
Neural networks
and Deep Learning

MATH-412 - Statistical Machine Learning

Math-412 NN & Deep Learning 1/43

Formal Neuron Model (McCullock & Pitts, 1943)

y = φ(w⊤x+ b)

where
φ is the activation function

(often denoted σ)

Examples

φ(z) = sign(z) →McCullock-Pitts Neuron model (used in the perceptron)

φ(z) = σ∗(z) = (1 + e−z)−1 → logistic regression

Math-412 NN & Deep Learning 3/43

Two layer neural network
i.e. Neural network with a single hidden layer.

If the activation function of the second layer
is linear:

ŷ =

k∑
j=1

αj σ(w
⊺
jx+ bj)

= α⊺σ(Wx+ b)

where k is called width

σ(z) = (σ(z1), . . . , σ(zk)) is applying the function entrywise

W ∈ Rk×m the matrix whose jth row is w⊺
j ∈ Rm.

b ∈ Rm

Math-412 NN & Deep Learning 4/43

Multilayer network (aka Multi-Layer Perceptron)

xl = f l(xl−1) = σl(W lxl−1 + bl)

xl activations of the lth layer

σl activation function at the lth layer

W l weights of the lth layer

x = x0 input and ŷ output

ŷ = σL(W L . . . σ2(W 2σ1(W 1x+ b1) + b2) . . .+ bL)

ŷ = fL ◦ . . . ◦ f1(x) is a composition of functions.

L is called depth

Forward propagation

x0 ← x
For l = 1 to L

xl ← f l(xl−1)
Endfor

Math-412 NN & Deep Learning 5/43

Activation Functions
Univariate activation functions:

McCullock-Pitts Neuron model (aka perceptron): σ(z) = sign(z)

Logistic function: σ(z) = σ∗(z) = (1 + e−z)−1

Hyperbolic tangent: σ(z) = tanh(z) = 2σ∗(2z)− 1

Rectified Linear Unit (ReLU): σ(z) = (z)+ := max(z, 0)

Leaky ReLU: σα(z) = (z)+ − α (−z)+ = max(z, αz) with 0 < α≪ 1.

Softplus: σ(z) = log(1 + ez)

Multivariate activation functions:

Softargmax or “softmax” function1: σ(z1, . . . , zK) =

(
ezj∑K
k=1 e

zk

)
j

The logistic and the “softmax” are nowadays essentially used in the last layer for
classification combined with the log loss (often called cross-entropy loss in the DL
community)

1Should not be confused with z 7→ 1
t
log

(∑d
i=1 e

tzi
)

Math-412 NN & Deep Learning 6/43

Good properties of the ReLU

Rectified Linear Unit (ReLU): σ(z) = (z)+ := max(z, 0)

Multilayer NN with ReLU activations are piecewise linear functions

In 1D, the following combination of three neurons

x 7→ (x− a)+ −
(
2x− (a+ b)

)
+
+ (x− b)+ a b0

a+b
2

is up to normalization the B-spline basis function with knots at {a, a+b
2 , b}.

⇒ In 1D, a two layer neural network therefore has the same expressive power as linear
splines with learnable knots positions.

⇒ In 1D, any continuous function can be uniformly approximated on a compact set by a
two-layer network with ReLU activation.

Math-412 NN & Deep Learning 8/43

Approximation Theorem in 1D

G1σ := {g : g(t) = σ(λt+ θ) : λ, θ ∈ R}
H1

σ = span(G1σ)
Theorem: Leshno et al. (1993)

Let σ ∈ C(R), not a polynomial, then H1
σ is dense in (C(K), ∥ · ∥∞), for any compact set

K ⊂ R.

Corollary: Fully connected NNs with one hidden layer and any non-polynomial, continuous
activation function are universal function approximators (depth 2, width k →∞).

Lemma: Fully connected NNs with one hidden layer and a polynomial activation function
are not universal function approximators.

Proof: Easier to see for σ ∈ C∞(R), then use convolutions.

Math-412 NN & Deep Learning 9/43

General Approximation

Gdσ := {g : g(x) = σ(w⊤x+ b) for some w ∈ Rd, b ∈ R}
Hd

σ = span(Gdσ)
Lemma: Pinkus (1999) (simplified)

The fact that H1
σ is dense in (C(K1), ∥ · ∥∞), for any compact set K1 ⊂ R with

H1
σ := span(G1σ) = span{σ(λt+ θ) : λ, θ ∈ R}

implies that Hd
σ, with

Hd
σ := span(Gdσ) = span{σ(w⊤x+ b) : w ∈ Rd, b ∈ R} ,

is dense in (C(K), ∥ · ∥∞) for K ⊂ Rd, and this for any d ≥ 1.

