STATISTICS FOR DATA SCIENCE RaAJiTA CHANDAK AND MYRTO LIMNIOS

ANSWER SHEET 12

Assignment 1.

(i)
(ii).

(ii).

This means that all the columns of X; are orthogonal to the columns of X5. In other
words M(X1) L M(X3).

Remember first that
iy — (X{Xl 0 )

0 X§X2
thus
_ (Xixp)~t 0 t
H = (X17X2) < 0 (XEXZ)_I (leXQ)

= X1 (X1X) 7 Xt 4+ Xo(XEXo) XL = Hy + Ho.
Moreover as X! Xy = 0, we have HiHy = 0. And thus HoHy = HYH! = (H1Hs)! = 0,
HH, = (H, + H))H, = H? = H,

and H\H = HUH' = (HH,)! = H! = H,.

Interpretation : H1{Hy = 0 comes from the fact that the columns of X7 et Xy are
orthogonal, hence if one projects on M(X3) and then on M(X), will obtain the vector
0 as a result. The interpretation for HoH7 = 0 is similar. HH; = H; comes from
projecting on M(X7) and then projecting on M(X) is equivalent to project uniquely
on M(Xy), as M(X1) is a subspace of M(X). For the same reason, HiH = H; because
we project on M(X) and after that on M (X1 ), which is like if we were projecting only on
M(X1). In tuitively we remark that even if X! Xy # 0, we still have HH, = H; = H{ H,
but HiHy # 0 and HoHy # 0.

Using the fact that Hy = (H; + H2)y,
(a) immediate
(b) follows from HoH; = 0;
(c) follows from H(I — Hy) = H — H; = H,.

Assignment 2.

(i).

(XX 0 0
(X'X)! = 0 (X3X2)7" 0 :
: 0 0
0 0 (X[Xp)!
and
(X§X1)™ = diag((X! X))t :ie L).
Hence
H = Xl(Xle)_le + o+ Xk(X};Xk)_lX]i =H|+- -+ H,
and

Hp =Y Xy(XIX)7'Xx] =) H,.

€L €L
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that X!X; = 0.

(i)

(Xixy)™! 0 . 0 Xi (Xin)*iXiy

5 _ 0 XtXo)™h 0 : X5 (X3X2)™ X3y
B=(XtX)Xty = ‘ (X3 X2) S y= .
: 0 0 : :

0 .. 0 (XtXp)!) \Xk (X;Xk) ' Xfy

(iv). First of all notice that
ep=y—Hpy=y—>Y Hy
1€L
and that
erufy =Y —Hpupy=y— Z Hy.
1€LU{j}

Moreover

(I — Hpugy)er = (I — Hpogy) (I — Hiy
= ([ — Hp — Hpugjy + Hpogy He)y
= (I — Hruy)y
= CLugj}-

Then e,y is an orthogonal projection of ey, where e, —epygjy L epugyy and

leruinll® + lew — ezug I = llecll.
Hence
RSSL — RSSrup = llecl® = llerunll® = ller — erogpl® = [1Hjyl?

is independent from L.
(v). The interpretation wrt ANOVA is that in this case, adding one variable X; does not
depend on the variables that are already in the model. This is not true in general!

Assignment 3. We know that the ridge regression parameter is a function of the smoothing
parameter A

~

Bo=9, Mn=(2'Z+ )2

Let Z = UanZanVt the SVD decomposition of Z with ¥ = diag(wi,...,w,). A direct

) : axq
computation yields

VYISV ATV E U Yy
VISIE + VY Tvstuty
= V('S + A ISUy.

= (Z2'Z 4+ X))t Zty
= (
= (
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where

Qridge = X//B\)\
= Bol + 27
— g1+ U {2 (ztz +an)™ zt} Uty

q
:§1+Z 2+A L),

because the matrix between the parenthesis is diagonal n x n with the ¢ first values equal to
wjz / (wj2 + A) and the n — ¢ remaining vanish.

