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Making models non-linear with a feature map

Idea : make non-linear transformation of the data first

@ Quadratic map :

o (x) = (21,. .. ,xp,x%, .. ,a:g, T1T2, T1T3,. .., Tp—1Tp)

@ Fourier basis, spline basis, wavelet basis

Regularized empirical risk minimization with a mapping ¢ :

1

min — Zé(qub(mi)? yi) + Mw|?.
P

Math-412 Kernel methods



Representer theorem (simple version with the feature map)

Theorem (Kimmeldorf and Wahba, 1971)

Consider the optimization problem

min L(w' (z1),.-, w0 §(w)) + Aol

Then any local minimum is of the form w = Z a;p(z;),

i=1
for some vector a € R"™. Interpretation : w € span(qb(xl), e d)(:vn)).
So that fw(z) =w' ¢(z) = Zai<¢($i)a o(x)) = ZaiK(%’an)-
i=1 i=1
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Applying the representer theorem to the ERM problem
1 n
min — > lw ' pw:),yi) + Aw]*.
=1

By the theorem of Kimmeldorf and Wahba, w* = Za§¢(xj).

j=1
So replacing in the previous expression, we get

n

min 25703 (). il)on) + 3|3 b

i=1  j=1 j=1

H}iﬂﬁZf(Za] z]7yz>+)‘ Z alaﬂ ijs

1<i,5<n

i

with K;; = K(x;, %) = <¢(:L’i),¢( x;)) the values of a kernel function on pairs of input
datapoints.
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The ERM expressed with the kernel matrix

1 n
We rewrote II}II)DE ;K(qub(xi),yi) + Mw|? as:

() s
J= 1<i,j<n
with Ky = K (v, ;) = (¢(xi), p(75)).

This can be rewritten in matrix vector form as

min —ZE(K a,yz> +la' Ka.

acR™ n

Furthermore to make a prediction, our predictor is computed as

fl@)=w Tp(z) =Y af K(z),2)
Jj=1
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The kernel matrix when ¢(x) = x.
Based on the design matrix X, two symmetric p.s.d. matrices are natural :
e the empirical covariance matrix (assuming X is centered)

S—1xTx

T n

Lk

Ske = Cov(X®, X0 = <7X 7%X€>
n n

@ the kernel matrix or Gram matrix

Kij = (xi,x;)
K is simply the matrix of all dot products. K encodes information about the data vectors
X; = XiT while ¥ encodes information about the variables x* = X ;.
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Properties of the kernel matrix when ¢(x) = x.

The kernel matrix contains a lot of information about the data :

@ It contains the information about all the distances between all pairs of data points (and
between each data points and the origin). Indeed,

i — x;3 = K — 2K + Kj;.

@ As a consequence, any factorization of the matrix K of the form
K =RR',

retrieves a representation of the data up to an isometry. This can be obtained for
example by the Cholesky decomposition.
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Why is this useful 7
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Dot products in feature space
Let x = (w1, 72) € R? and ¢(x) = (21, 29, 2%, 23, vV22122) T

(0(x),0(¥)) = xiy1 + oy2 + TTYT + 235 + 2w1 22192
= 1+ 22y2 + (2151)° + (212)” + 2(191) (292)
= (xy) +(xy)’
Forw=(0,0,1,1,0)7, w'¢(x)-1<0 < [x]?<L1

Linear separators in R® correspond to conic separators in R2.

https://www.youtube.com/watch?v=Q7vTO--5VII

Let x = (1,...,2p) € RP and

o(x) = (x1,... ,zp,m%, o 2N 22, \/ia:ixj, ... \/ﬁxp_lmp)T.

) p7

Still have
(p(x),d(y)) = (x,9) + (x,y)?