Math-412 NN & Deep Learning 10/43

Training a feedforward neural network
Given a feedforward neural network (with no offsets bl for simplicity)

FW(x) = σL(W L . . . σ2(W 2σ1(W 1x))

parameterized by W = (W 1, . . . ,W L) and a loss function ℓ, we would like to minimize the
risk

R(FW) = E[ℓ(FW(X), Y)].

We can use stochastic gradient descent

W l,t+1 = W l,t − ηt∇W lℓ(FWt(xt), yt),

where (xt, yt) is the input-output pairs drawn at time t.
This requires to compute

∇W l

(
ℓ(·, yt) ◦ fL ◦ . . . ◦ f1

)
(xt)

which will require to use the chain-rule for differentiation.

Math-412 NN & Deep Learning 12/43

Chain rules
If f and g are scalar functions

(f ◦ g)′(x) = f ′(g(x)) g′(x)

More generally with differentials:

d(f ◦ g)(x, ·) = df(g(x), ·) ◦ dg(x, ·)

For f : Rm → Rd and g : Rp → Rm

Jf◦g(x) = Jf

(
g(x)

)
Jg(x)

where Jg(x) ∈ Rm×p is the Jacobian of g at x defined by

Jg(x) =


∂g1(x)
∂x1

. . . ∂g1(x)
∂xp

...
...

∂gm(x)
∂x1

. . . ∂gm(x)
∂xp

 with g(x) =

 g1(x)
...

gm(x).


Math-412 NN & Deep Learning 13/43

Forward chain rules for compositions
Similarly,

if we consider F l = f l ◦ . . . ◦ f1 with xl = F l(x)

then since FL = fL ◦ FL−1 we have

JFL(x) = JfL(xL−1)JFL−1(x)

and JFL(x) = JfL(xL−1)JfL−1(xL−2) . . .Jf1(x)

i.e. “ ∂xL

∂x
=

∂xL

∂xL−1

∂xL−1

∂xL−2
. . .

∂x1

∂x0
”

Abstract forward
propagation of gradients

J0 ← Ip

For l = 1 to L
J l ← Jf l(xl−1)J l−1

Endfor

This computes
∂xl

∂x
for all l.

What if we need
∂xL

∂xl
for all l ?

Math-412 NN & Deep Learning 14/43

Backward chain rules for compositions

Similarly,

if we consider F̄ l = fL ◦ . . . ◦ f l+1 with xl = F l(x)

then since F̄ l−1 = F̄ l ◦ f l we have

J̄
l−1

:= JF̄ l−1(xl−1) = JF̄ l(xl)Jf l(xl−1)

i.e.
∂xL

∂xl−1
=
∂xL

∂xl

∂xl

∂xl−1

Abstract backward
propagation of gradients

J̄
L ← Id

For l = L to 1
J̄

l−1 ← J̄
l
Jf l(xl−1)

Endfor

Note that this requires to have performed a basic forward pass to have computed xl for all l.

Math-412 NN & Deep Learning 15/43

Computing gradients with respect to the parameters

∇W lℓ(FW(x), y)

Assuming that xL := FW(x) is scalar, we have:

∇⊺
wl

j

ℓ(FW(x), y) = ∇⊺
wl

j

(
ℓ(·, y) ◦ fL ◦ . . . ◦ f l+1

)
(σl(W lxl−1)︸ ︷︷ ︸

xl

)

=
∂ℓ

∂xL
∂xL

∂xl

∂xl

∂wl
j

= ℓ′(xL, y) JF̄ l(xl)
∂xl

∂wl
j

= ℓ′(xL, y) [JF̄ l(xl)]j
∂xlj

∂wl
j

And applying the chain rule again:
∂xli
∂wl

j

= (σl)′(wl
j
⊺
xl−1) · (xl−1)⊺

Math-412 NN & Deep Learning 16/43

Weight decay

Weight decay=... the DL name for Tikhonov regularization but used in the context of SGD

W l,t+1 = W l,t − ηt∇W lℓ(FW(xt), yt)− ηt
λ

2
∇W l∥W l∥2F

= (1− ρt)W l,t︸ ︷︷ ︸
weight decay

−ηt∇W lℓ(FW(xt), yt) with ρt = ηtλ.

