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Formal Neuron Model (McCullock & Pitts, 1943)
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signals #(*) Vi Yy = @(’w X + b)
Summing
junction where
*m O  is the activation function
~
Synaptic (often denoted o)
weights
Examples

e ©(z) =sign(z) — McCullock-Pitts Neuron model (used in the perceptron)
o p(2) =0%(2) = (1+e7*)~! — logistic regression
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Two layer neural network
i.e. Neural network with a single hidden layer.

If the activation function of the second layer
is linear:
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where k is called width

e 0(z)=(0(#1),...,0(zx)) is applying the function entrywise
o W € RF*™ the matrix whose jth row is wi € R™.

e beR™
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Multilayer network (aka Multi-Layer Perceptron)

Xl _ fl(xl—l) — O_Z(Wlxl—l + bl)

e x! activations of the Ith layer
e ¢! activation function at the [th layer
o W' weights of the Ith layer Forward propagation
e x = x" input and ¢ output x0 «— x
LiwwL 221wl 1 2 L For [ =1to L
y=o"(W"...0cc(W? (W'x+b")+b%) ...+ b") x!  fl(x1)
Endfor
y=fFo..  ofl(x) is a composition of functions.
o L is called depth
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Activation Functions
Univariate activation functions:

@ McCullock-Pitts Neuron model (aka perceptron): o(z) = sign(z)
e Logistic function: o(z) = o*(2) = (1 + e *)~1

@ Hyperbolic tangent: o(z) = tanh(z) = 20%(2z) — 1

Rectified Linear Unit (ReLU): o(z) = (2)4+ := max(z,0)

Leaky ReLU: 04(2) = (2)4+ — a(—2)+ = max(z, az) with 0 < a < 1.

Softplus: o(z) = log(1 + €*)

Multivariate activation functions:

z
e Softargmax or “softmax” function!: o(z1,...,2K) = <I§—]>
D k=1€%*/
The logistic and the “softmax” are nowadays essentially used in the last layer for
classification combined with the log loss (often called cross-entropy loss in the DL
community)
'Should not be confused with z — 1 log (Zle )
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Good properties of the ReLU
Rectified Linear Unit (ReLU): o(z) = (2)4+ := max(z,0)

o Multilayer NN with RelLU activations are piecewise linear functions

@ In 1D, the following combination of three neurons

aT—i-b
.rr—>(a:—a)+—(237—(a+b))++(:c—b)Jr 0#
a+b

is up to normalization the B-spline basis function with knots at {a, 37, b}.

= In 1D, a two layer neural network therefore has the same expressive power as linear
splines with learnable knots positions.

=- In 1D, any continuous function can be uniformly approximated on a compact set by a
two-layer network with RelLU activation.
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Approximation Theorem in 1D

Gli={g:9(t) =a(Xt+0): )0 cR}
H, = span(G,)
Theorem: Leshno et al. (1993)

Let o € C(R), not a polynomial, then H_ is dense in (C(K), | - ||s), for any compact set
K CR

Corollary: Fully connected NNs with one hidden layer and any non-polynomial, continuous
activation function are universal function approximators (depth 2, width £ — c0).

Lemma: Fully connected NNs with one hidden layer and a polynomial activation function
are not universal function approximators.

Proof: Easier to see for o € C*°(R), then use convolutions.
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General Approximation

G4 :={g:g(x) = o(w x4 b) for some w € R?, b € R}
HY = span(GY)
Lemma: Pinkus (1999) (simplified)
The fact that . is dense in (C(K1),] - |ls), for any compact set K1 C R with

HL = span(Gl) = span{o(\t +6) : \,0 € R}
implies that HZ, with
HY .= span(G?) = span{c(w'x +b) : w € RY, b € R},

is dense in (C(K), || - |ls) for K C R%, and this for any d > 1.
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Training a feedforward neural network
Given a feedforward neural network (with no offsets bl for simplicity)

Fy(x) = ol (WE . c2(W2et(Wx))

parameterized by W = (W!,..., W) and a loss function £, we would like to minimize the
risk
R(Fw) = E[t(Fw(X),Y)].

