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Design matrix, etc
Given a training set
Dy = {(x1,91), - (Xn,Yn) }
we consider
o the design matrix X

@ output vector y

- X1T - Y1
L
— X; — Y2
X = _2 and y=1.
— X, — Un

Remark : remember that most of the time it is relevant to
@ center the data : x§ = x; — X

o normalize via e.g. 3; = x;/0; or mapping x;; to [0,1], etc
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Linear regression

@ We consider the OLS regression for the linear hypothesis space.
o We have X = RP, Y = R and / the square loss.

Consider the hypothesis space :

S ={fw]|weRP} with fw X w'x.

Given a training set {(x1,91), ..., (Xn,yn)} we have
5 1 ¢ T 2 L 2
Rn(fuw) = 5 Z}y —w'x)" = o-fly - Xwl3
with

@ the vector of outputs y' = (y1,...,yn) € R”
@ the design matrix X € R™*P whose ith row is equal to XZT.
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Solving linear regression

To solve min ﬁn(fw), we consider that
wERP

. 1
Rl fw) = %(wTXTXw —2w' Xy + [|ly?)

is a differentiable convex function whose minima are thus characterized by the

Normal equations

X' Xw-X"y=0

If X T X is invertible, then there is a unique solution to the normal equations and and fis
given by :

~

f:x'— X'T(XTX)_IXTy.

Problem : X " X is never invertible for p > n and thus the solution is not unique.
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Linear or affine regression ?

fw(x) =w'x Vs fop(X) =w x+b=w'xX

ol el

@ ... an affine model in dimension p is a linear model in dimension p + 1

With

@ These two models are equivalent when we don’t regularize, otherwise not because
usually b is not regularized.

o Exercise : What is the value of b if the data is centered ?
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Hat matrix and geometry of linear regression

If X has full column rank, then w = (X TX)"'X Ty,
so that for the training data
J=Xw=XX"X)"'XTy=Hy with H=X(X"X)"'X".

Let r = rank(X), and X X" = USU be the reduced form of the eigenvalue
decomposition of X X T with

o U € R™" an orthonormal matrix

e S € R™" a diagonal matrix with (strictly) positive entries.
then H =UU " and H is the orthogonal projector on Im(X).

Im(X)*.

X = [xWx®] € R"*?
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Optimality of least squares linear regression
Assume that y = X 3 + € with
Full column rank design : rank(X) =p

Decorrelated centered noise : E[e] =0 and Elee'] = 021
Gauss-Markov Theorem :

Then B = (X'X)"'X Ty is the best linear unbiased estimator (BLUE)
that is that for any other unbiased estimator 3 we have

~ ~

Cov(B) = Cov(B) + KB with Kﬁ positive semi-definite.

Remarks :

@ Requires that the data is really generated from the linear model
@ That the noise is decorrelated and homoscedastic.

@ Compares only with linear and unbiased estimators.
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Gaussian conditional model and least square regression

Modeling the conditional distribution of Y given X by
Y| X~N(B'X, 0%

Likelihood for one pair

pyi | xi) =

Negative log-likelihood

n 1 n - T . 9
—U(B,0%) = - ; log p(yilxi) = glog(%mz) +5> (yi =B xi)”

i=1
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Gaussian conditional model and least square regression

n T 2
.. n 2 1 (yz -8 Xi)
{7%1,161 3 log(2mo”) + B E B

’ i=1

'he minimization problem in w
mi . [ Xxall3
ln_ p—
B 202 y 2

that we recognize as the usual linear regression.
Optimizing over o2, we find :

1 & ~

~92 T 2

OMLE = E (vi — By reXi)
i=1
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Properties if the model is well-specified

Assume that y = X 3* 4+ € with
Full column rank fixed design : rank(X) =p (which implies n > p).
li.d. centered Gaussian noise : € ~ N (0,02I)

then
o B=(XTX) !XTy~ N(B" c2(X X))
R 2
o %= _Lllg—ylls ~ ;5 xoyp
° B and S? are independent
All of these are used for
o ANOVA, t-test and to construct confidence intervals

@ Only valid if the data is Gaussian (= model is well-specified)
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