Math-412 NN & Deep Learning 17/43

Dropout

Idea: randomly “drop” subsets of units in the network (Hinton et al., 2012).

More precisely, define “keep” probability πli for unit i in layer l.

typically: π0i = 0.8 (inputs) and πl≥1
i = 0.5 (hidden units)

realization: sampling bit mask and zeroing out activations

effectively defines an exponential ensemble of networks
(each of which is a sub-network of the original one)

all models share same weights

standard backpropagation applies

[see the book Deep Learning by Goodfellow et al. 2016, Chapter 7.12]

Math-412 NN & Deep Learning 18/43

Dropout: Motivation

... ”overfitting” is greatly reduced by randomly omitting half of the feature detectors on
each training case. This prevents complex co-adaptations in which a feature detector is only
helpful in the context of several other specific feature detectors. Instead, each neuron learns
to detect a feature that is generally helpful for producing the correct answer given the
combinatorially large variety of internal contexts in which it must operate.

(Hinton et al., 2012)

Math-412 NN & Deep Learning 19/43

Other training techniques that we did not talk about

Heuristics for initialization

Batch renormalization

Other algorithms than SGD: Adagrad, Adam, etc

Network pruning

Math-412 NN & Deep Learning 20/43

Convolution layer vs fully connected layer

(DL, Figure 9.2)

Math-412 NN & Deep Learning 22/43

Convolutions

Convolution:

(f ∗ h)(x) = (h ∗ f)(x) =
∫
f(x− z)h(z)dz =

∫
f(y)h(x− y)dy

Cross-correlation:

(f ⋆ h)(x) = (f ∗ h(−.))(x) =
∫
f(x+ z)h(z)dz =

∫
f(y)h(y − x)dy

Warning: some libraries use “convolution” for “cross-correlation”!

Equivariance of convolution/cross-correlation
If fτ (x) = f(x− τ), then (fτ ∗ h) = (f ∗ h)τ i.e.,

if f is translated then f ∗ h is translated.

Thm: A linear operator is equivariant for the translations if and only if it is a convolution.

Math-412 NN & Deep Learning 23/43

Convolutions III
Discrete cross-correlation in 2D with kernel with finite support

For I ∈ Rw×h,

[I ⋆ K](i, j) =

M∑
m=−M

N∑
n=−N

I(i+m, j + n)K(m,n)

Zero-padding

Previous definition a priori only valid for

M + 1 ≤ i ≤ w −M, N + 1 ≤ i ≤ h−N

→ So the convolution yields an image of size (w − 2M)× (h− 2N)

→ Zero-padding consist in enlarging the image by adding a number M ′ of zero columns on the

sides of I and a number N ′ of zero rows above and below I, with M ′ ≤M and N ′ ≤ N so as

to reduce the shrinkage of the image.

Math-412 NN & Deep Learning 24/43

Convolutions III

Discrete cross-correlation in 2D with kernel with finite support

For I ∈ Rw×h,

[I ⋆ K](i, j) =

M∑
m=−M

N∑
n=−N

I(i+m, j + n)K(m,n)

Nb of param.: (2M + 1)(2N + 1)

Comp. Complexity:

≲ wh(2M + 1)(2N + 1)

In fact = O(wh log[(2M + 1)(2N + 1)])

but not worth it for M,N small...

Compare with a fully connected layer:

I l+1(i, j) =

wl∑
m=1

hl∑
n=1

W l(i, j,m, n)I l(m,n)
Nb of param.: wl hl wl+1 hl+1

Comp. complexity: wl hl wl+1 hl+1

Math-412 NN & Deep Learning 25/43

Pooling

Idea: build in invariance to small local distortions of the image,
by keeping only most significant activation over a window.

strides s, s′ : horizontal and vertical subsampling factors

M,N horizontal and vertical pooling ranges.