We can use stochastic gradient descent
WhHHL = WhE — 5,V il (Fye (1), 1),

where (x!, ') is the input-output pairs drawn at time ¢.
This requires to compute

Vo (z(-, yoflo.. . o fl)(xf)

which will require to use the chain-rule for differentiation.
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Chain rules

o If f and g are scalar functions

(fog)(x)=f(g(x)) g (x)

@ More generally with differentials:

d(f o g)(z,-) = df(g(x),-) o dg(z, )

o For f:R™ - R%and g : RP — R™

Tfog(x) = Iy (g(x)) Jg(x)

where Jy(x) € R™*? is the Jacobian of g at = defined by
dg1(x) 991(x)

gri T T Ow 91(x)
Jy(x)=| : with  g(x) =
Ogm (x Ogm (x
B o ).
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Forward chain rules for compositions

Similarly,
o if we consider F! = flo...o f! with x!'=Fl(x)
then since F¥' = fL o FL=1 we have Abstract forward
propagation of gradients
_ L1
JFL (X) = JfL (X )JFL—l(X) JO - Ip
and Jpr(x) = Jpo (xE D) Jpa (x272) . Ju(x) Fori=1tolL
F s f f J! <_Jfl(xzfl)qu
Lo oxL oxt  oxt—1 ox! Endfor

ox  OxET 9xL=2 " 9x0

l
@ This computes P forall 1.
ox

L

o What if we need 25 for all 1 7
ox!
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Backward chain rules for compositions

Similarly,
o if we consider F' = fLo...o fHl  with x! = Fl(x)
then since F!=1 = Fl o f! we have Abstract_backward .
propagation of gradients
-1 - - -
T = Jpa () = T (xh) T gt 1,
Fori=Lto1l
oxL oxL  ox! Jl_l — Jl sz (Xlil)
i.e. g = xl Il T Endfor

Note that this requires to have performed a basic forward pass to have computed x! for all I.
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Computing gradients with respect to the parameters

VWZE(FW(X)a y)
Assuming that z¥ := Fyy(x) is scalar, we have:

VLéE(FW(X)vy) = VL; (ﬁ(’y) o fL o0...0 fl+1> (O'Z(Wlxl_l))

l
_ 00 adt o
Ozl ox! dw,
l
= ) T o
Ow;
ozt
= V(") [TaEh); —
ow;
. . -.a’Eé_ N 1T 11 I—1\T
And applying the chain rule again: = (o) (w; x ) (x7)
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Weight decay

Weight decay=... the DL name for Tikhonov regularization but used in the context of SGD

A
wht+l W”t—mVWzE(FW(Xt)ayt)—"7t§VWl||Wl||%“

= (L—p)W" -V l(Fy(x), ") with p; = me.

weight decay
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Dropout
Idea: randomly “drop” subsets of units in the network (Hinton et al., 2012).

More precisely, define “keep” probability 7r§ for unit 7 in layer .

o typically: 79 = 0.8 (inputs) and 7'=' = 0.5 (hidden units)
@ realization: sampling bit mask and zeroing out activations

o effectively defines an exponential ensemble of networks
(each of which is a sub-network of the original one)

@ all models share same weights

@ standard backpropagation applies

[see the book Deep Learning by Goodfellow et al. 2016, Chapter 7.12]
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Dropout: Motivation

. "overfitting” is greatly reduced by randomly omitting half of the feature detectors on
each training case. This prevents complex co-adaptations in which a feature detector is only
helpful in the context of several other specific feature detectors. Instead, each neuron learns
to detect a feature that is generally helpful for producing the correct answer given the
combinatorially large variety of internal contexts in which it must operate.

(Hinton et al., 2012)

Math-412 NN & Deep Learning



Other training techniques that we did not talk about

Heuristics for initialization
Batch renormalization
Other algorithms than SGD: Adagrad, Adam, etc

Network pruning
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Convolution layer vs fully connected layer

(DL, Figure 9.2)
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Convolutions

Convolution:

(F £ 0)(@) = (s D)) = [ Fla = hz)z = [ flo)hta -

Cross-correlation:

(F*h)(@) = ( * h(- /fx+z )dz=/f(y)h(y—

Warning: some libraries use “convolution” for “cross-correlation”!

Equivariance of convolution/cross-correlation

If fr(x) = f(x—7),then (frxh)=(fxh); ie,
if f is translated then f x h is translated.