But explicit mapping too expensive to compute : ¢(x) € RPHP(P+1)/2,
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https://www.youtube.com/watch?v=Q7vT0--5VII

Which abstract space is a good predictor space ?
Require that
(1) the space should be a Hilbert space (H, || - ||%)
(2) Va € X, the evaluation functional f — f(x) is continuous from (H, || - ||%) to R.
e This is equivalent to requiring that for a given z € X" :
if [|f — gl is small then |f(z) — g(x)| should be small.
e The motivation is that we would like that

(1fn=Flle=0) = (fal@) = f(2))

Riesz Representation Theorem
Let H be a Hilbert space, and ¥ : H — R be a continuous linear form, then there exists
hy € H such that

Ve, ¥(f) = (hy, [, -

Under (1) and (2) by this theorem, there must exist an element h, € # such that
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Reproducing Kernel Hilbert Space

So if H is a Hilbert space of functions in which the evaluation functionals
are continuous, then by the Riesz representation theorem,
there must exist an element h, € H such that

VieM, [f(@)= (haf)y-

But then by definition hy(z) = (hs, hy),, = ha(y).
Define the reproducing kernel as the function

K:XxX R
(@,y) = (ha hy),, -
By definition h,(-) = K(z,-) so that
f(x): <K($7 )af)H and <K($’ )’K(ya)>H:K($7y)

A space with these properties is called a reproducing kernel Hilbert space (RKHS).
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Positive definite functions

(z,y) = K(z,y)

is a positive definite function if the matrix constructed as

K(zy,z1) ..., ... K(z1,zp)
K(xo,x ceey e K(zg, 2
K (? 1) (2. )
K(zp,z1) ..., ... K(zp,xn)

is a positive semi-definite matrix
e, VaeR", a'Ka>0,

for any choice of x1,...,x, and any value of n.
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A reproducing kernel is a positive definite function

Proposition J

A reproducing kernel is a positive definite function.

Proof of the claim The reproducing kernel is necessarily a symmetric positive definite
function since for all z1,...,z, € X', we have (K(z;,-), K(xj,-)),, = K(x;,x;), and thus
for all aq,...,a, € R.

0< <Zz aiK(xia')vzj a] .CC], > Zaza] .Tl,l'j),

H

with equality if and only if a; = 0 for all <.

Converse ?
Yes, any symmetric positive definite function is the reproducing kernel of a RKHS
(Aronszajn, 1950).
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Moore-Aronszajn theorem

Theorem

A symmetric function K on X is positive definite if and only if there exists a Hilbert space
H and a mapping

p: X —>H
x — ¢(x)

such that K(x,y) = (¢(x), d(y))x.

e In fact, this mapping is ¢(x) = h,
@ Such symmetric p.d. functions are often called Mercer kernels.

@ We will not show this theorem in this course.
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Common RKHSes for X = RP

Linear kernel
° K(x,y)=x"y
o H={fw:x—w'x|wecRP}

® || fwlln = [[wll2

Polynomial kernel

o Kn(x,y)=(y+x'y)*
o H

Radial Basis Function kernel (RBF)

x—l2
o Ki(x,y) = exp ( — )
@ H = Gaussian RKHS
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Representer theorem

Theorem (Kimmeldorf and Wahba, 1971)

Consider the optimization problem

n
Then any local minimum is of the form  f = Z o, K (x4, ),

i=1

where K is the reproducing kernel associated with the RKHS H and « is a vector in R™.

Proof Indeed, let f be a local minimum and consider the subspace

S={glg=> aiK(z;,-), acR"}.
i=1
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Representer theorem

We can decompose f = f, + fi. with f, = Projs(f). We then have

Ji(zi) = (fL, K(xi,-))» =0 and (fL,f)u =0.
Thus

L(f(z1),- -, flza)) + AlIFII3
L(fy(x1), - fy(wn)) + X (15 + 20FL, f)a + 1FL117)
= L(fy(@1),- fylwn)) + NIF G+ X A5

So that we must have f; = 0.

flz
Jr
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Regularized ERM for f in a RKHS

- E 7 7 A P
?lelﬁn; () vi) + MIfI% (P)

By the representer theorem, the solution of the regularized empirical risk minimization
problem lies in the subspace of H generated by the point z;, i.e.,

ff= ZajK(wj, -)  for some «; € R. (R)
j=1

The solution of (P) is therefore of the form (R) with o € R™ the solution of

o{rel%RI}LE Z€<ZO‘J (xj, ), Z) + A Z a0 K (x4, ).