Max pooling

I l+1(i, j) = max
|m|≤M,|n|≤N

I l(s i+m, s′j + n)

Sum pooling

I l+1(i, j) =
∑

|m|≤M,|n|≤N

I l(s i+m, s′j + n) Max-pooling

filter 2x2, stride 2x2

Math-412 NN & Deep Learning 26/43

Convolutional Layers: Stages

Pooling stage:

locally combine activities

Non-linearity= activation function

Math-412 NN & Deep Learning 27/43

Multichannel layers and formulation via tensors

In practice, when working e.g. on images σ1(I ⋆ K) can be viewed as one non-linear

filter computed on the image. Filters that can be relevant are Gabor filters that are

appropriate to detect edges in the image. But each filter correspond to an edge at a

certain frequency and with a given orientation, so it makes sense to apply several such

filters. So instead of applying a single learnable filter we apply several of them so that

I2 has actually multiple channels. Gabor filters

I2 ∈ RC×w×h

It is natural to obtain the values of a channel c of a new layer by computing linear combination of the

convolutions computed on the channels of the previous layer. This leads to tensor convolutions of the

form:

I l+1(c, i, j) =
Cl∑
c′=1

∑
m:|m|≤M

∑
n:|n|≤N

I l(c′, i+m, j + n)K l(c, c′,m, n)

Math-412 NN & Deep Learning 28/43

LeNet5 (LeCun et al., 1989, 1998)

Architecture LeNet5

C1/S2: 6 channels, (5x5 kernels), 2x2 sub (4704 units)

C3/S4: 16 channels, (6: 6x6x3, 9: 6x6x4 and 1: 6x6x6 kernels), 2x2 sub (1600 units)

C5: 120 channels, F6: fully-connected

σ = tanh

output: Gaussian noise model (square loss)

Math-412 NN & Deep Learning 29/43

AlexNet (Krizhevsky et al., 2012)

60 million parameters and 500,000 neurons

5 convolutional layers, some followed by max-pooling

2 globally connected layers with a final 1000-way softmax

Math-412 NN & Deep Learning 30/43

Convolution: summary

Equivariance with respect to translations

→ well adapted to images in 2D, times series in 1D

Decrease of the number of parameters provides

→ computational+memory advantage
→ allows for better generalization

Mainly using 3× 3 and 5× 5 convolutions in deeper architectures.

Math-412 NN & Deep Learning 31/43

Recurrent Neural Networks (RNN)
Goal: model the relationship between a sequence of input variables xt

and a sequence of output variables yt

Idea: Introduce hidden variables ht to implement “short term memory”.

Linear dynamical system ht = f(ht−1,xt) := σ(Wht−1 +Uxt + b)

Optionally produce outputs via ŷt = ψ(ht) := σo(Vht + c)

“Unfolded” RNN

RNNs are related to the Hidden Markov Model and Conditional Random Fields of the graphical

model/multidimensional signal processing literature
Math-412 NN & Deep Learning 33/43

More other models

Autoencoders

Long Short Term Memory Networks (LSTM)

Variational Auto-encoders

Models with attention mechanisms

Transformer networks

Math-412 NN & Deep Learning 34/43

Why is deep learning working?

For larger networks (not necessarily deeper), the optimization problem is
empirically easier (fewer/no bad local minima)

The vanishing/exploding gradients issues are mitigated by the use of ReLU + batch
normalization.

Huge labelled datasets have been made available thanks to the development of crawling engines
and “crowd-sourcing”, for which generic nonlinear models such as kernel methods did not scale
so well computationally and did not generalize so well.

Some architectural elements inspired from biological systems, e.g. for CNNs our understanding
of the mammalian visual system.

Some empirically elicited good practice

The use of graphical processing units (GPU) and tensor processing units (TPU) which allow to
perform tensorized calculus very efficiently

The development of dedicated programming tools and languages such as Theano, TensorFlow
and PyTorch.

Math-412 NN & Deep Learning 36/43

Deep networks overfit and generalize at the same time
DL model training shows many examples of situations in which

no regularization was used

the network fits perfectly (overfits) the training data

but the network generalizes well to the testing data !

NEYSHABUR ET AL.

4 8 16 32 64 128 256 512 1K 2K 4K
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

H

Er
ro

r

Training
Test (at convergence)
Test (early stopping)

4 8 16 32 64 128 256 512 1K 2K 4K
0

0.1

0.2

0.3

0.4

0.5

0.6

H
Er

ro
r

Training
Test (at convergence)
Test (early stopping)

MNIST CIFAR-10

Figure 1: The training error and the test error based on different stopping criteria when 2-layer NNs with different
number of hidden units are trained on MNIST and CIFAR-10. Images in both datasets are downsampled to
100 pixels. The size of the training set is 50000 for MNIST and 40000 for CIFAR-10. The early stopping is
based on the error on a validation set (separate from the training and test sets) of size 10000. The training
was done using stochastic gradient descent with momentum and mini-batches of size 100. The network
was initialized with weights generated randomly from the Gaussian distribution. The initial step size and
momentum were set to 0.1 and 0.5 respectively. After each epoch, we used the update rule µ(t+1) = 0.99µ(t)

for the step size and m(t+1) = min{0.9, m(t) + 0.02} for the momentum.

