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Assignment sheet 12 Spring 2025

Assignment 1 (Orthogonal variables).
Consider the regression model

y = Xβ + ε = (X1, X2)

(
β1
β2

)
+ ε,

where X = (X1, X2), β
t = (βt

1, β
t
2), X1 is n× p1, X2 is n× p2 (both injective) such that

Xt
1X2 = 0p1×p2 .

Let Hi the hat matrix associated with Xi.

(i). What is the geometrical interpretation of Xt
1X2 = 0?

(ii). Compute H as a function of Xi and Hi, then compute the products

H1H2, H2H1, HH1, H1H.

Comment. What is their geometric interpretation ?

(iii). Show that each of the following quantities is equal to Hy :

(a) H1y +H2y ;

(b) H1y +H2e1, avec e1 = (I −H1)y ;

(c) H1y +He1.

Finish by observing that the above equalities imply that for the model

y = Xβ + ε (M)

the fitted values under the full model M equal

(a) the sum of the fitted values under (M1) and (M2) (where the modelMi corresponds
to the pair (y,Xi).

(b) The sum of the fitted values under (M1) (with input data (y,X1)) and of the
residuals of (M1) computed under (M2) (with variables (e1, X2)).

(c) The sum of the fitted values under (M1) (with variables (y,X1)) and of the residuals
of (M1) computed under (M) (with variables (e1, X)).

Assignment 2 (Orthogonal variables and ANOVA).
Consider the regression model

y = Xβ + ε = (X1, . . . , Xk)

β1
...
βk

+ ε

where Xi is n× pi, all the Xi are injectives and

i ̸= j =⇒ Xt
iXj = 0.

Let H be the hat matrix associated with X, Hi the hat matrix associated with Xi and
β̂ = (XtX)−1Xty = (β̂t

1, . . . , β̂
t
k)

t. Denote by δij the Kronecker delta : δij = 1 if i = j, and 0
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otherwise. For a set L ⊂ {1, . . . , k} we define XL = (Xi : i ∈ L) and β̂L = (β̂t
i : i ∈ L)t. For

example if L = {1, 2, 4}, XL = (X1, X2, X4) et

β̂L =

β̂1
β̂2
β̂4

 .

Define RSSL =
∥∥y −HLy

2
∥∥, où HL = XL(X

t
LXL)

−1Xt
L.

(i). Show that H = H1 + · · ·+Hk and that HL =
∑

i∈LHi.

(ii). Show that HiHj = δijHi.

(iii). Show that β̂j = (Xt
jXj)

−1Xt
jy.

(iv). For j ̸∈ L, compute
RSSL −RSSL∪{j},

and show that such expression doesn’t depend on L.

(v). What is the interpretation of point 4 w.r.t. ANOVA?

Consider a matrix Zn×q with centred columns (ZT1n = 0q). We are interested in estimating
the parameter β in the model

y = Xβ + ϵ = β01+ Zγ + ϵ, X = [1 Z], β0 ∈ R, γ ∈ Rq, βT = (β0, γ
T ) ∈ Rq+1.

The parameter λ > 0 (sometimes one can consider the case λ = 0) is the penalisation
parameter in ridge regression or in the lasso. Since the objective functions are convex in γ (in
fact, in β as well), a local minimum is a global minimum.

Assignment 3. Observe that the Ridge estimator is a function of the smoothing parameter
λ.

β̂0 = y, γ̂λ = (ZtZ + λI)−1Zty.

(i). Using the SVD decomposition of Z = Un×nΣn×qV
t
q×q with Σ = diag(ω1, . . . , ωq), show

that
γ̂λ = V (ΣtΣ+ λI)−1ΣtU ty.

(ii). Conclude that for the fitted values of the Ridge regressions holds

ŷridge = y1+

q∑
j=1

ω2
j

ω2
j + λ

uj(u
T
j y), (1)

where uj are the eigenvectors of ZZT .
Hint : You need to observe that a certain matrix is diagonal

(iii). Let λ > 0. What is the impact on ŷridge of the ωj which are close to 0 ?

Assignment 4. (i). Let Z = UΣV t the SVD decomposition of Z. Show that

γ̂ =

q∑
j=1

ωj

ω2
j + λ

(utjy)vj .
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(ii). Show that

γ̂tγ̂ =

q∑
j=1

(
ωj

ω2
j + λ

)2

(utjy)
2.

Hint : use what you know on the vj .

(iii). Conclude that λ 7→ ∥β̂ridge∥22 is a decreasing function of λ.

Assignment 5. Let λ∗ = 2max1≤j≤q |ZT
j y|. We would like to show that{

λ > λ∗ =⇒ γ̂lasso = 0

λ < λ∗ =⇒ γ̂lasso ̸= 0.

Let f(γ) be the lasso objective function, and let g(γ) = f(γ) − λ∥γ∥1. The idea is to check
how the objective value behaves around 0. We consider g by its derivative at 0, where as the
nondifferentiable L1 norm will require a direct inspection.

(a) Define the centred data y∗ = y − y1. Show that

g(γ) =
n∑

i=1

y∗i −
q∑

j=1

Zijγj

2

.

(b) Show that
∂g

∂γj
(0) = −2ZT

j y, j = 1, . . . , q.

(c) Suppose that λ < λ∗. Then there exists j such that 2|ZT
j y| > λ. Show that zero is not a

local minimum of f . Hint : let ej ∈ Rq be the j-th unit vector and consider f(tej) for t
small.

(d) Suppose that λ > λ∗. Show that 0 is the unique minimiser of f . Hint : use the convexity
g(v) ≥ g(0) + [∇g(0)]T v and Hölder’s inequality |uT v| ≤ ∥u∥∞∥v∥1.

Assignment 6. Unlike ridge regression, the lasso solutions are not always unique. However,
the fitted values are : let β̂1 and β̂2 be two solutions of the lasso (for the same λ).

(a) Show that Xβ̂1 = Xβ̂2. Hint : it suffices to deal with the estimators of γ (why ?). Use
strict convexity again.

(b) Show that if λ > 0, then ∥β̂1∥1 = ∥β̂2∥1.
(c) Show that if

Z =

(
1 1
−1 −1

)
, yT = (1,−1), λ = 1

then solutions are not unique.
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