If wi~ 0 and A >> wJQ-, and there is much difference between 1 and u)]z/(w]2 + A) = 0. The
parameter A shrinks the component u; of ¥iqge (Which isg’/fidgeuj), and the variance of the
fitted values in the direction of u; is small.

Assignment 4. Since everything is positive BO =7 independently on A, then it is enough to
consider H:Y\ridgeH%- Let 4 = Aridge-

Let Z = UXV? the SVD decomposition of Z. By an argument similar to the one of the

previous exercise,
q

F=V(ES+A) 'S Uy =
j=1

Wi
w? 4+ A

(ujy)vj.

Since the v; are orthonormal we find

q q q 2
~_ Wy t Wi toNot Wi t N2
-3 s e = Y )

j=11i=1 "7 i j=1

.

which is decreasing in .
Assignment 5. (a) Since Bo=7 (why ?7), we have
n q
g =lly—g1= 273 =y = 2713 =>_ | vi =D _ Zij;
=1

i=1

(b) By the chain rule, we have

n
_22<yz ZZZ,@) Ziy = —27Ty = 22Ty, j=1,...,q,
i=1
since ZT'1 = 0.
(c) We have for small ¢
f(te;) = g(te;) + Mltej |l = glte;) + Alt] = g(0) — 2¢(Z] y) + Alt] + o(2).

If 2Zy > 0 then for ¢ > 0 small, f(te;) < g(0) = f(0). If 2Z]y < 0 then for ¢ < 0 small
(close to zero), f(te;) < f(0). In both cases 0 is not a minimiser of f.
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(d)

Since g is convex (even if it wasn’t we could introduce an o(||v||) term)
f(v) = g(0) + [Vg(0)]"w + Allvll = g(0) + (A = [[Vg(O)llo) [l = £(0) + (A = A)[Jv]l1.

As A > X*| this shows that f is minimised at 0. If A > A* then 0 is the only minimiser. It
follows from a further assignment that if A = A\* > 0, then 0 is the unique minimiser.

Assignment 6. Both 31 and Bg estimate By by 7 and so X 31 =7yl + Z7; and similarly for
B2. Therefore we only need to deal with the estimators of . Let y* = y — 71.

(a)

Assume that 4(1) and 4() both give an optimal objective value v. Note first that ||Y —Z~||3
is a strictly convex function of Z~, and hence for ¢ € (0, 1), we have

Iy =24V — (1 =) 253 <ty = Z3D)5 + 1 - )Y — 24P (1)

with equality if and only if Z5() = Z3(2). Now, by optimality of 4V, 4(2) and convexity
of the L' norm, we see that

v < |IY —t254W — 1 = Z3P 3 + AIHD + (1 - 5@y
= t{[[Y = ZYVI2 + A + @ — ) {|IY — Z4P |2+ M5P|h}
=tv+(1—-thv=vo

by optimality of both '?(1) and &(2)' Hence, equality must have been preserved throughout
this chain of inequalities, which in particular means that :chere must have been equality
in (1). Thus Z5W = Z4®), which in turn implies that X, = X fs.

We get this directly from (a) :
MAtl = FG) = ly* = 27103 = f(B2) = lly" = Z32[13 = MF2l1.

From part (a) we know that the solutions have the form (7,77)7 and (7,77 +vT)T, with
Zv = 0. This means that v = (—¢,¢€)T for some € # 0. From part (b) we know that
I7ll1 = |7 + v|l1- We can find such a nonzero v if and only if ¥ # 0. (For example, if
3T = (0,0.1), then any € € [—0.1,0] will do.) So we just need to check that 0 is not a
solution. This can be done using a previous assignment (A = 1 < A\* = 4) or directly : the
objective function in 7 is

2(1 =71 = 72)% + Iml + el.

At 0 this equals 2, whereas at (0,1)7 this equals 1. So the optimal 7 is not zero. Conse-
quetly, there exists an € > 0 for which ||5][y = || + v||1. In fact, a straightforward
calculation shows that the set of solutions is

{F132)" :0<7 et A1 +32 =3/4) = {(3/8,3/8)" + (—e.)" : |e| < 3/8}.