What happens to the training and test errors when we increase the network size H? The training
error will necessarily decrease. The test error might initially decrease as the approximation error is
reduced and the network is better able to capture the targets. However, as the size increases further,
we loose our capacity control and generalization ability, and should start overfitting. This is the
classic approximation-estimation tradeoff behavior.

Consider, however, the results shown in Figure 1, where we trained networks of increasing size
on the MNIST and CIFAR-10 datasets. Training was done using stochastic gradient descent with
momentum and diminishing step sizes, on the training error and without any explicit regularization.
As expected, both training and test error initially decrease. More surprising is that if we increase
the size of the network past the size required to achieve zero training error, the test error continues
decreasing! This behavior is not at all predicted by, and even contrary to, viewing learning as fitting
a hypothesis class controlled by network size. For example for MNIST, 32 units are enough to
attain zero training error. When we allow more units, the network is not fitting the training data any
better, but the estimation error, and hence the generalization error, should increase with the increase
in capacity. However, the test error goes down. In fact, as we add more and more parameters, even
beyond the number of training examples, the generalization error does not go up.

loss function ˆ̀(s, c) = ln
P

i f(si � sc) where f(x) = exp(x) for x � �11 and f(x) = exp(�11)[x + 13]2+/4
otherwise. Therefore, we only deviate from the soft-max cross-entropy when the margin is more than 11, at which
point the effect of this deviation is negligible (we always have

���`(s, c) � ˆ̀(s, c)
���  0.000003k)—if there are any

actual errors the behavior on them would completely dominate correct examples with margin over 11, and if there
are no errors we are just capping the amount by which we need to scale up the weights.

4

N
ey
sh
ab
u
r
et

al
.
(2
01
7)

Math-412 NN & Deep Learning 37/43

Deep learning generalization not explained by classical SLT!

This is puzzling because

Classical statistical learning theory usually proves that generalization occurs as a consequence of
R(ĥ)− R̂n(ĥ) being small: so the theory does not explain how overfitting and generalizing at
the same time is possible.

And since deep NN have a number of parameters which is of the order of magnitude of the
number of data points or (much) larger, the classical learning theory does not apply (huge
Rademacher complexity)...

However DL models are not alone:

Random forests (with no pruning) overfit the training points but can generalize well...

Ridgeless kernel regression can generalize well in high-dimension in spite of overfitting the
data (Liang and Rakhlin, 2018)

Math-412 NN & Deep Learning 38/43

Explanation for why deep learning generalizes well

We don’t know for sure, and clearly there are cases where NN do overfit and/or
benefit from regularization. In models that are overparameterized, there are many models that can fit
exactly the data, and which are somehow interpolating the data but the training algorithm (SGD)
converges to a model of low complexity/high smoothness.

Why could this be true?

Gradient descent algorithm can be shown to maximize the margin for some losses for binary
classification and can be shown to converge to some minimal norm solutions in more general
settings (for norms that are not necessarily the ℓ2 norm) (Soudry et al., 2018).

Some training algorithm (e.g. SGD) have the property that the mutual information between the
model and the data remains small and only extract the information relevant to solve the
supervised learning problem. (Achille and Soatto, 2018)

Math-412 NN & Deep Learning 39/43

Double descent phenomenon

R
is

k

Training risk

Test risk

Capacity of H
sweet spot

under-fitting over-fitting

R
is

k

Training risk

Test risk

Capacity of H

under-parameterized

“modern”
interpolating regime

interpolation threshold

over-parameterized

“classical”
regime

(a) (b)

Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical
U-shaped risk curve arising from the bias-variance trade-o↵. (b) The double descent risk curve,
which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed
behavior from using high capacity function classes (i.e., the “modern” interpolating regime), sep-
arated by the interpolation threshold. The predictors to the right of the interpolation threshold
have zero training risk.

