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Making models non-linear with a feature map

Idea : make non-linear transformation of the data first

Quadratic map :

ϕ(x) = (x1, . . . , xp, x
2
1, . . . , x

2
p, x1x2, x1x3, . . . , xp−1xp)

Fourier basis, spline basis, wavelet basis

Regularized empirical risk minimization with a mapping ϕ :

min
w

1

n

n∑
i=1

ℓ(w⊤ϕ(xi), yi) + λ∥w∥2.
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Representer theorem (simple version with the feature map)

Theorem (Kimmeldorf and Wahba, 1971)

Consider the optimization problem

min
w∈Rd

L(w⊤ϕ(x1), . . . ,w
⊤ϕ(xn)) + λ∥w∥2

Then any local minimum is of the form w =

n∑
i=1

αiϕ(xi),

for some vector α ∈ Rn. Interpretation : w ∈ span
(
ϕ(x1), . . . ,ϕ(xn)

)
.

So that fw(x) = w⊤ϕ(x) =

n∑
i=1

αi⟨ϕ(xi),ϕ(x)⟩ =
n∑
i=1

αiK(xi, x).
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Applying the representer theorem to the ERM problem

min
w

1

n

n∑
i=1

ℓ(w⊤ϕ(xi), yi) + λ∥w∥2.

By the theorem of Kimmeldorf and Wahba, w⋆ =

n∑
j=1

α⋆jϕ(xj).

So replacing in the previous expression, we get

min
α

1

n

n∑
i=1

ℓ
( n∑
j=1

αj⟨ϕj(xj),ϕi(xi)⟩, yi
)
+ λ

∥∥∥ n∑
j=1

αjϕ(xj)
∥∥∥2.

min
α

1

n

n∑
i=1

ℓ
( n∑
j=1

αjKij , yi

)
+ λ

∑
1≤i,j≤n

αiαjKij ,

with Kij = K(xi, xj) = ⟨ϕ(xi),ϕ(xj)⟩ the values of a kernel function on pairs of input
datapoints.
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The ERM expressed with the kernel matrix

We rewrote min
w

1

n

n∑
i=1

ℓ(w⊤ϕ(xi), yi) + λ∥w∥2 as :

min
α

1

n

n∑
i=1

ℓ
( n∑
j=1

αjKij , yi

)
+ λ

∑
1≤i,j≤n

αiαjKij ,

with Kij = K(xi, xj) = ⟨ϕ(xi),ϕ(xj)⟩.

This can be rewritten in matrix vector form as

min
α∈Rn

1

n

n∑
i=1

ℓ
(
Ki·α, yi

)
+ λα⊤Kα.

Furthermore to make a prediction, our predictor is computed as

f̂(x) = w⋆⊤ϕ(x) =

n∑
j=1

α⋆j K(xj , x).
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The kernel matrix when ϕ(x) = x.
Based on the design matrix X, two symmetric p.s.d. matrices are natural :

the empirical covariance matrix (assuming X is centered)

Σ̂ = 1
nX

⊤X

Σ̂kℓ = Ĉov(X(k), X(ℓ)) =
〈 1√

n
xk,

1√
n
xℓ
〉

the kernel matrix or Gram matrix

K = XX⊤

Kij = ⟨xi,xj⟩
K is simply the matrix of all dot products. K encodes information about the data vectors
xi = X⊤

i· while Σ̂ encodes information about the variables xk = X·k
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Properties of the kernel matrix when ϕ(x) = x.

The kernel matrix contains a lot of information about the data :

It contains the information about all the distances between all pairs of data points (and
between each data points and the origin). Indeed,

∥xi − xj∥22 = Kii − 2Kij +Kjj .

As a consequence, any factorization of the matrix K of the form

K = RR⊤,

retrieves a representation of the data up to an isometry. This can be obtained for
example by the Cholesky decomposition.
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Why is this useful ?
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Dot products in feature space
Let x = (x1, x2) ∈ R2 and ϕ(x) = (x1, x2, x

2
1, x

2
2,
√
2x1x2)

⊤.

⟨ϕ(x),ϕ(y)⟩ = x1y1 + x2y2 + x21y
2
1 + x22y

2
2 + 2x1x2y1y2

= x1y1 + x2y2 + (x1y1)
2 + (x2y2)

2 + 2(x1y1)(x2y2)

= ⟨x,y⟩+ ⟨x,y⟩2

For w = (0, 0, 1, 1, 0)⊤, w⊤ϕ(x)− 1 ≤ 0 ⇔ ∥x∥2 ≤ 1.

Linear separators in R5 correspond to conic separators in R2.
https://www.youtube.com/watch?v=Q7vT0--5VII

Let x = (x1, . . . , xp) ∈ Rp and

ϕ(x) = (x1, . . . , xp, x
2
1, . . . , x

2
p,
√
2x1x2, . . . ,

√
2xixj , . . .

√
2xp−1xp)

⊤.

