

Principal Component Analysis

Karl Pearson (1857 - 1936)

MATH-412 - Statistical Machine Learning

Matrix multiplication as sums of column outer products

- Consider two matrices $A \in \mathbb{R}^{n \times K}$ and $B \in \mathbb{R}^{p \times K}$.
- Let \mathbf{a}_k and \mathbf{b}_k denote the k th column respectively of A and B , so that
- $A = \sum_{k=1}^K \mathbf{a}_k \mathbf{e}_k^\top$ and $B = \sum_{k=1}^K \mathbf{b}_k \mathbf{e}_k^\top$,
where $\mathbf{e}_k \in \{0, 1\}^K$ is the k th element of the canonical basis.

Lemma

$$AB^\top = \sum_{k=1}^K \mathbf{a}_k \mathbf{b}_k^\top \quad (\dagger)$$

Proof: We have

$$AB^\top = \sum_{j=1}^K \mathbf{a}_j \mathbf{e}_j^\top \sum_{k=1}^K \mathbf{e}_k \mathbf{b}_k^\top = \sum_{j=1}^K \sum_{k=1}^K \mathbf{a}_j (\mathbf{e}_j^\top \mathbf{e}_k) \mathbf{b}_k^\top,$$

hence the result since $\mathbf{e}_j^\top \mathbf{e}_k = \delta_{j,k}$.

Empirical covariance and correlation

For centered vectors :

$$\widehat{\Sigma} = \frac{1}{n} X^\top X = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^\top$$

For non centered vectors :

$$\widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}})(\mathbf{x}_i - \bar{\mathbf{x}})^\top$$

Another common operation is to normalize the data by dividing each column of X by its standard deviation. This leads to the empirical correlation matrix.

$$C = \text{Diag}(\widehat{\sigma})^{-1} \widehat{\Sigma} \text{Diag}(\widehat{\sigma})^{-1} \quad \text{with} \quad \widehat{\sigma}_k^2 = \widehat{\Sigma}_{k,k}.$$

$$C_{k,k'} = \frac{1}{n} \sum_{i=1}^n \left(\frac{x_i^{(k)} - \bar{x}^{(k)}}{\widehat{\sigma}_k} \right) \left(\frac{x_i^{(k')} - \bar{x}^{(k')}}{\widehat{\sigma}_{k'}} \right).$$

Normalisation is optional...

PCA from the analysis point of view

Data vectors live in \mathbb{R}^p and one seeks a direction v in \mathbb{R}^p such that the variance along this direction is maximal.

But, assuming centered data,

$$\begin{aligned}\text{Var}((\mathbf{v}^\top \mathbf{x}_i)_{i=1\dots n}) &= \frac{1}{n} \sum_{i=1}^n (\mathbf{v}^\top \mathbf{x}_i)^2 \\ &= \frac{1}{n} \sum_{i=1}^n \mathbf{v}^\top \mathbf{x}_i \mathbf{x}_i^\top \mathbf{v} \\ &= \mathbf{v}^\top \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^\top \right) \mathbf{v} \\ &= \mathbf{v}^\top \widehat{\Sigma} \mathbf{v}\end{aligned}$$

One needs to solve

$$\max_{\|\mathbf{v}\|_2=1} \mathbf{v}^\top \widehat{\Sigma} \mathbf{v}$$

Solution:

- First eigenvectors of $\widehat{\Sigma}$.
- Let's call it \mathbf{v}_1 .

Deflation

What is the second best direction to project the data on in order to maximize the variance ?

One can perform a deflation

$$\forall i, \quad \tilde{\mathbf{x}}_i \leftarrow \mathbf{x}_i - \mathbf{v}_1(\mathbf{v}_1^\top \mathbf{x}_i)$$

Which translates at the matrix level by: $\tilde{\mathbf{X}} \leftarrow \mathbf{X} - \mathbf{X}\mathbf{v}_1\mathbf{v}_1^\top$.

