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Matrix multiplication as sums of column outer products
Consider two matrices A ∈ Rn×K and B ∈ Rp×K .

Let ak and bk denote the kth column respectively of A and B, so that

A =
∑K

k=1 ake
⊤
k and B =

∑K
k=1 bke

⊤
k ,

where ek ∈ {0, 1}K is the kth element of the canonical basis.

Lemma

AB⊤ =

K∑
k=1

akb
⊤
k (†)

Proof: We have

AB⊤ =

K∑
j=1

aje
⊤
j

K∑
k=1

ekb
⊤
k =

K∑
j=1

K∑
k=1

aj(e
⊤
j ek)b

⊤
k ,

hence the result since e⊤j ek = δj,k.
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Empirical covariance and correlation
For centered vectors :

Σ̂ =
1

n
X⊤X =

1

n

n∑
i=1

xix
⊤
i

For non centered vectors :

Σ̂ =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)⊤

Another common operation is to normalize the data by dividing each column of X by its
standard deviation. This leads to the empirical correlation matrix.

C = Diag(σ̂)−1Σ̂Diag(σ̂)−1 with σ̂2
k = Σ̂k,k.

Ck,k′ =
1

n

n∑
i=1

(x(k)i − x̄(k)

σ̂k

)(x(k′)i − x̄(k
′)

σ̂k′

)
.

Normalisation is optional...
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PCA from the analysis point of view
Data vectors live in Rp and one seeks a direction v in Rp such that
the variance along this direction is maximal.
But, assuming centered data,

Var((v⊤xi)i=1...n) =
1

n

n∑
i=1

(v⊤xi)
2

=
1

n

n∑
i=1

v⊤xix
⊤
i v

= v⊤
( 1

n

n∑
i=1

xix
⊤
i

)
v

= v⊤Σ̂v

One needs to solve

max
∥v∥2=1

v⊤Σ̂v

Solution:

First eigenvectors of Σ̂.

Let’s call it v1.
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Deflation
What is the second best direction to project the data on in order
to maximize the variance ?

One can perform a deflation
∀i, x̃i ← xi − v1(v

⊤
1 xi)

Which translates at the matrix level by: X̃ ← X −Xv1v
⊤
1 .

Then again find the direction of maximal variance. So with˜̂
Σ =

1

n
X̃⊤X̃,

we solve max
∥v∥2

v⊤ ˜̂
Σv

Or equivalently max
∥v∥2

v⊤Σ̂v s.t. v⊥v1.

Solution: This yields the second eigenvector of Σ̂, say v2. Etc.
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Principal directions

We usually call

principal directions (or factors) of the points cloud the vectors

v1,v2, . . . ,vk.

kthe principal component (or scores):
the projection of the data on the k principal direction.

(v⊤
k xi)i=1...n

The principal directions are the eigenvectors of Σ̂ = Ṽ S2
EṼ

⊤.
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Singular value decomposition (SVD)
Principal directions also appear in singular value decomposition of data matrix itself:
X = Ũ S̃Ṽ ⊤, with

Ũ ∈ Rn×n orthogonal in Rn

S̃ ∈ Rn×p a (rectangular) diagonal matrix .

Ṽ ∈ Rp×p orthogonal in Rp

Reduced SVD

Often more convenient to look at X = USV ⊤ with,

U ∈ Rn×r whose columns are orthonormal.

S ∈ Rr×r squared diagonal strictly positive.

V ∈ Rp×r whose columns are orthonormal.

r is the rank of X

If the diagonal of S is such that s1 > s2 > . . . > sr > 0, then the reduced SVD is unique up
to column signs of U . SE ∈ Rp×p completes S by adding zeroes.
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Simultaneous optimisation

Let X = USV ⊤ be the (reduced) SVD of X, and

U[k] ∈ Rn×k the matrix formed by the first k columns of U

V[k] ∈ Rp×k the matrix formed by the first k columns of V

S[k] ∈ Rk×k the diagonal matrix with the first (largest) k singular values in S

Theorem (Eckart-Young)

The solution of

min
Z
∥X − Z∥2F s.t. rank(Z) ≤ k

is
Z = X[k] with X[k] := U[k]S[k]V

⊤
[k].

Can be interpreted as projection of X on columns of V[k]

Math-412 PCA 8/13



Orthogonal projection on the principal subspace

Let

V = [v1, . . . ,vk] ∈ Rp×K be a matrix of orthonormal columns,

Vk = span(v1, . . . ,vk) ⊆ Rp,

ProjVk
(x) be the projection of x ∈ Rp on Vk,

then

ProjVk
(x) = V V ⊤x

(†)
=

k∑
j=1

vjv
⊤
j x.

Interpretation:

The sum of the projections on the vks is equal to the projection on Vk.
This is of course the main property that we seek in an orthonormal basis.

The design matrix with the projections of all the dataset is therefore XV V ⊤.

Math-412 PCA 9/13



SVD factorization via outer products

Given that S is a diagonal matrix, we have US = [s1u1, s2u2, . . . , srur].
So by (†)

X = USV ⊤ = (US)V ⊤ =

r∑
j=1

sjujv
⊤
j .

The projection of the data on the space spanned by the k first principal directions is

XV[k]V
⊤
[k] =

r∑
j=1

sjujv
⊤
j V[k]V

⊤
[k] = U[k]S[k]V

⊤
[k]V[k]V

⊤
[k] = U[k]S[k]V

⊤
[k] =

k∑
j=1

sjujv
⊤
j .

The matrix of the first k principal components is thus XV[k] = USV ⊤V[k] = U[k]S[k].

The kth principal component (score) of xi is x
⊤
i v = si u

(k)
i
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Two different views of PCA
Given data matrix X = (x⊤1 , . . . , x

⊤
n )

⊤ ∈ Rn×p,

Analysis view

Find projection v ∈ Rp maximizing variance:

maxv∈Rp v⊤X⊤X v

s.t. ∥v∥2 ≤ 1

→ deflate and iterate to obtain more
components.

Synthesis view

Find V = [v1, . . . , vk] s.t. xi have low
reconstruction error on span(V ):

min
bi,vi∈Rp

∥∥∥∥∥X −
k∑

i=1

biv
⊤
i

∥∥∥∥∥
2

F

For regular PCA, the two views are equivalent!Math-412 PCA 11/13



Interpretation

PCA basically represents a change-of-basis

In the new basis, everything is mathematically simpler

But our intuition/interest is in terms of original basis

Coordinates in original basis correspond to variables/features (age, weight, height, . . . )

Coordinates in PCA basis are linear combinations of variables/features: (e.g., 0.3*age
+ 0.6*weight + 0.89*height

Can have sparse combinations by penalisation

arg max
∥v∥=1

vtΣ̂v + λ∥v∥1

PCA depends on scale (height in cm / m changes everything)

If units are very different can normalise and work with correlation matrix

Otherwise can have expert knowledge
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Number of components

A priori, there is no unequivocal way to choose a truncation level k

Often use % of variance explained:

The variance of i-th coordinate is Σ̂ii

total variance is trΣ̂ =
∑

s2ii

Look at
∑k

i=1 s
2
ii and stop when it is ≥ βtrΣ̂, e.g., β = 85%

Or plot s2ii and look for an “elbow”
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