ≤ x}

=
[x
θ

]n
1{0<x<θ} + 1{x≥θ}

And since, µ2 = θ and σ22 = 1
n2

[
n θ

2

12

]
= θ2

12n , we can use the Central Limit Theorem to

conclude that for large n,

F̃ (x) = P
{

2X ≤ x
}

= P
{
X − µ2
σ2

≤
√

3
x− θ
θ

}
'

[
1√
2π

∫ √3n(x−θθ )

−∞
e−x

2/2 dx

]
1{0<x<θ} + 1{x≥θ}

(iii). Clearly, for µ1 = E[θ̂] and σ21 = Var [θ̂]

µ1 =

∫ M

0
x · n

θ

[x
θ

]n−1
dx =

n

n+ 1
θ

µ21 + σ21 =

∫ θ

0
x2 · n

θ

[x
θ

]n−1
dx =

n

n+ 2
θ2

σ21 =
n

(n+ 1)2(n+ 2)
θ2

So, the bias is θ
n+1 and the variance is as above.

(iv). Let θ̆ =
(
1 + 1

n

)
max{Xj}. Then E[θ̆] = θ and Var[θ̆] = 1

n(n+2)θ
2.

(v). We calculate the Fisher information as follows :

In(θ) = E

[(
∂

∂θ
log

[
nxn−1

θn

])2
∣∣∣∣∣θ
]

= E

[
n

θ2

∣∣∣∣∣θ
]

=
n

θ2

So, √
n(θ̂ − θ)→ N (0, θ2)

By delta method we get, √
n(θ̆ − θ)→ N (0, θ2)
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Q2

(a)

E ρ̂ =
1

n

n∑
i=1

EXiYi = EXY = ρ ,

so we have unbiasedness. For consistency, define Zi := XiYi. Then ρ̂ = 1
n

∑n
i=1 Zi, thus by

SLLN for the sample Z1, . . . , Zn we have ρ̂ → EZ1 = ρ, where the convergence is almost
sure, which gives us consistency.

(b) This depends on which formula for CLT students have in their cheat-sheet. I think it will
be easy for them to read the formula wrong. For example,

ρ̂− ρ√
var(ρ̂)

→ N (0, 1) .

Using the hint, var(ρ̂) = 1
nvar(X1, Y1) = 1

n((1 + 2ρ2)− ρ2) = 1
n(1 + ρ2), leading to

√
n

ρ̂− ρ√
1 + ρ2

→ N (0, 1) .

(c) Using the Slutzsky’s theorem, we can replace ρ in the denominator by ρ̂, using the fact that
ρ̂ is consistent (this is minimally sufficient justification). Then it is standard algebra to get
the answer :

P (−q0.975 <
√
n

ρ̂− ρ√
1 + ρ̂2

< −q0.975) = 0.95

... CI0.95(ρ) = (ρ̂± q0.975
√

1+ρ̂2√
n

)

Q3

(a) Write Fn(x) = 1
n

∑n
i=1 1[Xi≤x]. Then

f̂(x) =
1

2nh

n∑
i=1

1[
Xi∈(x−h,x+h]

] =
1

2nh

n∑
i=1

1[
1≤x−Xi

h
<h
] =

1

nh

n∑
i=1

K
(x−Xi

h

)
,

where K(y) = 1
21[|y|≤1]. So the kernel corresponds to U [−1, 1] distribution.

(b)

E f̂(x) =
1

2h

[
EFn(x+ h)− EFn(x− h)

]
=

1

2h

[
F (x+ h)− F (x− h)

]
If h → 0, then the previous expression is the definition for derivative of F , thus E f̂(x) →
f(x) for h→ 0. This leads to bias(f̂(x))→ 0.

Note that students will probably start by writing down the definition of bias. This leads to
the same conclusion.

Q4

(a) As explained on slide 342 of the course, the uncentered coefficient of determination measures
the proportion of the squared norm of Y explained by the fitted values Ŷ . As a ratio of
two positive quantities, R02 is necessarily positive. Moreover, we have :

Y = HY + (I −H)Y = Ŷ + (I −H)Y

where the hat matrix H = X(XTX)−1XT is an orthogonal projection operator. We can
hence apply the Pythagorean theorem to obtain

‖Y ‖2 = ‖Ŷ ‖2 + ‖(I −H)Y ‖2,
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and hence ‖Y ‖2 ≥ ‖Ŷ ‖2 ⇒ R2
0 ≤ 1.

