

# Linear regression

MATH-412 - Statistical Machine Learning

## Design matrix, etc

Given a training set

$$D_n = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\},$$

we consider

- the design matrix  $\mathbf{X}$
- output vector  $\mathbf{y}$

$$\mathbf{X} = \begin{bmatrix} \text{---} & \mathbf{x}_1^\top & \text{---} \\ \text{---} & \mathbf{x}_2^\top & \text{---} \\ \text{---} & \vdots & \text{---} \\ \text{---} & \mathbf{x}_n^\top & \text{---} \end{bmatrix} \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Remark : remember that most of the time it is relevant to

- center the data :  $\mathbf{x}_i^c = \mathbf{x}_i - \bar{\mathbf{x}}$
- normalize via e.g.  $x_{ij}^s = x_{ij}^c / \hat{\sigma}_j$  or mapping  $\mathbf{x}_{ij}^c$  to  $[0, 1]$ , etc

## Linear regression

- We consider the OLS regression for the linear hypothesis space.
- We have  $\mathcal{X} = \mathbb{R}^p$ ,  $\mathcal{Y} = \mathbb{R}$  and  $\ell$  the square loss.

Consider the hypothesis space :

$$S = \{f_{\mathbf{w}} \mid \mathbf{w} \in \mathbb{R}^p\} \quad \text{with} \quad f_{\mathbf{w}} : \mathbf{x} \mapsto \mathbf{w}^\top \mathbf{x}.$$

Given a training set  $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$  we have

$$\widehat{\mathcal{R}}_n(f_{\mathbf{w}}) = \frac{1}{2n} \sum_{i=1}^n (y_i - \mathbf{w}^\top \mathbf{x}_i)^2 = \frac{1}{2n} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$$

with

- the vector of outputs  $\mathbf{y}^\top = (y_1, \dots, y_n) \in \mathbb{R}^n$
- the design matrix  $\mathbf{X} \in \mathbb{R}^{n \times p}$  whose  $i$ th row is equal to  $\mathbf{x}_i^\top$ .

## Solving linear regression

To solve  $\min_{\mathbf{w} \in \mathbb{R}^p} \hat{\mathcal{R}}_n(f_{\mathbf{w}})$ , we consider that

$$\hat{\mathcal{R}}_n(f_{\mathbf{w}}) = \frac{1}{2n} (\mathbf{w}^\top \mathbf{X}^\top \mathbf{X} \mathbf{w} - 2 \mathbf{w}^\top \mathbf{X}^\top \mathbf{y} + \|\mathbf{y}\|^2)$$

is a **differentiable convex** function whose minima are thus characterized by the

### Normal equations

$$\boxed{\mathbf{X}^\top \mathbf{X} \mathbf{w} - \mathbf{X}^\top \mathbf{y} = \mathbf{0}}$$

If  $\mathbf{X}^\top \mathbf{X}$  is invertible, then there is a unique solution to the normal equations and  $\hat{f}$  is given by :

$$\hat{f} : \mathbf{x}' \mapsto \mathbf{x}'^\top (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}.$$

**Problem :**  $\mathbf{X}^\top \mathbf{X}$  is never invertible for  $p > n$  and thus the solution is not unique.

## Linear or affine regression ?

$$f_w(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} \quad \text{vs} \quad f_{w,b}(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + b = \tilde{\mathbf{w}}^\top \tilde{\mathbf{x}}$$

With

$$\tilde{\mathbf{w}} = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix} \quad \text{and} \quad \tilde{\mathbf{x}} = \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}$$

- ... an affine model in dimension  $p$  is a linear model in dimension  $p + 1$
- These two models are equivalent **when we don't regularize**, otherwise not because usually  $b$  is not regularized.
- Exercise : What is the value of  $\hat{b}$  if the data is centered ?

## Hat matrix and geometry of linear regression

If  $\mathbf{X}$  has full column rank, then  $\hat{\mathbf{w}} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}$ ,  
so that for the training data

$$\hat{\mathbf{y}} = \mathbf{X} \hat{\mathbf{w}} = \mathbf{X} (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y} = \mathbf{H} \mathbf{y} \quad \text{with} \quad \mathbf{H} = \mathbf{X} (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top.$$

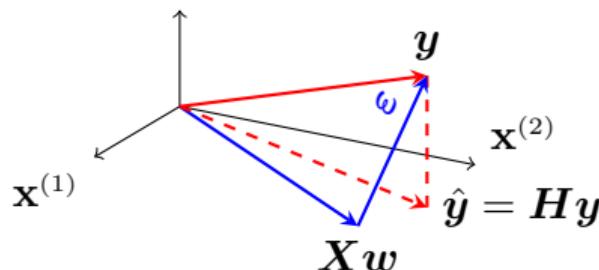
Let  $r = \text{rank}(\mathbf{X})$ , and  $\mathbf{X} \mathbf{X}^\top = \mathbf{U} \mathbf{S} \mathbf{U}^\top$  be the reduced form of the eigenvalue decomposition of  $\mathbf{X} \mathbf{X}^\top$  with

