
Statistics for Data Science Rajita Chandak and Myrto Limnios

Answer sheet 12

Assignment 1.

(i). This means that all the columns of X1 are orthogonal to the columns of X2. In other
words M(X1) ⊥ M(X2).

(ii). Remember first that

XtX =

(
Xt

1X1 0
0 Xt

2X2

)
,

thus

H = (X1, X2)

(
(Xt

1X1)
−1 0

0 (Xt
2X2)

−1

)
(X1, X2)

t

= X1(X
t
1X1)

−1Xt
1 +X2(X

t
2X2)

−1Xt
2 = H1 +H2.

Moreover as Xt
1X2 = 0, we have H1H2 = 0. And thus H2H1 = Ht

2H
t
1 = (H1H2)

t = 0,

HH1 = (H1 +H2)H1 = H2
1 = H1

and H1H = Ht
1H

t = (HH1)
t = Ht

1 = H1.

Interpretation : H1H2 = 0 comes from the fact that the columns of X1 et X2 are
orthogonal, hence if one projects on M(X2) and then on M(X1), will obtain the vector
0 as a result. The interpretation for H2H1 = 0 is similar. HH1 = H1 comes from
projecting on M(X1) and then projecting on M(X) is equivalent to project uniquely
on M(X1), as M(X1) is a subspace of M(X). For the same reason, H1H = H1 because
we project onM(X) and after that onM(X1), which is like if we were projecting only on
M(X1). In tuitively we remark that even if Xt

1X2 ̸= 0, we still have HH1 = H1 = H1H,
but H1H2 ̸= 0 and H2H1 ̸= 0.

(iii). Using the fact that Hy = (H1 +H2)y,

(a) immediate

(b) follows from H2H1 = 0 ;

(c) follows from H(I −H1) = H −H1 = H2.

Assignment 2.

(i).

(XtX)−1 =


(Xt

1X1)
−1 0 . . . 0

0 (Xt
2X2)

−1 0
...

... 0
. . . 0

0 . . . 0 (Xt
kXk)

−1


and

(Xt
LXL)

−1 = diag((Xt
iXi)

−1 : i ∈ L).

Hence
H = X1(X

t
1X1)

−1Xt
1 + · · ·+Xk(X

t
kXk)

−1Xt
k = H1 + · · ·+Hk

and
HL =

∑
i∈L

Xi(X
t
iXi)

−1Xt
i =

∑
i∈L

Hi.
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(ii). If i = j, HiHj = H2
i = Hi and if i ̸= j, HiHj = Xi(X

t
iXi)

−1Xt
iXj(X

t
jXj)

−1Xt
j = 0 so

that Xt
iXj = 0.

(iii).

β̂ = (XtX)−1Xty =


(Xt

1X1)
−1 0 . . . 0

0 (Xt
2X2)

−1 0
...

... 0
. . . 0

0 . . . 0 (Xt
kXk)

−1



Xt

1

Xt
2
...

Xt
k

 y =


(Xt

1X1)
−1Xt

1y
(Xt

2X2)
−1Xt

2y
...

(Xt
kXk)

−1Xt
ky

 .

(iv). First of all notice that

eL := y −HLy = y −
∑
i∈L

Hiy

and that
eL∪{j} := y −HL∪{j}y = y −

∑
i∈L∪{j}

Hiy.

Moreover

(I −HL∪{j})eL = (I −HL∪{j})(I −HL)y

= (I −HL −HL∪{j} +HL∪{j}HL)y

= (I −HL∪{j})y

= eL∪{j}.

Then eL∪{j} is an orthogonal projection of eL, where eL − eL∪{j} ⊥ eL∪{j} and

∥eL∪{j}∥2 + ∥eL − eL∪{j}∥2 = ∥eL∥2.

Hence

RSSL −RSSL∪{j} = ∥eL∥2 − ∥eL∪{j}∥2 = ||eL − eL∪{j}||2 = ||Hjy||2

is independent from L.

(v). The interpretation wrt ANOVA is that in this case, adding one variable Xj does not
depend on the variables that are already in the model. This is not true in general !

Assignment 3. We know that the ridge regression parameter is a function of the smoothing
parameter λ

β̂0 = y, γ̂λ = (ZtZ + λI)−1Zty.

Let Z = Un×nΣn×qV
t
q×q the SVD decomposition of Z with Σ = diag(ω1, . . . , ωq). A direct

computation yields

γ̂λ = (ZtZ + λI)−1Zty

= (V ΣtΣV t + λI)−1V ΣtU ty

= (V [ΣtΣ+ λI]V t)−1V ΣtU ty

= V (ΣtΣ+ λI)−1ΣtU ty.
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where

ŷridge = Xβ̂λ

= β̂01+ Zγ̂

= y1+ U
{
Σ
(
ΣtΣ+ λI

)−1
Σt
}
U ty

= y1+

q∑
j=1

ω2
j

ω2
j + λ

uj(u
t
jy),

because the matrix between the parenthesis is diagonal n× n with the q first values equal to
ω2
j /(ω

2
j + λ) and the n− q remaining vanish.

If ωj ≈ 0 and λ >> ω2
j , and there is much difference between 1 and ω2

j /(ω
2
j + λ) ≈ 0. The

parameter λ shrinks the component uj of ŷridge (which isŷtridgeuj), and the variance of the
fitted values in the direction of uj is small.

