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Ensembling or aggregation

given predictors f̂1, . . . , f̂B

let ω = (ωb)1≤b≤B ∈ 4B with 4B =
{
u ∈ RB

+ |
∑

b ub = 1
}

if a 7→ `(a, y) is a convex loss function then so is R.
In that case, by convexity

R
( B∑

b=1

ωbf̂b

)
≤

B∑
b=1

ωbR
(
f̂b
)

In particular, if f̄ = 1
B

∑B
b=1 f̂b then

R(f̄) ≤ 1

B

B∑
b=1

R(f̂b).

Math-412 Bagging and Random Forests 2/10



Bagging

Bagging=“Bootstrap aggregating”

The Bootstrap

Classical Bootstrap : sample n datapoints uniformly at random from the original dataset
with replacement.

Bagging

Given a training set Dn = {(x1, y1), . . . , (xn, yn)}
For each b,

sample a bootstrap training set D
(b)
n

use a learning scheme A to learn a predictor f̂b

Return the aggregate predictor f̄ = 1
B

∑B
b=1 f̂b

Note that by construction the predictors f̂b are identically distributed but not independent.

Note that D
(b)
n is in fact a multi-set since the same training pair can appear multiple times.
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Bagging for the square loss
For the square loss

E
[(
f̂(x)− f∗(x)

)2]
= Var(f̂(x)) +

(
E[f̂(x)]− f∗(x)

)2
For bagging, with f̄ = 1

B

∑B
b=1 f̂b, we have

E[f̄(x)] = E[f̂b(x)] so Bias(f̄(x)) = Bias(f̂b(x)).

but if σ2
x = Var(f̂b(x)) and ρx = corr(f̂b(x), f̂b′(x)) with b 6= b′ then

Var(f̄(x)) =
(
ρx + (1− ρx) 1

B

)
σ2
x ≤ σ2

x = Var(f̂b(x)).

→ So if ρx is very small this can be advantageous.

Note however that if f̂ is the predictor learnt from Dn, then in general we would expect intuitively

that Var(f̂b(x)) ≥ Var(f̂(x)) because f̂b is based only on a subset of the data. For the same reason,

we will have Bias(f̂b(x)) = Bias(f̄(x)) ≥ Bias(f̂(x)). So ρx needs to be sufficiently small for bagging

to be worth it.
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Bagging of different predictors

Bagging is not very useful for some predictors

E.g., not at all for the estimation of the mean 1
n

∑n
i=1 xi.

It is usually considered not so useful for linear smoothers,

→ although it can provide confidence bands...

But it is useful for high variance low bias predictors like unpruned trees

Algorithm for bagging of trees :

Learn an unpruned tree predictor f̂b from each bootstrap training set

Compute f̄(x) = 1
B

∑B
b=1 f̂b(x)

For binary classification, and if a binary prediction is needed, use the

majority vote : 1{f̄(x)≥ 1
2
}.
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Random forests (Breiman, 2001)

Key idea : Use bagging but decrease correlations further by
randomizing the tree construction.

Algorithm :

Bootstrap the data B times

Change tree growth algorithm : before each split, randomly select m of the p variables.
The subset changes at each split !

Stop when leaves contain ≤ k points (e.g. k = 5 for regression, k = 1 for classification)

Compute the final prediction by aggregation

Choice of m : m ≈ √p for classification and m ≈ p/3 for regression seem to work well.

Intuition : by forcing the trees to split on random variables, we are decreasing the probability
that they choose the same splits and we are decreasing correlation.
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Out-of-bag (OOB) cross-validation
Each bootstrap sample contains approximately
a fraction 1− 1

e ≈ 63% of the data.

As in CV, we can use the remaining 37% as a validation set to estimate the risk of f̂b

R̂Vb
(f̂b) =

1

|Vb|
∑
i∈Vb

`(f̂b(xi), yi) with Vb = Dn\D(b)
n .

The average out-of-bag (OOB) risk estimate is defined as

R̂CVOOB =
1

B

B∑
b=1

R̂Vb
(f̂b).

We have E[R̂CVOOB] = E[R(f̂b)] = E[ 1
B

∑B
b=1R(f̂b)] ≥ E[R(f̄)], provided R is convex.

R̂CVOOB can overestimate R(f̄) but the quadratic risk is typically dominated by the bias ; in general,

this overestimation does not affect hyperparameter selection (Janitza and Hornung, 2018)

Note that the cost of computing each R̂Vb
(f̂b) is very small compared to learning f̂b.
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Variable Importance
In order to determine which variables are important in a random forest,

several measures of variable importance have been proposed.

Gini VI score : sum of all impurity decreases obtained by splitting according to that variable

Sadly, often computed on in-bag samples → risk of overfitting

Has a bias in favor continuous variables and discrete variables with many values.

Permutation VI score

Impk =
1

B

B∑
b=1

[
R̂Vb,k

(f̂b)− R̂Vb
(f̂b)

]
where Vb,k is the OOB sample in which the values of the kth variable have been permuted among the
validation data : xik is replaced by xσ(i)k with σ a permutation of the indices of the data in Vb.

Tends to assign too much importance to positively correlated variables.

Creates impossible datapoints by breaking the correlation structure between variables.

Conditional permutation VI score (not commonly used, but available in partykit in R)

Permutes within a grid defined by the splits associated with the most correlated variables to the
variable of interest. This might constrain too much permutations.
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Final remarks on Random Forests

It has been claimed that RF do not overfit :

There is obviously no overfitting by increasing B since all trees are learned independently.
There can be some overfitting due to lack of pruning but this is often moderate.
RF can perform poorly if m is too small (f̂b is too randomized).

A random forest associates to each data point a feature vector φ(x) =
(
1{x∈R(b)

j }

)
j,b

There are strategies to accommodate missing data.

There are other algorithms for random forest including algorithms based on honest trees
in which the training data is split in two sets, one to construct the tree and the other to
obtain unbiased estimates of the leafs values. See e.g. Biau and Scornet (2016); Athey
et al. (2019).

A strong competitor of RF are boosted trees.
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