- $\mathbf{U} \in \mathbb{R}^{n \times r}$  an orthonormal matrix
- $\mathbf{S} \in \mathbb{R}^{r \times r}$  a diagonal matrix with (strictly) positive entries.

then  $\mathbf{H} = \mathbf{U} \mathbf{U}^\top$  and  $\mathbf{H}$  is the **orthogonal projector on  $\text{Im}(\mathbf{X})$** .

$$\text{Im}(\mathbf{X})^\perp.$$

$$\mathbf{X} = [\mathbf{x}^{(1)} \mathbf{x}^{(2)}] \in \mathbb{R}^{n \times 2}$$



# Optimality of least squares linear regression

Assume that  $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$  with

Full column rank design :  $\text{rank}(\mathbf{X}) = p$

Decorrelated centered noise :  $\mathbb{E}[\boldsymbol{\varepsilon}] = 0$  and  $\mathbb{E}[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^\top] = \sigma^2 \mathbf{I}$

## Gauss-Markov Theorem :

Then  $\hat{\boldsymbol{\beta}} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}$  is the best linear unbiased estimator (BLUE)  
that is that for any other *unbiased* estimator  $\tilde{\boldsymbol{\beta}}$  we have

$$\text{Cov}(\tilde{\boldsymbol{\beta}}) = \text{Cov}(\hat{\boldsymbol{\beta}}) + \mathbf{K}_{\tilde{\boldsymbol{\beta}}} \quad \text{with } \mathbf{K}_{\tilde{\boldsymbol{\beta}}} \text{ positive semi-definite.}$$

Remarks :

- Requires that the data is really generated from the linear model
- That the noise is decorrelated and homoscedastic.
- Compares only with *linear* and *unbiased* estimators.

# Gaussian conditional model and least square regression

Modeling the conditional distribution of  $Y$  given  $X$  by

$$Y | X \sim \mathcal{N}(\boldsymbol{\beta}^\top X, \sigma^2)$$

**Likelihood for one pair**

$$p(y_i | \mathbf{x}_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{1}{2} \frac{(y_i - \boldsymbol{\beta}^\top \mathbf{x}_i)^2}{\sigma^2}\right)$$

**Negative log-likelihood**

$$-\ell(\boldsymbol{\beta}, \sigma^2) = -\sum_{i=1}^n \log p(y_i | \mathbf{x}_i) = \frac{n}{2} \log(2\pi\sigma^2) + \frac{1}{2} \sum_{i=1}^n \frac{(y_i - \boldsymbol{\beta}^\top \mathbf{x}_i)^2}{\sigma^2}.$$

## Gaussian conditional model and least square regression

$$\min_{\sigma^2, \beta} \frac{n}{2} \log(2\pi\sigma^2) + \frac{1}{2} \sum_{i=1}^n \frac{(y_i - \beta^\top \mathbf{x}_i)^2}{\sigma^2}$$

The minimization problem in  $\mathbf{w}$

$$\min_{\beta} \frac{1}{2\sigma^2} \|\mathbf{y} - \mathbf{X}\beta\|_2^2$$

that we recognize as the usual linear regression.

Optimizing over  $\sigma^2$ , we find :

$$\hat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\beta}_{MLE}^\top \mathbf{x}_i)^2$$

## Properties if the model is well-specified

Assume that  $\mathbf{y} = \mathbf{X}\boldsymbol{\beta}^* + \boldsymbol{\varepsilon}$  with

Full column rank *fixed design* :  $\text{rank}(\mathbf{X}) = p$  (which implies  $n \geq p$ ).

I.i.d. centered **Gaussian** noise :  $\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

then

- $\hat{\boldsymbol{\beta}} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y} \sim \mathcal{N}(\boldsymbol{\beta}^*, \sigma^2 (\mathbf{X}^\top \mathbf{X})^{-1})$
- $S^2 = \frac{1}{n-p} \|\hat{\mathbf{y}} - \mathbf{y}\|_2^2 \sim \frac{\sigma^2}{n-p} \chi_{n-p}^2$
- $\hat{\boldsymbol{\beta}}$  and  $S^2$  are independent

All of these are used for

- ANOVA, t-test and to construct confidence intervals
- Only valid if the data is Gaussian (= model is well-specified)