Then again find the direction of maximal variance. So with

$$\tilde{\hat{\Sigma}} = \frac{1}{n} \tilde{\mathbf{X}}^\top \tilde{\mathbf{X}},$$

we solve

$$\max_{\|\mathbf{v}\|_2} \mathbf{v}^\top \tilde{\hat{\Sigma}} \mathbf{v}$$

Or equivalently $\max_{\|\mathbf{v}\|_2} \mathbf{v}^\top \hat{\Sigma} \mathbf{v} \quad \text{s.t.} \quad \mathbf{v} \perp \mathbf{v}_1$.

Solution: This yields the second eigenvector of $\hat{\Sigma}$, say \mathbf{v}_2 . Etc.

Principal directions

We usually call

- **principal directions (or factors)** of the points cloud the vectors

$$\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k.$$

- **k the principal component (or scores):**
the projection of the data on the k principal direction.

$$(\mathbf{v}_k^\top \mathbf{x}_i)_{i=1 \dots n}$$

The principal directions are the eigenvectors of $\widehat{\Sigma} = \tilde{V} S_E^2 \tilde{V}^\top$.

Singular value decomposition (SVD)

- Principal directions also appear in singular value decomposition of data matrix itself:
$$X = \tilde{U}\tilde{S}\tilde{V}^\top$$
, with
- $\tilde{U} \in \mathbb{R}^{n \times n}$ orthogonal in \mathbb{R}^n
- $\tilde{S} \in \mathbb{R}^{n \times p}$ a (rectangular) diagonal matrix .
- $\tilde{V} \in \mathbb{R}^{p \times p}$ orthogonal in \mathbb{R}^p

Reduced SVD

Often more convenient to look at $X = USV^\top$ with,

- $U \in \mathbb{R}^{n \times r}$ whose columns are orthonormal.
- $S \in \mathbb{R}^{r \times r}$ squared diagonal strictly positive.
- $V \in \mathbb{R}^{p \times r}$ whose columns are orthonormal.
- r is the rank of X

If the diagonal of S is such that $s_1 > s_2 > \dots > s_r > 0$, then the reduced SVD is unique up to column signs of U . $S_E \in \mathbb{R}^{p \times p}$ completes S by adding zeroes.

Simultaneous optimisation

Let $X = USV^\top$ be the (reduced) SVD of X , and

- $U_{[k]} \in \mathbb{R}^{n \times k}$ the matrix formed by the first k columns of U
- $V_{[k]} \in \mathbb{R}^{p \times k}$ the matrix formed by the first k columns of V
- $S_{[k]} \in \mathbb{R}^{k \times k}$ the diagonal matrix with the first (largest) k singular values in S

Theorem (Eckart-Young)

The solution of

$$\min_Z \|X - Z\|_F^2 \quad s.t. \quad \text{rank}(Z) \leq k$$

is

$$Z = X_{[k]} \quad \text{with} \quad X_{[k]} := U_{[k]} S_{[k]} V_{[k]}^\top.$$

Can be interpreted as projection of X on columns of $V_{[k]}$

Orthogonal projection on the principal subspace

Let

- $V = [\mathbf{v}_1, \dots, \mathbf{v}_k] \in \mathbb{R}^{p \times K}$ be a matrix of orthonormal columns,
- $\mathcal{V}_k = \text{span}(\mathbf{v}_1, \dots, \mathbf{v}_k) \subseteq \mathbb{R}^p$,
- $\text{Proj}_{\mathcal{V}_k}(\mathbf{x})$ be the projection of $\mathbf{x} \in \mathbb{R}^p$ on \mathcal{V}_k ,

then

$$\text{Proj}_{\mathcal{V}_k}(\mathbf{x}) = VV^\top \mathbf{x} \stackrel{(\dagger)}{=} \sum_{j=1}^k \mathbf{v}_j \mathbf{v}_j^\top \mathbf{x}.$$

Interpretation:

- The sum of the projections on the \mathbf{v}_k s is equal to the projection on \mathcal{V}_k .
- This is of course the main property that we seek in an orthonormal basis.

