STATISTICS FOR DATA SCIENCE RaAJiTA CHANDAK AND MYRTO LIMNIOS

ANSWER SHEET 13

Assignment 1.

(i). We have
s = ()
— exp [log (7;) +ylog <17_T7r) +mlog(1 — w)]
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(ii). From the course we have that
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Assignment 2.
E(Y)=P(X >0)=1-P(X =0)=1—exp(—pu) =1 — exp{—exp(z? 5)}.
Assignment 3. (i). Let n; = :Ufﬁ The log likelihood function as a function of (n;) is
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and as a function of g

(B) = yx] B —logl + exp(a] B)].

j=1

To obtain the likelihood equation we equate to zero the derivative of £ with respect to

B .
)
=D X — 1 X = (y; — 75) X,
j=1

The likelihood equation says that this should equal 0 for all ¢, which in matrix form can
be written 47 X =77 X.
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(ii). To calculate the deviance we need to maximise with respect to (1;) and with respect to
$ and compare the optimal objective value. Notice that £, is decreasing in n; if y; = 0
and increasing if y; = 1. Therefore the supremum is “attained” when n; = —oo if y; = 0
and 7; = oo if y; = 1 with objective value zero.
The optimal value of ¢(5) is

0(B) = yja] B —log[l +exp(z] B)] = y" X B + ) log(1 - 7).
j=1 j=1

The deviance is twice the negative of this expression, since the optimal value in the
saturated model was shown to vanish.

(iii). If we plug in n; = exp(x;fﬂ) in the first expression of ¢, we get
n
D=-2) y;log; + (1 —y;)log(1 - 7))
j=1

and this depends only on (7;).

Assignment 4. The log-likelihood for a sample of size n for the saturated model is given
by

((Fmazsy) = C(n,y) = Y _{vilog(m) — m — log(y)}-
=1

Thus we have % = % — 1, d’ou n; = y;. Finally

D = 2) {logf(ysfimas) —log f(y;:7)}
j=1

= 2 {y;log(y;) — y; —log(y;!) — y; log(1f;) + 1; +log(y;)}
j=1
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Assignment 5. Write
w=9)"(y—-39) = (9+¢—Sg—S)T(g+ec—Sg— Se)
{(I=8)g+ (I = 9e}™{(I - S)g+ (I - S)e}
gt (I = SYI(I = S)g+ 29T (1 — 8)T(I — S)e + L(I — S)T'(I — S)e.

The first terms is deterministic, and the second has mean zero. Thus

E En: =3 | = ¢"U =51~ 8)g+E{c"e} —2E{e" Se} +E{c" 5" 5S¢}
j=1

= g"(I-9)"(I-8)g+> {E(]) — 25 E(e]) + ssii B(e])} (as E(ese;) = 0).
=1
= ¢TI -8)1(I-8)g+ c*(n—2uv + ).
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Sii,85;; are the ij-th elements of S and ST'S respectively.
> $Sij

9"(I=8)"(I-98)g
n—2v1 + 1y

E(s?) = 0% +
so 52 can be considered an estimator of 0. It is unbiased if (I —S)g = 0; equivalently, Sg = g.

Assignment 6.

(i). Using integration by parts, we obtain that

- /ab g"(x)h (x)dz

Tit1
:_Zg/// / h'(:v)dac

=— Zg’” Wh(zis1) — h(z)} = 0.

Here, the second equality comes from the fact that ¢”’(x) = 0 inside the intervals (a, x1)
and (z,,b) and that ¢"”’(z) equals to the constant lim,, -+ g"(x) = ¢"(z}) inside the

interval (z;,2;11). To obtain the last equality finally, observe that 9(zi) = g(z;) = 2
hence h(z;) = 0 for every i.

(if). By direct computation we obtain that
[ e@pa= [ 1 wPe
_ / (¢ (2))2dz + 2 / @ @)+ / ()2
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where we have equality if and only if h”(z) = 0, so we must have h(z) = kx + ¢. But
since h(z;) = 0 for every i, it must be thath(xz) = 0. In particular we have equality if
and only if g = g.

(iii). Let f € C?[a,b]\N(z1,...,2,) and let f € N(z1,...,z,) the spline which is interpola-
ting the points (x4, f(2;)),
i = 1,...,n. The existance of f is guaranteed by the theorems seen in class. By point

2) b b
/{ﬂun%x>/{ﬂm»2

n n

D (i — f@)* = (v — fl@i)*.

i=1 =1

Moreover

Hence, L(f) > L(f) and we notice that if the minimum exists, it must belong to
N(xi,...,zp).
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Remark. Using the properties of splines, it it possible to show that a minimum always exists
and is unique. Hence the problem min sec2(q5) L(f) admits always a unique solution and this
solution is a natural cubic spline.



