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Answer sheet 11

Assignment 1. (i). XTX = (x1, . . . , xn)

xT1
...
xTn

 =
∑n

i=1 xix
T
i = XT

−kX−k + xkx
T
k .

(ii). (a) It suffices to verify that

(A+ uvT )

[
B − BuvTB

1 + vTBu

]
= I,

where we denote B = A−1 to simplify notation. We have

(A+ uvT )

[
B − BuvTB

1 + vTBu

]
= I − uvTB

1 + vTBu
+ uvTB − u{vTBu}vTB

1 + vTBu

= I + uvTB − uvTB

1 + vTBu
(1 + vTBu)

= I.

We used that AB = I, and that the expression {vTBu} is a scalar and thus
commutes with any matrix.

(b) Write C = XTX. and use (a) :

(XT
−kX

T
−k)

−1 = (C − xkx
T
k )

−1

= C−1 +
C−1xkx

T
kC

−1

1− xTkC
−1xk

=

(
I +

C−1xkx
T
k

1− hkk

)
C−1

=

(
I +

(XTX)−1xkx
T
k

1− hkk

)
(XTX)−1,

where we have used xTkC
−1xk = (X(XTX)−1XT )k,k = hkk.

(iii). Recall that y = (y1, . . . , yn)
T with yj ∈ R and e = (e1, . . . , en)

T is the residual vector.

(a) XT y = (x1, . . . , xn)y =
∑n

i=1 xiyi = XT
−ky + xkyk.

(b)

xTk (X
TX)−1XT

−ky = xTk (X
TX)−1(XT y − xkyk)

= ŷk − hkkyk

= yk − ek − hkkyk

= (1− hkk)yk − ek.

We have

β̂−k =

(∑
i ̸=k

xix
T
i

)−1(∑
i ̸=k

xiyi

)
= (XT

−kX−k)
−1XT

−ky

=

(
I +

(XTX)−1xkx
T
k

1− hkk

)
(XTX)−1XT

−ky

= (XTX)−1(XT y − ykxk) + (1− hkk)
−1(XTX)−1xkx

T
k (X

TX)−1XT
−ky
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and using (b),

β̂−k = β̂ − (XTX)−1xkyk + (1− hkk)
−1(XTX)−1xk[(1− hkk)yk − ek]

= β̂ − (1− hkk)
−1ek(X

TX)−1xk.

(iv). We have

ŷ − ŷ−k = Xβ̂ −Xβ̂−k = X(β̂ − β̂−k) = ek(1− hkk)
−1X(XTX)−1xk,

and so

∥ŷ − ŷ−k∥2 = (ŷ − ŷ−k)
T (ŷ − ŷ−k)

= e2k(1− hkk)
−2xTk (X

TX)−1(XTX)(XTX)−1xk = e2k(1− hkk)
−2hkk.

Finally, recall that rk = ek
s
√
1−hkk

.

Assignment 2. We need to calculate the Fk’s defined in slide 406 :
df decrease in RSS MS F p-value

x4 1 RSS0 − RSS4=1831.9 1831.9 (1831.9/5.98)=306.3 10−7

x3 1 RSS4 − RSS34=708.2 708.2 118.4 10−6

x2 1 RSS34 − RSS234=101.89 101.89 17.04 0.003
x1 1 RSS234 − RSS1234=25.95 25.95 4.3 0.07
résidus 8 47.86 5.98

The residual degrees of freedom is n − p = 13 − 5 = 8 and each difference of RSS has one
degree of freedom, as we add one variable at a time. For the F -test we use the quantiles of
F1,8 distribution, and if the p-value is smaller than α = 0.05 we add the variable to the model.
The results are very different from those in slide 407. Here we include the variables x4, x3
and x2 at level α = 0.05, and even x1 at level 0.1. In slide 407 the model only included x1
and x2. We see that the order matters in an analysis of variance.

Assignment 3. a) To decide whether to include the j-th variable or not in the model y =
β0 +

∑
i∈L βixi we use the test statistic

F =
RSS(β̂L)− RSS(β̂L∪{j})

RSS(β̂full)/(13− 5)
,

where β̂full is the estimator of β in the complete model. Since RSS(β̂L)− RSS(β̂L∪{j}) ∼
σ2χ2

1 under the null hypothesis H0 : βj = 0, and RSS(β̂full) ∼ σ2χ2
n−p is independent of

RSS(β̂L)− RSS(β̂L∪{j}), we know that F ∼ F1,8 under H0. In particular, the distribution
of F does not depend on the size of L, and the critical value of the F -test at 5% is always
5.32.

