

ASSIGNMENT SHEET 13

Spring 2025

Assignment 1.

(i). Show that the binomial density

$$f(y; \pi) = \binom{m}{y} \pi^y (1 - \pi)^{m-y}, \quad 0 < \pi < 1, \quad y = 0, \dots, m.$$

may be written as

$$\exp [y\phi + \gamma(\phi) + S(y)]$$

and express ϕ , γ and $S(y)$ in terms of the usual parameter π .

(ii). Deduce the mean and variance function for Y .

Assignment 2. If X is a Poisson variable with mean $\mu = \exp(x^T \beta)$ and Y is a binary variable indicating the event $X > 0$, find the link function between $\mathbb{E}(Y)$ and $x^T \beta$.

Assignment 3. Let y_1, \dots, y_n be independent Bernoulli random variables such that $\pi_j = \mathbb{P}(y_j = 1) = \exp(x_j^T \beta) / \{1 + \exp(x_j^T \beta)\}$.

(i). Let $\hat{\pi}_j = \exp(x_j^T \hat{\beta}) / \{1 + \exp(x_j^T \hat{\beta})\}$. Show that the likelihood equation is $X^T y = X^T \hat{\pi}$
(ii). Show that the deviance is

$$D = -2 \left\{ y^T X \hat{\beta} + \sum_{j=1}^n \log(1 - \hat{\pi}_j) \right\}.$$

(iii). Show that the deviance is only a function of $\hat{\pi}_j$.

Assignment 4.

Show that the contribution to the scaled deviance for a response variable with Poisson density $\eta^y e^{-\eta} / y!$, $\eta > 0$, $y = 0, 1, \dots$, is $2\{y \log(y/\hat{\eta}) - y + \hat{\eta}\}$.

Assignment 5. By writing $\sum\{y_j - \hat{g}(t_j)\}^2 = (y - \hat{g})^T (y - \hat{g})$, with $y = g + \epsilon$ and $\hat{g} = Sy$, where S is a smoothing matrix, show that

$$\mathbb{E} \left[\sum_{j=1}^n \{y_j - \hat{g}(t_j)\}^2 \right] = \sigma^2(n - 2\nu_1 + \nu_2) + g^T (I - S)^T (I - S) g,$$

where $\nu_1 = \text{tr}(S)$, $\nu_2 = \text{tr}(S^T S)$.

Hence explain the use of

$$s^2 = \frac{1}{n - 2\nu_1 + \nu_2} \sum_{j=1}^n \{y_j - \hat{g}(t_j)\}^2$$

as an estimator of σ^2 . Under what circumstances is it unbiased?

Assignment 6. (Natural cubic splines)

Let $n \geq 2$ and $a < x_1 < x_2 < \dots < x_n < b$. Denote by $N(x_1, x_2, \dots, x_n)$ the space of natural cubic splines with knots x_1, x_2, \dots, x_n . The goal of this exercise is to show that the solution to the problem

$$\min_{f \in C^2[a, b]} L(f), \text{ où } L(f) = \sum_{i=1}^n (y_i - f(x_i))^2 + \lambda \int_a^b \{f''(x)\}^2 dx, \quad \lambda > 0, \quad (1)$$

must belong to $N(x_1, x_2, \dots, x_n)$. In order to show this, we need the following theorem

Theorem. For every set of points $(x_1, z_1), (x_2, z_2), \dots, (x_n, z_n)$, it exists a natural cubic spline g interpolating those points. In other words, $g(x_i) = z_i$, $i = 1, \dots, n$, for a unique natural cubic spline g . Moreover, the knots of g are x_1, x_2, \dots, x_n .

(i). Let g the natural cubic spline interpolating the points (x_i, z_i) , $i = 1, \dots, n$, and let $\tilde{g} \in C^2[a, b]$ another function interpolating the same points. Show that

$$\int_a^b g''(x) \tilde{g}''(x) dx = 0,$$

where $h = \tilde{g} - g$.

Hint : integration by parts

(ii). Using point (1) show that

$$\int_a^b \{\tilde{g}''(x)\}^2 dx \geq \int_a^b \{g''(x)\}^2 dx$$

when the equality holds if and only if $\tilde{g} = g$.

(iii). Use point (2) to show that if the problem (1) has a solution \hat{f} , then $\hat{f} \in N(x_1, x_2, \dots, x_n)$.