

ASSIGNMENT SHEET 12

Spring 2025

Assignment 1 (Orthogonal variables).

Consider the regression model

$$y = X\beta + \varepsilon = (X_1, X_2) \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \varepsilon,$$

where $X = (X_1, X_2)$, $\beta^t = (\beta_1^t, \beta_2^t)$, X_1 is $n \times p_1$, X_2 is $n \times p_2$ (both injective) such that

$$X_1^t X_2 = 0_{p_1 \times p_2}.$$

Let H_i the hat matrix associated with X_i .

- (i). What is the geometrical interpretation of $X_1^t X_2 = 0$?
- (ii). Compute H as a function of X_i and H_i , then compute the products

$$H_1 H_2, H_2 H_1, H H_1, H_1 H.$$

Comment. What is their geometric interpretation ?

- (iii). Show that each of the following quantities is equal to $H y$:

- (a) $H_1 y + H_2 y$;
- (b) $H_1 y + H_2 e_1$, avec $e_1 = (I - H_1) y$;
- (c) $H_1 y + H e_1$.

Finish by observing that the above equalities imply that for the model

$$y = X\beta + \varepsilon \quad (M)$$

the fitted values under the full model M equal

- (a) the sum of the fitted values under (M_1) and (M_2) (where the model M_i corresponds to the pair (y, X_i)).
- (b) The sum of the fitted values under (M_1) (with input data (y, X_1)) and of the residuals of (M_1) computed under (M_2) (with variables (e_1, X_2)).
- (c) The sum of the fitted values under (M_1) (with variables (y, X_1)) and of the residuals of (M_1) computed under (M) (with variables (e_1, X)).

Assignment 2 (Orthogonal variables and ANOVA).

Consider the regression model

$$y = X\beta + \varepsilon = (X_1, \dots, X_k) \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_k \end{pmatrix} + \varepsilon$$

where X_i is $n \times p_i$, all the X_i are injectives and

$$i \neq j \implies X_i^t X_j = 0.$$

Let H be the hat matrix associated with X , H_i the hat matrix associated with X_i and $\hat{\beta} = (X^t X)^{-1} X^t y = (\hat{\beta}_1^t, \dots, \hat{\beta}_k^t)^t$. Denote by δ_{ij} the Kronecker delta : $\delta_{ij} = 1$ if $i = j$, and 0

otherwise. For a set $L \subset \{1, \dots, k\}$ we define $X_L = (X_i : i \in L)$ and $\hat{\beta}_L = (\hat{\beta}_i^t : i \in L)^t$. For example if $L = \{1, 2, 4\}$, $X_L = (X_1, X_2, X_4)$ et

$$\hat{\beta}_L = \begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \\ \hat{\beta}_4 \end{pmatrix}.$$

Define $RSS_L = \|y - H_L y^2\|$, où $H_L = X_L (X_L^t X_L)^{-1} X_L^t$.

- (i). Show that $H = H_1 + \dots + H_k$ and that $H_L = \sum_{i \in L} H_i$.
- (ii). Show that $H_i H_j = \delta_{ij} H_i$.
- (iii). Show that $\hat{\beta}_j = (X_j^t X_j)^{-1} X_j^t y$.
- (iv). For $j \notin L$, compute

$$RSS_L - RSS_{L \cup \{j\}},$$

and show that such expression doesn't depend on L .

- (v). What is the interpretation of point 4 w.r.t. ANOVA ?

Consider a matrix $Z_{n \times q}$ with centred columns ($Z^T \mathbf{1}_n = 0_q$). We are interested in estimating the parameter β in the model

$$y = X\beta + \epsilon = \beta_0 \mathbf{1} + Z\gamma + \epsilon, \quad X = [\mathbf{1} \ Z], \quad \beta_0 \in \mathbb{R}, \quad \gamma \in \mathbb{R}^q, \quad \beta^T = (\beta_0, \gamma^T) \in \mathbb{R}^{q+1}.$$

The parameter $\lambda > 0$ (sometimes one can consider the case $\lambda = 0$) is the penalisation parameter in ridge regression or in the lasso. Since the objective functions are convex in γ (in fact, in β as well), a local minimum is a global minimum.

