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Principle of local averaging methods

Goal : solve a (non-linear) regression problem.

Principle : At a point x predict the corresponding value y by a weighted mean of the yi for
xi some neighbors of x.

Mathematically, we consider decision functions of the form :

f̂ : x 7→
n∑

i=1

ωi(x) yi

where ωi(x) are weights that sum to 1, that depend on the input training data and that
account for some form of similarity between the input x and the previously seen inputs xi.

Idea : If points xi with significant weights are closest to x and f∗(x) = E[Y |X = x] is
continuous then f̂ should approximate f∗ as n increases.

Math-412 Local averaging methods 2/12



Some local averaging methods

K-nearest neighbors

Histogram based methods

Nadaraya-Watson prediction functions (aka kernel smoothers)
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K-nearest neighbors

Assume that X equipped with some distance d.

Let Vk(x) the set of the k nearest neighbors of x for the distance d.

The weights are defined as :

ωi(x) =
1{xi∈Vk(x)}

k
.

The decision function is then

f̂(x) =

n∑
i=1

ωi(x) yi

Math-412 Local averaging methods 4/12



Histogram based methods

Relies on a finite or countable partition {A1, A2, . . .} of X .

Let s(x, xi) =
∑K

k=1 1{x∈Ak}1{xi∈Ak}. So s(x, xi) = 1 iff x and xi are in the same bin.

Pick the weights :

ωi(x) = s̃(x, xi) =
s(x, xi)∑n
j=1 s(x, xj)

with the convention 0
0 = 0. The prediction function is then

f̂(x) =

n∑
i=1

ωi(x) yi

Decision trees are actually histogram based methods, based on a partition that is learnt
from the same data.
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Convolution kernels

Convolution kernels are functions K : R→ R+.
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Noyau d’Epanechnikov
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Noyau tricube

t 7→ exp(−t2) t 7→ (1− t2)+ t 7→ (1− |t|3)3+

where (x)+ = max(0, x) denotes the positive part.

First used by Parzen and Rosenblatt for density estimation.
Are naturally extended to Rp using Kp : x 7→ K(‖x‖).
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Nadaraya-Watson estimators (aka kernel smoothers)

Principle : use the convolution kernels to define a similarity measure
that depends on the Euclidean distance.

Weights take the form :

ωi(x) = s̃(x, xi) =
s(x, xi)∑n
j=1 s(x, xj)

with s(x, xi) = K
(
‖x−xi‖

h

)
.

→ h is a bandwidth hyperparameter that control the scale.

s(x, xi) = K
(
‖x−xi‖

h

)

s̃(x, xi)
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Star velocity estimation with kNN
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Comments on local averaging methods

Methods from non-parametric statistics

Generalizes to other similarity measures (i.e. s(x, x) ≥ s(x, z) ≥ 0).

Their suffer seriously from the curse of dimensionality

But k-NN is adaptive to the intrinsic dimensionality and scale of the data.

They are a particular case of local regression models (degree 0).

They are linear smoothers (aka linear estimator) :

f̂ = S̃y with S̃i,j = s̃(xi, xj), f̂ =
(
f̂(xi)

)
i
, and y = (yi)i

If the similarity measure s(x, z) does not depend on the data set 1 then the LOO risk
estimate takes the form

R̂LOO =
1

n

n∑
i=1

(
yi − f̂−i(xi)

1− s̃(xi, xi)

)2

1. This assumption fails for k-nearest neighbor
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Local Empirical Risk minimization

Idea : Solve a local version of the ERM by introducing weights
s(x, xi) ≥ 0 that are large if x and xi are close or similar. Solve

fx = argmin
f∈S

1
n

n∑
i=1

s(x, xi) `(f(xi), yi)

and define f̂(x) = fx(x). In particular if the local prediction function is a constant prediction
function fx(z) = ax then

f̂(x) = ax with ax = argmin
a∈A

1
n

n∑
i=1

s(x, xi) `(a, yi)
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Local averaging and local quadratic ERM
Consider the particular case of the square loss :

A = Y = R and `(a, y) = 1
2(a− y)2

with constant local prediction functions : f(x′) = a

We need to solve :

ax = argmin
a

1
2n

n∑
i=1

s(x, xi) (a− yi)
2

Setting the gradient of the local ER to zero we get : 0 = ax

n∑
i=1

s(x, xi)−
n∑

i=1

s(x, xi) yi

So that f̂(x) = ax =

n∑
i=1

s̃(x, xi) yi with s̃(x, xi) =
s(x, xi)∑n
j=1 s(x, xj)

,

and we recover local averaging prediction functions.
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Local linear regression

We still consider `(a, y) = 1
2(a− y)2

but now we consider local prediction functions that are linear functions :
f(x′) = w>x′ + b

f̂(x) = w>x x+ bx width (wx, bx) = argmin
w,b

1
2n

n∑
i=1

s(x,xi)(w
>xi + b− yi)

2

Local linear regression is also known as LOWESS (Locally weighted scattergram
smoothing) or it generalization called LOESS.

Local linear regression can generalized to local polynomial regression and local spline
regression.
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