Principal Component Analysis

Karl Pearson (1857 - 1936)
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Matrix multiplication as sums of column outer products
o Consider two matrices A € R"™ X and B € RP*K,

o Let a; and by denote the kth column respectively of A and B, so that

o A= ZkK:1 axe] and B = Zle bre],
where e, € {0,1}% is the kth element of the canonical basis.

Lemma

K
=> apb; (1)
k=1

Proof: We have

K K
T T
=Y e el =3 el et
j=1 k=1

7j=1 k=1

hence the result since ejTek = 0j -
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Empirical covariance and correlation
For centered vectors :

1 1 «
= T Z T
1=

For non centered vectors : .
~ 1 ~ T
Y== Z(Xz - X)(x; — X)
i=1
Another common operation is to normalize the data by dividing each column of X by its
standard deviation. This leads to the empirical correlation matrix.

3

C = Diag(c) 'S Diag(3)~"  with &7 = Spp.
1 & a:l(-k) — z(k)

(K _ (k")
=12 (5 T0) ()

Normalisation is optional...
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PCA from the analysis point of view

Data vectors live in RP and one seeks a direction v in RP such that

the variance along this direction is maximal.
But, assuming centered data,

1 n
Var(o xi)ict ) = =3 (07x:)?
v ! n ; ' One needs to solve

~

1 n
= — E ’UTXiXiT’U max ’UTE’U
n
i=1

lvllz=1
1 & Solution:
= vT(—inxj)v o ~
ni= o First eigenvectors of X..

) @ Let's call it vq.
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Deflation

What is the second best direction to project the data on in order
to maximize the variance 7

One can perform a deflation
\V/’L', )A(/l — X; — ’Ul(’UIXi)

Which translates at the matrix level by: X « X — Xvjv] .

Then again find the direction of maximal variance. So with

= 1 ~— ~
Y=2X"X,

n

we solve maxv' v
llvll2

Or equivalently ﬂazﬁvaiv st. vl
vl[2

Solution: This yields the second eigenvector of f], say vo. Etc.
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Principal directions

We usually call

e principal directions (or factors) of the points cloud the vectors

vV1,V2,...,U.

@ Kthe principal component (or scores):
the projection of the data on the k principal direction.

(Vg Xi)i=1..n

The principal directions are the eigenvectors of 5= VS%VT.
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Singular value decomposition (SVD)
@ Principal directions also appear in singular value decomposition of data matrix itself:
X =USVT, with
o U € R™ " orthogonal in R™
o S € R"*P a (rectangular) diagonal matrix .
o V & RP*P orthogonal in R?

Reduced SVD

Often more convenient to look at X = USV T with,
o U € R™" whose columns are orthonormal.
@ S € R"™" squared diagonal strictly positive.
o V € RP*" whose columns are orthonormal.

@ 1 is the rank of X )

If the diagonal of S is such that s1 > s9 > ... > s, > 0, then the reduced SVD is unique up
to column signs of U. Sg € RP*P completes S by adding zeroes.
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Simultaneous optimisation
Let X = USV T be the (reduced) SVD of X, and
o Uy € R™** the matrix formed by the first k& columns of U
o Vi € RP*k the matrix formed by the first k columns of V/
o S € R¥** the diagonal matrix with the first (largest) k singular values in S

Theorem (Eckart-Young)

The solution of

min || X — Z|% st rank(Z) <k

is
Z = X[k] with X[k] = U[k]S[lc]Vi;—]

Can be interpreted as projection of X on columns of Vi
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Orthogonal projection on the principal subspace

Let
o V =[vy,...,v;] € RP*K be a matrix of orthonormal columns,
@ Vi =span(vy,...,vx) C RP,
@ Projy, (x) be the projection of x € R? on V,

then

k
Projy, (x) = VVTx @ Zvjvax.
j=1

Interpretation:
@ The sum of the projections on the vys is equal to the projection on V.

@ This is of course the main property that we seek in an orthonormal basis.

The design matrix with the projections of all the dataset is therefore XVV'T,
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SVD factorization via outer products

Given that S is a diagonal matrix, we have US = [sju1, soua, . . ., SyUy].

So by (1) )
X=USVI =UsV' =) suv;

The projection of the data on the space spanned by the k first principal directions is

XVig Vi = Z%Uﬂ’ Vi Vi = U St Vig Vi Vil = U S Vi) = ZSJ“J ;
7=1

The matrix of the first k principal components is thus X'V} = USVTV[k] = U S

The kth principal component (score) of x; is x;r'v =s; ugk)
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Two different views of PCA

Given data matrix X = (z{,...,2}))T € R™*P,
Analysis view SyntheSIS view
Find projection v € RP maximizing variance: Find V' = [vy,...,v] s.t. @; have low
maxyege 01 X1 X reconstruction error on span(V):
v
st [ola <1 K 2
) ] min || X — Z biviT
— deflate and iterate to obtain more bi,v; ERP i »
components.
< v
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Interpretation

PCA basically represents a change-of-basis

In the new basis, everything is mathematically simpler

But our intuition/interest is in terms of original basis

Coordinates in original basis correspond to variables/features (age, weight, height, ...)

Coordinates in PCA basis are linear combinations of variables/features: (e.g., 0.3*age
+ 0.6*weight + 0.89*height

Can have sparse combinations by penalisation

arg ”m”ax VISV 4+ Av]l1
v|[=1
PCA depends on scale (height in cm / m changes everything)
If units are very different can normalise and work with correlation matrix

Otherwise can have expert knowledge
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Number of components

A priori, there is no unequivocal way to choose a truncation level k
Often use % of variance explained:

The variance of i-th coordinate is f]u

total variance is tr3 = S st

o Look at 32 | s2 and stop when it is > StrS, e.g., 3 = 85%

e Or plot s and look for an “elbow”
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