Forward selection At each step we consider adding the variable that leads to the
largest decrease of RSS.
— Initial model : y = β0 + ϵ
— Step 1 : y = β0 + β4x4 + ϵ, F = 2715.8−883.9

47.9/(13−5) = 305.95 > 5.32.
— Step 2 : y = β0 + β4x4 + β1x1 + ϵ, F = 135.13 > 5.32.
— Step 3 : y = β0 + β4x4 + β1x1 + β2x2 + ϵ, F = 4.47 < 5.32.
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We choose the model y = β0 + β4x4 + β1x1 + ϵ.

Backward selection At each step we consider removing the variable that would lead
to the smallest increase in RSS.
— Initial model : y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ϵ
— Step 1 : y = β0 + β1x1 + β2x2 + β4x4 + ϵ, F = 48−47.9

47.9/(13−5) = 0.0167 < 5.32.
— Step 2 : y = β0 + β1x1 + β2x2 + ϵ, F = 1.65 < 5.32.
— Step 3 : y = β0 + β2x2 + ϵ, F = 141.70 > 5.32.
We choose the model y = β0 + β2x2 + β1x1 + ϵ.

b) i) One uses Mallows’ Cp like AIC : choose the model with the smallest value of Cp. In
order to calculate the missing Cp values, we need to find s2. This can be done using
any model for which Cp is given. Alternatively, we can use it’s very definition :

s2 =
∥efull∥2

n− p
=

RSSfull
13− 5

=
47.9

8
= 5.99.

Here is the table with all Cp values :

model RSS Cp model RSS Cp model RSS Cp

- - - - 2715.8 442.58 1 2 - - 57.9 2.67 1 2 3 - 48.1 3.03
1 - 3 - 1227.1 197.94 1 2 - 4 48.0 3.02

1 - - - 1265.7 202.39 1 - - 4 74.8 5.49 1 - 3 4 50.8 3.48
- 2 - - 906.3 142.37 - 2 3 - 415.4 62.38 - 2 3 4 73.8 7.325
- - 3 - 1939.4 314.90 - 2 - 4 868.9 138.12
- - - 4 883.9 138.62 - - 3 4 175.7 22.34 1 2 3 4 47.9 5

ii) With forward selection, we choose the model y = β0+
∑

i∈{1,2,4} βixi. With backward
selection we choose the model y = β0 + β1x1 + β2x2 + ϵ. This is also the model with
the smallest value of Cp.

Assignment 4.
For the Gaussian linear model y ∼ N(Xβ, σ2In), the likelihood of (β, σ2) is given by

L(β, σ2) =
1

(2πσ2)n/2
exp

(
− 1

2σ2
(y −Xβ)t(y −Xβ)

)
.

Then the log likelihood is

l(β, σ2) = −n

2
log(2πσ2)− 1

2σ2
(y −Xβ)t(y −Xβ).

We have that the m.l.e. for β and σ2 are

β̂ = (XtX)−1Xty, σ̂2 =
1

n
(y −Xβ̂)t(y −Xβ̂).

Hence the maximum for the likelihood is achieved at

l(β̂, σ̂2) = −n

2
log(2πσ̂2)− 1

2σ̂2
(y −Xβ̂)t(y −Xβ̂)︸ ︷︷ ︸

=nσ̂2

= −n

2
log(2π)− n

2
log σ̂2 − n

2
.

By definition of AIC, we obtain that

AIC = −2l(β̂, σ̂2) + 2p = n log(2π) + n log σ̂2 + n+ 2p = n log σ̂2 + 2p+ const.
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Assignment 5.
We have that

β̂−j = β̂ −
(yj − ŷj)

(
XtX

)−1
xj

1− hjj
.

Hence we have

xtj β̂−j = xtj β̂ − (1− hjj)
−1xtj(X

tX)−1xj(yj − ŷj)

= ŷj −
hjj

1− hjj
(yj − ŷj)

= ŷj +

(
1− 1

1− hjj

)
(yj − ŷj)

= ŷj + yj − ŷj −
1

1− hjj
(yj − ŷj)

where

yj − xtj β̂−j =
1

1− hjj
(yj − ŷj).

If we use formula (1), we have to estimate all the β̂−j , j = 1, . . . , n, hence proceed to n
adjustements. Instead formula (2), only the fitting of the full model is required.
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