When function class capacity is below the “interpolation threshold”, learned predictors exhibit
the classical U-shaped curve from Figure 1(a). (In this paper, function class capacity is identified
with the number of parameters needed to specify a function within the class.) The bottom of the
U is achieved at the sweet spot which balances the fit to the training data and the susceptibility
to over-fitting: to the left of the sweet spot, predictors are under-fit, and immediately to the
right, predictors are over-fit. When we increase the function class capacity high enough (e.g.,
by increasing the number of features or the size of the neural network architecture), the learned
predictors achieve (near) perfect fits to the training data—i.e., interpolation. Although the learned
predictors obtained at the interpolation threshold typically have high risk, we show that increasing
the function class capacity beyond this point leads to decreasing risk, typically going below the risk
achieved at the sweet spot in the “classical” regime.

All of the learned predictors to the right of the interpolation threshold fit the training data
perfectly and have zero empirical risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer is that the capacity of the function
class does not necessarily reflect how well the predictor matches the inductive bias appropriate for
the problem at hand. For the learning problems we consider (a range of real-world datasets as well
as synthetic data), the inductive bias that seems appropriate is the regularity or smoothness of
a function as measured by a certain function space norm. Choosing the smoothest function that
perfectly fits observed data is a form of Occam’s razor: the simplest explanation compatible with
the observations should be preferred (cf. [38, 6]). By considering larger function classes, which
contain more candidate predictors compatible with the data, we are able to find interpolating
functions that have smaller norm and are thus “simpler”. Thus increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins theory [38, 2, 35], where a larger
function class H may permit the discovery of a classifier with a larger margin. While the margins
theory can be used to study classification, it does not apply to regression, and also does not pre-
dict the second descent beyond the interpolation threshold. Recently, there has been an emerging
recognition that certain interpolating predictors (not based on ERM) can indeed be provably sta-
tistically optimal or near-optimal [3, 5], which is compatible with our empirical observations in the
interpolating regime.

In the remainder of this article, we discuss empirical evidence for the double descent curve, the

3

from Belkin et al. (2019a,b)

as model complexity increases, the test error follows the traditional “U-Shaped curve” but
beyond the point of interpolation, the error starts to decrease

Math-412 NN & Deep Learning 40/43

Conclusions on deep learning

Learning composition of functions

Very good empirical performance in spite of limited understanding on large supervised
learning problem.

Good performance in particular for data whose structure can be captured by specific
architectures (natural images and imaging data, speech recognition and language
processing, structured time series)

DL is challenging our understanding of generalization mechanisms.

Learning efficiently with smaller amounts of data is still difficult

How to do semi-supervised learning efficiently remains an open problem.

Math-412 NN & Deep Learning 41/43

References I

Achille, A. and Soatto, S. (2018). Emergence of invariance and disentanglement in deep representations. The Journal
of Machine Learning Research, 19(1):1947–1980.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2019a). Reconciling modern machine-learning practice and the classical
bias–variance trade-off. Proceedings of the National Academy of Sciences, 116(32):15849–15854.

Belkin, M., Hsu, D., and Xu, J. (2019b). Two models of double descent for weak features. arXiv preprint
arXiv:1903.07571.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R. (2012). Improving neural
networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing Systems, pages 1097–1105.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. (1998). Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324.

LeCun, Y., Jackel, L. D., Boser, B., Denker, J. S., Graf, H. P., Guyon, I., Henderson, D., Howard, R. E., and Hubbard,
W. (1989). Handwritten digit recognition: Applications of neural network chips and automatic learning. IEEE
Communications Magazine, 27(11):41–46.

Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993). Multilayer feedforward networks with a nonpolynomial
activation function can approximate any function. Neural networks, 6(6):861–867.

Math-412 NN & Deep Learning 42/43

References II

Liang, T. and Rakhlin, A. (2018). Just interpolate: Kernel” ridgeless” regression can generalize. arXiv preprint
arXiv:1808.00387.

Neyshabur, B., Tomioka, R., Salakhutdinov, R., and Srebro, N. (2017). Geometry of optimization and implicit
regularization in deep learning. arXiv preprint arXiv:1705.03071.

Pinkus, A. (1999). Approximation theory of the mlp model in neural networks. Acta numerica, 8(1):143–195.

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and Srebro, N. (2018). The implicit bias of gradient descent on
separable data. The Journal of Machine Learning Research, 19(1):2822–2878.

Math-412 NN & Deep Learning 43/43

	Artificial neurons and basic neural networks
	Approximation with Neural network functions
	Training Neural Networks
	Stochastic gradient descent and backpropagation
	Regularization and dropout

	Convolutional Neural Networks
	More advanced architectures
	Learning with deep neural networks
	References
	References