The design matrix with the projections of all the dataset is therefore $XV V^\top$.

SVD factorization via outer products

Given that S is a diagonal matrix, we have $US = [s_1 \mathbf{u}_1, s_2 \mathbf{u}_2, \dots, s_r \mathbf{u}_r]$.
So by (\dagger)

$$X = USV^\top = (US)V^\top = \sum_{j=1}^r s_j \mathbf{u}_j \mathbf{v}_j^\top.$$

The projection of the data on the space spanned by the k first principal directions is

$$XV_{[k]}V_{[k]}^\top = \sum_{j=1}^r s_j \mathbf{u}_j \mathbf{v}_j^\top V_{[k]} V_{[k]}^\top = U_{[k]} S_{[k]} V_{[k]}^\top V_{[k]} V_{[k]}^\top = U_{[k]} S_{[k]} V_{[k]}^\top = \sum_{j=1}^k s_j \mathbf{u}_j \mathbf{v}_j^\top.$$

The matrix of the first k **principal components** is thus $XV_{[k]} = USV^\top V_{[k]} = U_{[k]} S_{[k]}$.
The k th principal component (score) of \mathbf{x}_i is $\mathbf{x}_i^\top \mathbf{v} = s_i u_i^{(k)}$

Two different views of PCA

Given data matrix $X = (x_1^\top, \dots, x_n^\top)^\top \in \mathbb{R}^{n \times p}$,

Analysis view

Find projection $v \in \mathbb{R}^p$ maximizing variance:

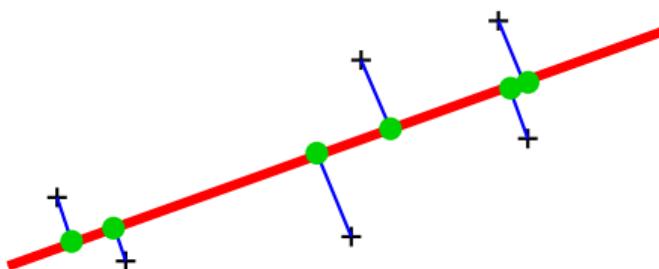
$$\begin{aligned} \max_{v \in \mathbb{R}^p} \quad & v^\top X^\top X v \\ \text{s.t.} \quad & \|v\|_2 \leq 1 \end{aligned}$$

→ deflate and iterate to obtain more components.

Synthesis view

Find $V = [v_1, \dots, v_k]$ s.t. x_i have low reconstruction error on $\text{span}(V)$:

$$\min_{b_i, v_i \in \mathbb{R}^p} \left\| X - \sum_{i=1}^k b_i v_i^\top \right\|_F^2$$



Interpretation

- PCA basically represents a change-of-basis
- In the new basis, everything is mathematically simpler
- But our intuition/interest is in terms of original basis
- Coordinates in original basis correspond to variables/features (age, weight, height, ...)
- Coordinates in PCA basis are linear combinations of variables/features: (e.g., 0.3*age + 0.6*weight + 0.89*height)
- Can have sparse combinations by penalisation

$$\arg \max_{\|v\|=1} v^t \widehat{\Sigma} v + \lambda \|v\|_1$$

- PCA depends on scale (height in cm / m changes everything)
- If units are very different can normalise and work with correlation matrix
- Otherwise can have expert knowledge

Number of components

- A priori, there is no unequivocal way to choose a truncation level k
- Often use % of variance explained:
- The variance of i -th coordinate is $\hat{\Sigma}_{ii}$
- total variance is $\text{tr}\hat{\Sigma} = \sum s_{ii}^2$
- Look at $\sum_{i=1}^k s_{ii}^2$ and stop when it is $\geq \beta \text{tr}\hat{\Sigma}$, e.g., $\beta = 85\%$
- Or plot s_{ii}^2 and look for an “elbow”