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Principle of local averaging methods

Goal : solve a (non-linear) regression problem.

Principle : At a point x predict the corresponding value y by a weighted mean of the y; for
x; some neighbors of z.

Mathematically, we consider decision functions of the form :
n
fram D wil@)y
i=1

where w;(z) are weights that sum to 1, that depend on the input training data and that
account for some form of similarity between the input x and the previously seen inputs x;.
Idea : If points x; with significant weights are closest to z and f*(z) = E[Y|X = z] is
continuous then f should approximate f* as n increases.
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Some local averaging methods

@ K-nearest neighbors
@ Histogram based methods

o Nadaraya-Watson prediction functions (aka kernel smoothers)
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K-nearest neighbors

Assume that X equipped with some distance d.

Let Vi (z) the set of the k nearest neighbors of x for the distance d.

The weights are defined as :

1o, "
wz(x) _ { Ze]::/k( )}
The decision function is then .
f(x) = sz(!ﬂ) Yi
i=1
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Histogram based methods

Relies on a finite or countable partition {A;, Ag, ...} of X.

Let s(z,x;) = S p, Lizeat Yasea,y- S0 s(z,z;) = 1iff 2 and 2; are in the same bin.

Pick the weights :
s(x, x;)

2= s(@, )

with the convention % = 0. The prediction function is then

wi(z) = 8(z,z;) =

Fla) =3 wil@) v
i=1

@ Decision trees are actually histogram based methods, based on a partition that is learnt
from the same data.
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Convolution kernels

Convolution kernels are functions K : R — R.
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where (x)+ = max(0, x) denotes the positive part.

@ First used by Parzen and Rosenblatt for density estimation.
o Are naturally extended to R? using K, : x — K(||z|).
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Nadaraya-Watson estimators (aka kernel smoothers)

Principle : use the convolution kernels to define a similarity measure
that depends on the Euclidean distance.

Weights take the form :

s(x, x;)
> s(@,x;)

— h is a bandwidth hyperparameter that control the scale.

wi(z) = §(z,z;) = with sz, z;) = K(M)
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Star velocity estimation with kNN

FIGURE 6.8. The left panel shows three-dimensional
data, where the response is the velocity measurements
on a galaxy, and the two predictors record positions on
the celestial sphere. The unusual “star”-shaped design
indicates the way the measurements were made, and
results in an extremely irreqular boundary. The right
panel shows the results of local linear regression smooth-
ing in R?, using a nearest-neighbor window with 15%
of the data.
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Comments on local averaging methods

Methods from non-parametric statistics

Generalizes to other similarity measures (i.e. s(z,z) > s(z,z) > 0).

Their suffer seriously from the curse of dimensionality

But k-NN is adaptive to the intrinsic dimensionality and scale of the data.
They are a particular case of local regression models (degree 0).

They are linear smoothers (aka linear estimator) :
F=Sy with  Si;=3(xi2)), f=(F(:), and y= ()

o If the similarity measure s(z, z) does not depend on the data set! then the LOO risk
estimate takes the form

~00 Lo yi — i) \?
R _nz(l—é(xi,xi)>

i=1

1. This assumption fails for k-nearest neighbor
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Local Empirical Risk minimization

Idea : Solve a local version of the ERM by introducing weights
s(x,x;) > 0 that are large if z and x; are close or similar. Solve

n
fo = arg HllIl % z s(@yxi) 0(f(x4),ys)
=1

and define f(m) = fz(x). In particular if the local prediction function is a constant prediction
function f;(z) = a, then

~

n
f(z) =a, with a, =arg 2%1}41 1 z; s(z,x;) la,y;)
=
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Local averaging and local quadratic ERM
Consider the particular case of the square loss :
o A=Y =R and {(a,y) = 3(a —y)>
e with constant local prediction functions : f(2') = a

We need to solve :

n
Gy = arg main % Z sz, i) (a — yi)?
i=1
n
Setting the gradient of the local ER to zero we get : 0 = a, Z s(z, ;) — Z s(, i) yi
i=1 i=1
Sothat | Fle) i (o) ith () s(x, ;)
) =a, = s(x,x; i wi S\, %) == 7 v
T 2 i) Yi i 2221 S(%,xj)

and we recover local averaging prediction functions.
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Local linear regression

1

o We still consider £(a,y) = 3(a — y)?

@ but now we consider local prediction functions that are linear functions :
fX)=w'x +b
n
F(x) =w]x+bx width (wy,by)=arg %il? = Z s(x, %) (w ' x; 4+ b — y;)?
’ i=1

@ Local linear regression is also known as LOWESS (Locally weighted scattergram
smoothing) or it generalization called LOESS.

@ Local linear regression can generalized to local polynomial regression and local spline
regression.
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