Thm: A linear operator is equivariant for the translations if and only if it is a convolution.
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Convolutions Il
Discrete cross-correlation in 2D with kernel with finite support

For I € Rwxh,

M N

[I % K] (i Z ZIH—my—i—n)K( n)

—Mn=—N

Zero-padding
@ Previous definition a priori only valid for

Ll

M+1<i<w-M, N+1<i<h-N

So the convolution yields an image of size (w — 2M) x (h — 2N)

Zero-padding consist in enlarging the image by adding a number M’ of zero columns on the
sides of I and a number N’ of zero rows above and below I, with M’ < M and N’ < N so as
to reduce the shrinkage of the image.
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Convolutions 1l

Discrete cross-correlation in 2D with kernel with finite support
Nb of param.: (2M + 1)(2N + 1)
For I € R¥*", o
Comp. Complexity:

I * K|(i i i I(i+m,j+n)K(m,n) Swh(2M 4+ 1)(2N +1)

~Mn=-N In fact = O(whlog[(2M + 1)(2N + 1)])

but not worth it for M, N small...

Compare with a fully connected layer:

wy
Iz+1 Z ZW i, §,m,mn) ( n) Nb of param.: w; h; w1 hysq
=1 m—1 Comp. complexity: wy; hy wyiq hyiq
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Pooling

Idea: build in invariance to small local distortions of the image,
by keeping only most significant activation over a window.

@ strides s, s’ : horizontal and vertical subsampling factors

@ M, N horizontal and vertical pooling ranges.

Max pooling

1 0 2
4 6 6
Sum pooling == ;

IH—I(Z',]') = Z Il(sz' +m,s'5+n) Max-pooling
|m|<M,|n|<N filter 2x2, stride 2x2

I, 5) = I'(si+m,s'j+mn)

= max
m|<M,[n|<N 6 8

s s

A O ® W
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Convolutional Layers: Stages

| Next layer |

!

Convolutional Layer

Pooling stage

Pooling stage:

locally combine activities

Detector stage:
Nonlinearity

e.g., rectified linear

A

Convolution stage:

Non-linearity= activation function

Affine transform

A

I
Input to layer |
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Multichannel layers and formulation via tensors

In practice, when working e.g. on images o!(I x K) can be viewed as one non-linear

filter computed on the image. Filters that can be relevant are Gabor filters that are LV /]
appropriate to detect edges in the image. But each filter correspond to an edge at a BEEEE
certain frequency and with a given orientation, so it makes sense to apply several such =E=EEN
filters. So instead of applying a single learnable filter we apply several of them so that
I? has actually multiple channels. Gabor filters

_[2 c RCXth

It is natural to obtain the values of a channel ¢ of a new layer by computing linear combination of the
convolutions computed on the channels of the previous layer. This leads to tensor convolutions of the
form:

Il+1 0717.7 Z Z Z Il(C/7i+m,j—‘rﬂ)Kl(C,Cl,m,n)

/=1 m:m|<M n:|n|<N
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LeNet5 (LeCun et al., 1989, 1998)

C3: f maps 186@10x10
INPUT C1: feature maps 54 1. maps 16@5x5
32x3! @

S2:f. maps
5@14x14

| Fullcmrlmctiun | Gaussian connections
Convolutions npling Corvolutions  Subsampling Full connection

Architecture LeNetb

e C1/S2: 6 channels, (5x5 kernels), 2x2 sub (4704 units)
@ C3/S4: 16 channels, (6: 6x6x3, 9: 6x6x4 and 1: 6x6x6 kernels), 2x2 sub (1600 units)
@ C5: 120 channels, F6: fully-connected

@ o = tanh
°

output: Gaussian noise model (square loss)
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AlexNet (Krizhevsky et al., 2012)

224
55 dense dense
& 13 3 13 fese
1 55 5 3 3 3
£ b B
1 5 27 3 13 377 13 3 m
384 384 256 1000
224 256 Max Max 4096 4096
% Max pooling pooling
i
Stride pooting
3 of 4

@ 60 million parameters and 500,000 neurons
@ 5 convolutional layers, some followed by max-pooling

@ 2 globally connected layers with a final 1000-way softmax
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Convolution: summary

@ Equivariance with respect to translations
— well adapted to images in 2D, times series in 1D
@ Decrease of the number of parameters provides
— computational+-memory advantage
— allows for better generalization

e Mainly using 3 x 3 and 5 x 5 convolutions in deeper architectures.