Alternative solution : Use spectral norm of H :

‖Ŷ ‖2 = ‖HY ‖2 ≤ ‖H‖22‖Y ‖2.

Since H = X(XTX)−1XT is an orthogonal projection it has maximal eigenvalue 1, yiel-
ding ‖H‖22 = 1 and finally R2

0 ≤ 1.

The inequality is saturated when p = n indeed, is this case X is square and hence invertible
from the full-rank assumption, yielding H = X(XTX)−1XT = XX−1X−TXT = I and
trivially Ŷ = Y ⇒ R2

0 = 1.

(b) The new fitted values are given by

Ỹ = X̃(X̃T X̃)−1X̃TY

= (X,xp+1)

(
(XTX)−1 0

0 1/‖xp+1‖2
)(

XT

xTp+1

)
Y

= X(XTX)−1XTY +
xTp+1Y

‖xp+1‖2
xp+1

= Ŷ +
xTp+1Y

‖xp+1‖2
xp+1,

since XTxp+1 = 0 by assumption. From Pythagore again we get

‖Ỹ ‖2 = ‖Ŷ ‖2 + |xTp+1Y |2,

which yields :
‖Ŷ ‖2

‖Y ‖2
≤ ‖Ỹ ‖

2

‖Y ‖2
.

A higher uncentered coefficient of determination R2
0 is not necessarily desirable. Indeed,

when we add too many covariates to the model, we explain more and more of the variations
in the data, including after a certain threshold the noise variations, which is of course
undesirable. This phenomenon is called overfitting.

(c) We have β̂ = (XTX)−1XTY and

Y ∼ N (Xβ, σ2In),

by assumption of the Gaussian linear model. From properties of Gaussian random vector,
we know that β̂ is again a Gaussian random vector (as linear transformation of a Gaussian
rv), with exact distribution given by

β̂ ∼ N (β, σ2(XTX)−1).

Similarly the distribution of cT β̂ for some arbitrary vector c ∈ Rp is Gaussian and given by

cT β̂ ∼ N (cTβ, σ2cT (XTX)−1c).

(d) Choosing c = ei where ei is the ith canonical vector of Rp, we get

β̂i = eTi β̂.

From the previous question and the symmetry of the standard normal distribution we hence
get that

P


∣∣∣β̂i − βi∣∣∣√
σ2(XTX)−1ii

≤ Φα/2

 = 1− α,
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where Φα/2 denotes the quantile α/2 of the standard normal distribution. We get hence the
following confidence intervals for each i = 1, . . . , p,

IC1−α(βi) =

[
β̂i − Φα/2

√
σ2(XTX)−1ii , β̂i + Φα/2

√
σ2(XTX)−1ii

]
.

(e) The width of the confidence interval is 2Φα/2

√
σ2(XTX)−1ii . Notice that it is proportional to√

(XTX)−1ii . In the event of multicollinearity, the matrix (XTX) will be very ill-conditioned

and hence the numerical inversion very unstable, yielding inaccurate and potentially very

large coefficients
√

(XTX)−1ii , which may blow up the width of the confidence interval.

Q5

(a) By plugging the given value for µi into the Poisson density function one has :

L(yi|α, β) = c. exp(−eα+βxi) exp(αyi + βxiyi)

where c is a constant.

Therefore the loglikelihood is

l(α, β) = −
n∑
i=1

eα+βxi +
n∑
i=1

αyi + βxiyi + constant

(b) By factorization theorem t1 =
∑
yi and t2 =

∑
xiyi are sufficient statistics for α and β.

(c) Since

l(α, β) = −
n∑
i=1

eα+βxi + αt1 + βt2 + constant

thus
∂l

∂α
= 0→ t1 =

n∑
i=1

eα+βxi

and
∂l

∂β
= 0→ t2 =

n∑
i=1

xie
α+βxi

(d) if β = 0, l(α, β) = −
∑n

i=1 e
α+αt1. This is maximized with respect to α with α∗ = log(t1/n)

(e) One could refer to
2{l(α̂, β̂)− l(α∗, 0)}

having χ2
1 distribution by Wilk’s theorem.

Bonus Q Let Yn ∼ Bernoulli(1/n) and define Xn = nYn. Let ε > 0. Then

P[|Xn| > ε] = P[|Yn| > 0] =
1

n
.

for all n > ε. It follows that
Xn

p→ 0.

On the other hand, for all n,

E[Xn] = n× 1

n
+ 0×

(
1− 1

n

)
= 1.
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