Still have
⟨ϕ(x),ϕ(y)⟩ = ⟨x,y⟩+ ⟨x,y⟩2

But explicit mapping too expensive to compute : ϕ(x) ∈ Rp+p(p+1)/2.
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Which abstract space is a good predictor space ?
Require that

(1) the space should be a Hilbert space (H, ∥ · ∥H)
(2) ∀x ∈ X , the evaluation functional f 7→ f(x) is continuous from (H, ∥ · ∥H) to R.

This is equivalent to requiring that for a given x ∈ X :

if ∥f − g∥H is small then |f(x)− g(x)| should be small.

The motivation is that we would like that(
∥f̂n − f∗∥H → 0

)
⇒

(
f̂n(x) → f∗(x)

)
Riesz Representation Theorem

Let H be a Hilbert space, and ψ : H → R be a continuous linear form, then there exists
hψ ∈ H such that

∀f ∈ H, ψ(f) = ⟨hψ, f⟩H .

Under (1) and (2) by this theorem, there must exist an element hx ∈ H such that

∀f ∈ H, f(x) = ⟨hx, f⟩H .
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Reproducing Kernel Hilbert Space
So if H is a Hilbert space of functions in which the evaluation functionals
are continuous, then by the Riesz representation theorem,
there must exist an element hx ∈ H such that

∀f ∈ H, f(x) = ⟨hx, f⟩H .

But then by definition hy(x) = ⟨hx, hy⟩H = hx(y).
Define the reproducing kernel as the function

K : X × X → R
(x, y) 7→ ⟨hx, hy⟩H .

By definition hx(·) = K(x, ·) so that

f(x) = ⟨K(x, ·), f⟩H and ⟨K(x, ·),K(y, ·)⟩H = K(x, y).

A space with these properties is called a reproducing kernel Hilbert space (RKHS).
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Positive definite functions

(x, y) 7→ K(x, y)

is a positive definite function if the matrix constructed as

K =


K(x1, x1) . . . , . . . K(x1, xn)
K(x2, x1) . . . , . . . K(x2, xn)

...
...

K(xn, x1) . . . , . . . K(xn, xn)


is a positive semi-definite matrix

i.e., ∀α ∈ Rn, α⊤Kα ≥ 0,

for any choice of x1, . . . , xn and any value of n.
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A reproducing kernel is a positive definite function

Proposition

A reproducing kernel is a positive definite function.

Proof of the claim The reproducing kernel is necessarily a symmetric positive definite
function since for all x1, . . . , xn ∈ X , we have ⟨K(xi, ·),K(xj , ·)⟩H = K(xi, xj), and thus
for all α1, . . . , αn ∈ R.

0 ≤
〈∑

i αiK(xi, ·),
∑

j αjK(xj , ·)
〉

H
=

∑
i,j

αiαjK(xi, xj),

with equality if and only if αi = 0 for all i.

Converse ?

Yes, any symmetric positive definite function is the reproducing kernel of a RKHS
(Aronszajn, 1950).
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Moore-Aronszajn theorem

Theorem

A symmetric function K on X is positive definite if and only if there exists a Hilbert space
H and a mapping

ϕ : X → H
x 7→ ϕ(x)

such that K(x, y) = ⟨ϕ(x), ϕ(y)⟩H.

In fact, this mapping is ϕ(x) = hx

Such symmetric p.d. functions are often called Mercer kernels.

We will not show this theorem in this course.
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Common RKHSes for X = Rp

Linear kernel

K(x,y) = x⊤y

H = {fw : x 7→ w⊤x | w ∈ Rp}
∥fw∥H = ∥w∥2

Polynomial kernel

Kh(x,y) = (γ + x⊤y)d

H

Radial Basis Function kernel (RBF)

Kh(x,y) = exp
(
− ∥x−y∥22

2h

)
H = Gaussian RKHS
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Representer theorem

Theorem (Kimmeldorf and Wahba, 1971)

Consider the optimization problem

min
f∈H

L(f(x1), . . . , f(xn)) + λ∥f∥2H

Then any local minimum is of the form f =

n∑
i=1

αiK(xi, ·),

where K is the reproducing kernel associated with the RKHS H and α is a vector in Rn.

Proof Indeed, let f be a local minimum and consider the subspace

S = {g | g =

n∑
i=1

αiK(xi, ·), α ∈ Rn}.
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Representer theorem

We can decompose f = f// + f⊥ with f// = ProjS(f). We then have

f⊥(xi) = ⟨f⊥,K(xi, ·)⟩H = 0 and ⟨f⊥, f//⟩H = 0.