Math-412 NN & Deep Learning



Recurrent Neural Networks (RNN)

Goal: model the relationship between a sequence of input variables x!
and a sequence of output variables y'
Idea: Introduce hidden variables h! to implement “short term memory" .

Linear dynamical system = f(h' 1 x") ;= o(Wh!™! + Ux' +b)
Optionally produce outputs via ¢ = zb(ht) = 0,(Vh' +¢c)

“Unfolded” RNN
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More other models

Autoencoders
Long Short Term Memory Networks (LSTM)
Variational Auto-encoders

Models with attention mechanisms

Transformer networks
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Why is deep learning working?

For larger networks (not necessarily deeper), the optimization problem is
empirically easier (fewer/no bad local minima)

The vanishing/exploding gradients issues are mitigated by the use of ReLU + batch
normalization.

Huge labelled datasets have been made available thanks to the development of crawling engines
and “crowd-sourcing”, for which generic nonlinear models such as kernel methods did not scale
so well computationally and did not generalize so well.

Some architectural elements inspired from biological systems, e.g. for CNNs our understanding
of the mammalian visual system.

Some empirically elicited good practice

The use of graphical processing units (GPU) and tensor processing units (TPU) which allow to
perform tensorized calculus very efficiently

The development of dedicated programming tools and languages such as Theano, TensorFlow
and PyTorch.
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Deep networks overfit and generalize at the same time
DL model training shows many examples of situations in which
@ no regularization was used
@ the network fits perfectly (overfits) the training data

@ but the network generalizes well to the testing data !

0.14 T T T T T T
MNIST [—Training CIFAR-10Q |—Training
0.09- —e—Test (at convergence) —e—Test (at convergence)
—A—Test (early stopping) 0.6- —A—Test (early stopping)

0.07 05¢
_ 008 _odl
o o
£ 0.05 H
I} Ir]

0.3f

0.21

0.1

Neyshabur et al. (2017)
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Deep learning generalization not explained by classical SLT!

This is puzzling because

@ Classical statistical learning theory usually proves that generalization occurs as a consequence of
R(h) — R, (h) being small: so the theory does not explain how overfitting and generalizing at
the same time is possible.

@ And since deep NN have a number of parameters which is of the order of magnitude of the
number of data points or (much) larger, the classical learning theory does not apply (huge
Rademacher complexity)...

However DL models are not alone:
@ Random forests (with no pruning) overfit the training points but can generalize well...

@ Ridgeless kernel regression can generalize well in high-dimension in spite of overfitting the
data (Liang and Rakhlin, 2018)
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Explanation for why deep learning generalizes well

We don't know for sure, and clearly there are cases where NN do overfit and/or

benefit from regularization. In models that are overparameterized, there are many models that can fit
exactly the data, and which are somehow interpolating the data but the training algorithm (SGD)
converges to a model of low complexity/high smoothness.

Why could this be true?

@ Gradient descent algorithm can be shown to maximize the margin for some losses for binary
classification and can be shown to converge to some minimal norm solutions in more general
settings (for norms that are not necessarily the ¢5 norm) (Soudry et al., 2018).

@ Some training algorithm (e.g. SGD) have the property that the mutual information between the
model and the data remains small and only extract the information relevant to solve the
supervised learning problem. (Achille and Soatto, 2018)
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Double descent phenomenon

under-parameterized

Test risk

“classical”
regime

over-parameterized

“modern”
interpolating regime

-~ Training risk:
- :

- _ . _interpolation threshold

Capacity of H

from Belkin et al. (2019a,b)

as model complexity increases, the test error follows the traditional “U-Shaped curve” but
beyond the point of interpolation, the error starts to decrease
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Conclusions on deep learning

@ Learning composition of functions

@ Very good empirical performance in spite of limited understanding on large supervised
learning problem.

@ Good performance in particular for data whose structure can be captured by specific
architectures (natural images and imaging data, speech recognition and language
processing, structured time series)

@ DL is challenging our understanding of generalization mechanisms.
@ Learning efficiently with smaller amounts of data is still difficult

@ How to do semi-supervised learning efficiently remains an open problem.
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