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Answer sheet 13

Assignment 1.

(i). We have

f(y;π) =

(
m

y

)
πy(1− π)m−y

= exp

[
log

(
m

y

)
+ y log

(
π

1− π

)
+m log(1− π)

]
= exp [yϕ+ γ(ϕ) + S(y)]

with

ϕ = log

(
π

1− π

)
⇔ π =

eϕ

1 + eϕ
,

γ(ϕ) = −m log(1− π) = −m log

(
1

1 + eϕ

)
= m log(1 + eϕ),

S(y) = log

(
m

y

)
.

(ii). From the course we have that

E(Y ) = µ = γ′(ϕ) = m
eϕ

1 + eϕ
= mπ

Var(Y ) = γ′′(ϕ) =
meϕ

(1 + eϕ)2
=

meϕ

1 + eϕ
1

1 + eϕ
= µ

(
1− µ

m

)
.

Assignment 2.

E(Y ) = P (X > 0) = 1− P (X = 0) = 1− exp(−µ) = 1− exp{− exp(xTβ)}.

Assignment 3. (i). Let ηj = xTj β. The log likelihood function as a function of (ηj) is

ℓη(η) =
n∑

j=1

yj log
exp(ηj)

1 + exp(ηj)
+ (1− yj) log

1

1 + exp(ηj)
=

n∑
j=1

yjηj − log(1 + exp(ηj))

and as a function of β

ℓ(β) =
n∑

j=1

yjx
T
j β − log[1 + exp(xTj β)].

To obtain the likelihood equation we equate to zero the derivative of ℓ with respect to
β :

∂ℓ(β)

∂βi
=

n∑
j=1

yjXji − πjXji = (yj − πj)Xji.

The likelihood equation says that this should equal 0 for all i, which in matrix form can
be written yTX = π̂TX.
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(ii). To calculate the deviance we need to maximise with respect to (ηj) and with respect to
β and compare the optimal objective value. Notice that ℓη is decreasing in ηj if yj = 0
and increasing if yj = 1. Therefore the supremum is “attained” when ηj = −∞ if yj = 0
and ηj = ∞ if yj = 1 with objective value zero.

The optimal value of ℓ(β) is

ℓ(β) =
n∑

j=1

yjx
T
j β̂ − log[1 + exp(xTj β̂)] = yTXβ̂ +

n∑
j=1

log(1− π̂j).

The deviance is twice the negative of this expression, since the optimal value in the
saturated model was shown to vanish.

(iii). If we plug in ηj = exp(xTj β) in the first expression of ℓη we get

D = −2
n∑

j=1

yj log π̂j + (1− yj) log(1− π̂j)

and this depends only on (π̂j).

Assignment 4. The log-likelihood for a sample of size n for the saturated model is given
by

ℓ(π̂max, y) = ℓ(η, y) =
n∑

i=1

{yi log(ηi)− ηi − log(yi!)}.

Thus we have ∂ℓ
∂ηi

= yi
ηi

− 1, d’où ηi = yi. Finally

D = 2

n∑
j=1

{log f(yj ; η̂max)− log f(yj ; η̂)}

= 2
n∑

j=1

{yj log(yj)− yj − log(yj !)− yj log(η̂j) + η̂j + log(yj !)}

= 2
n∑

j=1

{
yj log

(
yj
η̂j

)
− yj + η̂j

}
.

Assignment 5. Write

(y − ĝ)T (y − ĝ) = (g + ϵ− Sg − Sϵ)T (g + ϵ− Sg − Sϵ)

= {(I − S)g + (I − S)ϵ}T {(I − S)g + (I − S)ϵ}
= gT (I − S)T (I − S)g + 2gT (I − S)T (I − S)ϵ+ ϵT (I − S)T (I − S)ϵ.

The first terms is deterministic, and the second has mean zero. Thus

E

 n∑
j=1

{yj − ĝ(tj)}2
 = gT (I − S)T (I − S)g + E{ϵT ϵ} − 2E{ϵTSϵ}+ E{ϵTSTSϵ}

= gT (I − S)T (I − S)g +

n∑
i=1

{E(ϵ2i )− 2sii E(ϵ2i ) + ssii E(ϵ2i )} (as E(ϵiϵj) = 0).

= gT (I − S)T (I − S)g + σ2(n− 2ν1 + ν2).
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(sij , ssij are the ij-th elements of S and STS respectively.)

E(s2) = σ2 +
gT (I − S)T (I − S)g

n− 2ν1 + ν2

so s2 can be considered an estimator of σ2. It is unbiased if (I−S)g = 0 ; equivalently, Sg = g.

Assignment 6.

(i). Using integration by parts, we obtain that∫ b

a
g′′(x)h′′(x)dx = g′′(x)h′(x)

∣∣∣b
a︸ ︷︷ ︸

=0, car g′′(a)=g′′(b)=0

−
∫ b

a
g′′′(x)h′(x)dx

= −
n−1∑
i=1

g′′′(x+i )

∫ xi+1

xi

h′(x)dx

= −
n−1∑
i=1

g′′′(x+i ){h(xi+1)− h(xi)} = 0.

Here, the second equality comes from the fact that g′′′(x) = 0 inside the intervals (a, x1)
and (xn, b) and that g′′′(x) equals to the constant limx→x+

i
g′′′(x) = g′′′(x+i ) inside the

interval (xi, xi+1). To obtain the last equality finally, observe that g̃(xi) = g(xi) = zi
hence h(xi) = 0 for every i.

(ii). By direct computation we obtain that∫ b

a
{g̃′′(x)}2dx =

∫ b

a
{g′′(x) + h′′(x)}2dx

=

∫ b

a
{g′′(x)}2dx+ 2

∫ b

a
g′′(x)h′′(x)dx+

∫ b

a
{h′′(x)}2dx

=

∫ b

a
{g′′(x)}2dx+

∫ b

a
{h′′(x)}2dx ≥

∫ b

a
{g′′(x)}2dx.

where we have equality if and only if h′′(x) ≡ 0, so we must have h(x) = kx + c. But
since h(xi) = 0 for every i, it must be thath(x) ≡ 0. In particular we have equality if
and only if g̃ = g.

(iii). Let f̃ ∈ C2[a, b]\N(x1, . . . , xn) and let f ∈ N(x1, . . . , xn) the spline which is interpola-
ting the points (xi, f̃(xi)),
i = 1, . . . , n. The existance of f is guaranteed by the theorems seen in class. By point
(2) ∫ b

a
{f̃ ′′(x)}2dx >

∫ b

a
{f ′′(x)}2.

Moreover
n∑

i=1

(yi − f̃(xi))
2 =

n∑
i=1

(yi − f(xi))
2.

Hence, L(f̃) > L(f) and we notice that if the minimum exists, it must belong to
N(x1, . . . , xn).
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Remark. Using the properties of splines, it it possible to show that a minimum always exists
and is unique. Hence the problem minf∈C2[a,b] L(f) admits always a unique solution and this
solution is a natural cubic spline.
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