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Design matrix, etc
Given a training set

Dn = {(x1, y1), . . . , (xn, yn)},

we consider

the design matrix X

output vector y

X =


—– x>1 —–
—– x>2 —–

—–
... —–

—– x>n —–

 and y =


y1
y2
...
yn


Remark : remember that most of the time it is relevant to

center the data : xc
i = xi − x̄

normalize via e.g. xsij = xcij/σ̂j or mapping xcij to [0, 1], etc
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Linear regression

We consider the OLS regression for the linear hypothesis space.

We have X = Rp, Y = R and ` the square loss.

Consider the hypothesis space :

S = {fw | w ∈ Rp} with fw : x 7→ w>x.

Given a training set {(x1, y1), . . . , (xn, yn)} we have

R̂n(fw) =
1

2n

n∑
i=1

(yi −w>xi)2 =
1

2n
‖y −Xw‖22

with

the vector of outputs y> = (y1, . . . , yn) ∈ Rn

the design matrix X ∈ Rn×p whose ith row is equal to x>i .
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Solving linear regression

To solve min
w∈Rp

R̂n(fw), we consider that

R̂n(fw) =
1

2n

(
w>X>Xw − 2w>X>y + ‖y‖2

)
is a differentiable convex function whose minima are thus characterized by the

Normal equations

X>Xw −X>y = 0

If X>X is invertible, then there is a unique solution to the normal equations and and f̂ is
given by :

f̂ : x′ 7→ x′
>

(X>X)−1X>y.

Problem : X>X is never invertible for p > n and thus the solution is not unique.
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Linear or affine regression ?

fw(x) = w>x vs fw,b(x) = w>x + b = w̃>x̃

With

w̃ =

[
w
b

]
and x̃ =

[
x
1

]

... an affine model in dimension p is a linear model in dimension p+ 1

These two models are equivalent when we don’t regularize, otherwise not because
usually b is not regularized.

Exercise : What is the value of b̂ if the data is centered ?
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Hat matrix and geometry of linear regression

If X has full column rank, then ŵ = (X>X)−1X>y,
so that for the training data

ŷ = Xŵ = X(X>X)−1X>y = Hy with H = X(X>X)−1X>.

Let r = rank(X), and XX> = USU> be the reduced form of the eigenvalue
decomposition of XX> with

U ∈ Rn×r an orthonormal matrix
S ∈ Rr×r a diagonal matrix with (strictly) positive entries.

then H = UU> and H is the orthogonal projector on Im(X).

X = [x(1)x(2)] ∈ Rn×2

x(1)

x(2)

Im(X)⊥.

ε

y

ŷ = Hy
Xw

Math-412 Linear regression 6/10



Optimality of least squares linear regression

Assume that y = Xβ + ε with

Full column rank design : rank(X) = p

Decorrelated centered noise : E[ε] = 0 and E[εε>] = σ2I

Gauss-Markov Theorem :

Then β̂ = (X>X)−1X>y is the best linear unbiased estimator (BLUE)
that is that for any other unbiased estimator β̃ we have

Cov(β̃) = Cov(β̂) +K
β̃

with K
β̃

positive semi-definite.

Remarks :

Requires that the data is really generated from the linear model

That the noise is decorrelated and homoscedastic.

Compares only with linear and unbiased estimators.
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Gaussian conditional model and least square regression

Modeling the conditional distribution of Y given X by

Y | X ∼ N (β>X,σ2)

Likelihood for one pair

p(yi | xi) =
1√

2πσ2
exp

(1

2

(yi − β>xi)2

σ2

)
Negative log-likelihood

−`(β, σ2) = −
n∑
i=1

log p(yi|xi) =
n

2
log(2πσ2) +

1

2

n∑
i=1

(yi − β>xi)2

σ2
.
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Gaussian conditional model and least square regression

min
σ2,β

n

2
log(2πσ2) +

1

2

n∑
i=1

(yi − β>xi)2

σ2

The minimization problem in w

min
β

1

2σ2
‖y −Xβ‖22

that we recognize as the usual linear regression.
Optimizing over σ2, we find :

σ̂2MLE =
1

n

n∑
i=1

(yi − β̂>MLExi)
2
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Properties if the model is well-specified

Assume that y = Xβ∗ + ε with

Full column rank fixed design : rank(X) = p (which implies n ≥ p).

I.i.d. centered Gaussian noise : ε ∼ N (0, σ2I)

then

β̂ = (X>X)−1X>y ∼ N (β∗, σ2(X>X)−1)

S2 = 1
n−p‖ŷ − y‖

2
2 ∼ σ2

n−p χ
2
n−p

β̂ and S2 are independent

All of these are used for

ANOVA, t-test and to construct confidence intervals

Only valid if the data is Gaussian (= model is well-specified)
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