Thus

L(f(x1), . . . , f(xn)) + λ∥f∥2H
= L(f//(x1), . . . , f//(xn)) + λ

(
∥f//∥2H + 2⟨f⊥, f//⟩H + ∥f⊥∥2H

)
= L(f//(x1), . . . , f//(xn)) + λ ∥f//∥2H + λ ∥f⊥∥2H

So that we must have f⊥ = 0.
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Regularized ERM for f in a RKHS

min
f∈H

1

n

n∑
i=1

ℓ(f(xi), yi) + λ ∥f∥2H (P)

By the representer theorem, the solution of the regularized empirical risk minimization
problem lies in the subspace of H generated by the point xi, i.e.,

f∗ =
n∑
j=1

αjK(xj , ·) for some αi ∈ R. (R)

The solution of (P) is therefore of the form (R) with α ∈ Rn the solution of

min
α∈Rn

1

n

n∑
i=1

ℓ
( n∑
j=1

αjK(xj , xi), yi

)
+ λ

∑
1≤i,j≤n

αiαjK(xi, xj).

Math-412 Kernel methods 18/29



Hyperbola example

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

true

x1

x2

Math-412 Kernel methods 19/29



Hyperbola example
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“Roll” example
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“Roll” example
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∥f∥H measures the smoothness of the function f

Indeed :

|f(x)− f(x′)| = |
〈
f,K(x, ·)−K(x′, ·)

〉
H
| ≤ ∥f∥H∥K(x, ·)−K(x′, ·)∥H

→ f is Lipschitz with respect to the ℓ2 distance induced by the RKHS

d(x, x′) = ∥K(x, ·)−K(x′, ·)∥H =
√
K(x, x) +K(x′, x′)− 2K(x, x′)

→ ∥f∥H is the Lipschitz constant
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Kernel combinations

Assume K,K1 and K2 are positive definite functions,
then the following are still p.d. kernel functions :

Sum of kernels : For α1, α2 > 0, K̃(x, y) = α1K1(x, y) + α2K(x, y)

Limits of kernels : K(x, y) = lim
n→∞

Kn(x, y)

Pointwise product : K̃(x, y) = K1(x, y)K2(x, y)

Pairwise kernel : K̃(x, y) =
∑
z∈Z

K(x, z)K(z, y)

Normalized kernel : K̃(x, y) =
K(x, y)√

K(x, x)K(y, y)
= cos∠

(
ϕ(x),ϕ(y)

)
In terms of kernel matrices

Pointwise product : K̃ = K1 ⊙K2 (Hadamard product)

Pairwise kernel : K̃ = K2 (Matrix product)
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Scaling...

The kernelized form min
α

1

n

n∑
i=1

ℓ(α⊤ki, yi) +
λ

2
α⊤Kα

requires to compute K ∈ Rn×n.
The cost of working with kernels quadratic in n.

... unless K is low rank, e.g. for the linear kernel

This is a price to pay to work in very high/infinite dimensional spaces

It is however possible to

compute low rank approximations to K using Nyström’s method (Williams and Seeger,
2001; Gittens and Mahoney, 2016) or
use greedy approximation schemes (Smola et al., 2000)
compute directly lower/finite dimensional approximation to the feature map using random
features expansions (Rahimi and Recht, 2007; Bach, 2017; Yang et al., 2017)
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Kernel ridge regression

min
f∈H

1

n

n∑
i=1

(
yi − f(xi)

)2
+ λ∥f∥2H

min
f∈H

1

n
∥y − f∥22 + λ∥f∥2H with f = (f(x1), . . . , f(xn)).

By the representer property f̂(x) =
n∑
i=1

αiK(xi, x), so that
1

2
∥f − y∥22 =

1

2
∥Kα− y∥22.

The regularized empirical risk is
1

2n
∥Kα− y∥22 +

λ

2
α⊤Kα

and the minimizers are of the form α⋆ + h with α⋆ = (K + λnI)−1y, and h ∈ Ker(K).

Finally f̂(x) =
∑n

i=1 α
⋆
iK(xi, x) because

∑n
i=1 hiK(xi, ·) = 0, ∀h ∈ Ker(K).
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Convolution vs Mercer kernels
In this course we encountered two type of kernels

Convolution kernels

Used for density estimation and by the Nadaraya-Watson estimator

Kδ(x− y) = h
(∥x−y∥

δ

)
• e.g. Epanechnikov, tricube or Gaussian kernel

Mercer kernels

... or simply positive definite kernel functions, which by Aronszajn’s theorem provide the
inner product of a RKHS

K(x, y)

e.g. linear, polynomial, Laplace, Gaussian kernel and more

Some are actually both
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Summary

Every positive definite function (Mercer kernel) is associated with a RKHS

Regularized ERM can be kernelized (e.g. ridge regression)

Many other algorithms in ML can be kernelized (e.g. kernel PCA)

The representer theorem of Kimmeldorf and Wahba (1971) guarantees that a large
class of optimization problems in RKHS can be reformulated as a finite-dimensonal
optimization problem.

Using kernels directly has complexity n2 but there are efficient approximation schemes
(Nyström, random feature expansions)

Mercel kernels should not be confused with convolution kernels used for density
estimation and by Nadaraya-Watson estimators.
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