Assignment 3. Observe that the Ridge estimator is a function of the smoothing parameter λ .

$$\hat{\beta}_0 = \bar{y}, \quad \hat{\gamma}_\lambda = (Z^t Z + \lambda I)^{-1} Z^t y.$$

- (i). Using the SVD decomposition of $Z = U_{n \times n} \Sigma_{n \times q} V_{q \times q}^t$ with $\Sigma = \text{diag}(\omega_1, \dots, \omega_q)$, show that

$$\hat{\gamma}_\lambda = V(\Sigma^t \Sigma + \lambda I)^{-1} \Sigma^t U^t y.$$

- (ii). Conclude that for the fitted values of the Ridge regressions holds

$$\hat{y}_{\text{ridge}} = \bar{y} \mathbf{1} + \sum_{j=1}^q \frac{\omega_j^2}{\omega_j^2 + \lambda} u_j (u_j^t y), \quad (1)$$

where u_j are the eigenvectors of $Z Z^T$.

Hint : You need to observe that a certain matrix is diagonal

- (iii). Let $\lambda > 0$. What is the impact on \hat{y}_{ridge} of the ω_j which are close to 0 ?

Assignment 4. (i). Let $Z = U \Sigma V^t$ the SVD decomposition of Z . Show that

$$\hat{\gamma} = \sum_{j=1}^q \frac{\omega_j}{\omega_j^2 + \lambda} (u_j^t y) v_j.$$

(ii). Show that

$$\hat{\gamma}^t \hat{\gamma} = \sum_{j=1}^q \left(\frac{\omega_j}{\omega_j^2 + \lambda} \right)^2 (u_j^t y)^2.$$

Hint : use what you know on the v_j .

(iii). Conclude that $\lambda \mapsto \|\hat{\beta}_{\text{ridge}}\|_2^2$ is a decreasing function of λ .

Assignment 5. Let $\lambda^* = 2 \max_{1 \leq j \leq q} |Z_j^T y|$. We would like to show that

$$\begin{cases} \lambda > \lambda^* \implies \hat{\gamma}_{\text{lasso}} = 0 \\ \lambda < \lambda^* \implies \hat{\gamma}_{\text{lasso}} \neq 0. \end{cases}$$

Let $f(\gamma)$ be the lasso objective function, and let $g(\gamma) = f(\gamma) - \lambda \|\gamma\|_1$. The idea is to check how the objective value behaves around 0. We consider g by its derivative at 0, where as the nondifferentiable L_1 norm will require a direct inspection.

(a) Define the centred data $y^* = y - \bar{y}\mathbf{1}$. Show that

$$g(\gamma) = \sum_{i=1}^n \left(y_i^* - \sum_{j=1}^q Z_{ij} \gamma_j \right)^2.$$

(b) Show that

$$\frac{\partial g}{\partial \gamma_j}(0) = -2Z_j^T y, \quad j = 1, \dots, q.$$

(c) Suppose that $\lambda < \lambda^*$. Then there exists j such that $2|Z_j^T y| > \lambda$. Show that zero is not a local minimum of f . *Hint : let $e_j \in \mathbb{R}^q$ be the j -th unit vector and consider $f(te_j)$ for t small.*

(d) Suppose that $\lambda > \lambda^*$. Show that 0 is the unique minimiser of f . *Hint : use the convexity $g(v) \geq g(0) + [\nabla g(0)]^T v$ and Hölder's inequality $|u^T v| \leq \|u\|_\infty \|v\|_1$.*

Assignment 6. Unlike ridge regression, the lasso solutions are not always unique. However, the fitted values are : let $\hat{\beta}_1$ and $\hat{\beta}_2$ be two solutions of the lasso (for the same λ).

(a) Show that $X\hat{\beta}_1 = X\hat{\beta}_2$. *Hint : it suffices to deal with the estimators of γ (why?). Use strict convexity again.*

(b) Show that if $\lambda > 0$, then $\|\hat{\beta}_1\|_1 = \|\hat{\beta}_2\|_1$.

(c) Show that if

$$Z = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}, \quad y^T = (1, -1), \quad \lambda = 1$$

then solutions are not unique.