1<ij<n
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Hyperbola example

true
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Hyperbola example
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“Roll” example

Polynomial(3) Kernel
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Gaussian(0.5) Kernel
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| f||% measures the smoothness of the function f

Indeed :

[f(@) = f@)] = (£, K (z,) = K(@',)),, | < [Ifllall K (2,) = K (2, )|

— fis Lipschitz with respect to the ¢? distance induced by the RKHS

d(z,2') = |K(z,-) — K&, )% = VE(z,2) + K(2/,2') — 2K (2, 2')

— || f|l% is the Lipschitz constant
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Kernel combinations

Assume K, K1 and K are positive definite functions,
then the following are still p.d. kernel functions :

Sum of kernels : For ay,an > 0, K(z,y) = a1 K1 (z,y) + as K (z,y)
Limits of kernels :  K(z,y) = li_)m K, (z,y)

Pointwise product : Kz, ) Ki(x,y) KQ(x y)
K(z

ZKLL‘Z ,Y)

z€EZ

Pairwise kernel :

K(z,y)

Normalized kernel : K (z,y) =
K(z,2)K(y,y)

=cos/ (q')(a?), q’)(y))

In terms of kernel matrices

Pointwise product : = K; ® K2 (Hadamard product)

K? (Matrix product)

K
Pairwise kernel : K
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Scaling...

. 1L A
The kernelized form min ;E(a—rki, yi) + gaTKa
requires to compute K € R"*",

@ The cost of working with kernels quadratic in n.

@ ... unless K is low rank, e.g. for the linear kernel

@ This is a price to pay to work in very high/infinite dimensional spaces
o It is however possible to
e compute low rank approximations to K using Nystrém’s method (Williams and Seeger,
2001; Gittens and Mahoney, 2016) or
o use greedy approximation schemes (Smola et al., 2000)
o compute directly lower/finite dimensional approximation to the feature map using random
features expansions (Rahimi and Recht, 2007; Bach, 2017; Yang et al., 2017)
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Kernel ridge regression

n

1 2 2
- i — f(i A
?ggn;(y Fa)” + Ml
%%‘Hy FIBHAFE with  f=(f(z1),. ., f(2n):
By the representer property f(z ZO‘Z (x4, ), so that —||f yl3 = —HKa yl3.

1 A
The regularized empirical risk is - Ko — yll3 + §aTKa
n

and the minimizers are of the form a* + h with a* = (K + AnI) "'y, and h € Ker(K).
Finally f(z) = Yo arK(z;,x) because > | hiK(x;,-) =0, Vh € Ker(K).
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Convolution vs Mercer kernels
In this course we encountered two type of kernels

Convolution kernels
Used for density estimation and by the Nadaraya-Watson estimator

K5(1L' _ y) — h(”Igy”)

e e.g. Epanechnikov, tricube or Gaussian kernel

Mercer kernels

... or simply positive definite kernel functions, which by Aronszajn’s theorem provide the
inner product of a RKHS

K(z,y)

@ e.g. linear, polynomial, Laplace, Gaussian kernel and more
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Summary

Every positive definite function (Mercer kernel) is associated with a RKHS
Regularized ERM can be kernelized (e.g. ridge regression)
Many other algorithms in ML can be kernelized (e.g. kernel PCA)

The representer theorem of Kimmeldorf and Wahba (1971) guarantees that a large
class of optimization problems in RKHS can be reformulated as a finite-dimensonal
optimization problem.

Using kernels directly has complexity n? but there are efficient approximation schemes
(Nystrom, random feature expansions)

Mercel kernels should not be confused with convolution kernels used for density
estimation and by Nadaraya-Watson estimators.
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