Assignment 4. Since everything is positive β̂0 = y independently on λ, then it is enough to
consider ∥γ̂ridge∥22. Let γ̂ = γ̂ridge.

Let Z = UΣV t the SVD decomposition of Z. By an argument similar to the one of the
previous exercise,

γ̂ = V (ΣtΣ+ λI)−1ΣtU ty =

q∑
j=1

ωj

ω2
j + λ

(utjy)vj .

Since the vj are orthonormal we find

γ̂tγ̂ =

q∑
j=1

q∑
i=1

ωj

ω2
j + λ

(utjy)
ωi

ω2
i + λ

(utiy)v
t
jvi =

q∑
j=1

(
ωj

ω2
j + λ

)2

(utjy)
2,

which is decreasing in λ.

Assignment 5. (a) Since β̂0 = y (why ?), we have

g(γ) = ∥y − y1− Zγ∥22 = ∥y∗ − Zγ∥22 =
n∑

i=1

y∗i −
q∑

j=1

Zijγj

2

.

(b) By the chain rule, we have

∂g

∂γj
(0) = −

n∑
i=1

2

(
y∗i −

q∑
k=1

Zik0

)
Zij = −2ZT

j y
∗ = −2ZT

j y, j = 1, . . . , q,

since ZT1 = 0.

(c) We have for small t

f(tej) = g(tej) + λ∥tej∥1 = g(tej) + λ|t| = g(0)− 2t(ZT
j y) + λ|t|+ o(t).

If 2ZT
j y > 0 then for t > 0 small, f(tej) < g(0) = f(0). If 2ZT

j y < 0 then for t < 0 small
(close to zero), f(tej) < f(0). In both cases 0 is not a minimiser of f .
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(d) Since g is convex (even if it wasn’t we could introduce an o(∥v∥) term)

f(v) ≥ g(0) + [∇g(0)]T v + λ∥v∥1 ≥ g(0) + (λ− ∥∇g(0)∥∞)∥v∥1 = f(0) + (λ− λ∗)∥v∥1.

As λ ≥ λ∗, this shows that f is minimised at 0. If λ > λ∗ then 0 is the only minimiser. It
follows from a further assignment that if λ = λ∗ > 0, then 0 is the unique minimiser.

Assignment 6. Both β̂1 and β̂2 estimate β0 by y and so Xβ̂1 = y1+ Zγ̂1 and similarly for
β̂2. Therefore we only need to deal with the estimators of γ. Let y∗ = y − y1.

(a) Assume that γ̂(1) and γ̂(2) both give an optimal objective value v. Note first that ∥Y −Zγ∥22
is a strictly convex function of Zγ, and hence for t ∈ (0, 1), we have

∥Y − tZγ̂(1) − (1− t)Zγ̂(2)∥22 ≤ t∥Y − Zγ̂(1)∥22 + (1− t)∥Y − Zγ̂(2)∥22 (1)

with equality if and only if Zγ̂(1) = Zγ̂(2). Now, by optimality of γ̂(1), γ̂(2) and convexity
of the L1 norm, we see that

v ≤ ∥Y − tZγ̂(1) − (1− t)Zγ̂(2)∥22 + λ∥tγ̂(1) + (1− t)γ̂(2)∥1
≤ t∥Y − Zγ̂(1)∥22 + (1− t)∥Y − Zγ̂(2)∥22 + λt∥γ̂(1)∥1 + λ(1− t)∥γ̂(2)∥1
= t{∥Y − Zγ̂(1)∥22 + λ∥γ̂(1)∥1}+ (1− t){∥Y − Zγ̂(2)∥22 + λ∥γ̂(2)∥1}
= tv + (1− t)v = v

by optimality of both γ̂(1) and γ̂(2). Hence, equality must have been preserved throughout
this chain of inequalities, which in particular means that there must have been equality
in (1). Thus Zγ̂(1) = Zγ̂(2), which in turn implies that Xβ̂1 = Xβ̂2.

(b) We get this directly from (a) :

λ∥γ̂1∥1 = f(γ̂1)− ∥y∗ − Zγ̂1∥22 = f(γ̂2)− ∥y∗ − Zγ̂2∥22 = λ∥γ̂2∥1.

(c) From part (a) we know that the solutions have the form (y, γ̂T )T and (y, γ̂T + vT )T , with
Zv = 0. This means that v = (−ϵ, ϵ)T for some ϵ ̸= 0. From part (b) we know that
∥γ̂∥1 = ∥γ̂ + v∥1. We can find such a nonzero v if and only if γ̂ ̸= 0. (For example, if
γ̂T = (0, 0.1), then any ϵ ∈ [−0.1, 0] will do.) So we just need to check that 0 is not a
solution. This can be done using a previous assignment (λ = 1 < λ∗ = 4) or directly : the
objective function in γ is

2(1− γ1 − γ2)
2 + |γ1|+ |γ2|.

At 0 this equals 2, whereas at (0, 1)T this equals 1. So the optimal γ̂ is not zero. Conse-
quetly, there exists an ϵ > 0 for which ∥γ̂∥1 = ∥γ̂ + v∥1. In fact, a straightforward
calculation shows that the set of solutions is

{(γ̂1, γ̂2)T : 0 ≤ γ̂i et γ̂1 + γ̂2 = 3/4} = {(3/8, 3/8)T + (−ϵ, ϵ)T : |ϵ| ≤ 3/8}.
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