
Simple validation, cross-validation and leave-one-out
Estimating the risk directly from the data
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Simple validation

Can we use the data to obtain an unbiased estimate of the risk of
a learnt decision function ?

Simple validation

1 Split the original data set D in a new training set L and a validation set V .

L = {(x1, y1), . . . , (xn′ , yn′)} and V = {(xn′+1, yn′+1), . . . , (xn, yn)}

2 Learn a decision function f̂L using only L

3 Estimate the risk with the validation set V

R̂val
V (f̂L) =

1

|V |
∑
i∈V

`
(
f̂L(xi), yi

)

We have E[R̂val
V (f̂L)|L] = R(f̂L), so that R̂val

V (f̂L) is an unbiased estimator of R(f̂L).
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K-fold cross-validation
Partition D in blocks of (almost) equal size : B1 B2 B3 V B5

For each block

Use the block V = Bk as validation data and the rest L = D\Bk as training set.
Estimate the validation error

R̂val
Bk

(f̂D\Bk
) =

1

|Bk|
∑
i∈Bk

`(f̂D\Bk
(xi), yi).

Then compute the CV risk estimate as the average R̂K−fold =
1

K

K∑
k=1

R̂val
Bk

(f̂D\Bk
).

Note that we have E[R̂K−fold] = 1

K

K∑
k=1

E[R(f̂D\Bk
)] ≈ E[R(f̂n′)]

where n′ = n− |B1| if bn/Kc ≤ |Bk| ≤ dn/Ke and f̂n′ is a decision function trained with
a subset of size n′ of D.
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Leave-one-out cross validation

Consists in removing a single point from the training set at a time
and use it for validation

L = D−i = {(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn)} and V = {(xi, yi)}

... and to average over the choice of that point :

R̂LOO =
1

n

n∑
i=1

R̂val
{(xi,yi)}(f̂D−i) =

1

n

n∑
i=1

`(f̂D−i(xi), yi).

The LOO error can sometimes be computed in closed form.
E.g. for the ordinary least square linear regression estimate ŵ = (X>X)†Xy.

R̂LOO(ŵ) = 1
n

n∑
i=1

(ŵ>xi − yi)2

(1− hii)2
with hii = Hii = x>i (X

>X)†xi.

hii is called the ith leverage score.
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(Cross)-Validation for hyperparameter & model selection

Let
(
f̂
(λ)
D\Bk

)
k

the CV decision functions all learned with the hyperparameter(s) λ.

An optimal hyperparameter is estimated via

λ̂CV = argmin
λ
R̂K−fold(λ) with R̂K−fold(λ) = 1

K

K∑
k=1

R̂val
Bk

(f̂
(λ)
D\Bk

).

In practice, this optimization in often done via grid search because the objective is noisy
and thus typically locally non-smooth and non-convex.

For regularization coefficients, grids uniform on the log-scale are recommended :
e.g., log10(λ) ∈ {−6,−5.5, . . . , 1.5, 2}.
This is can be done similarly with simple validation and LOOCV.
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Comments on cross-validation
How to choose K ?

Difficult theoretical problem

In practice K = 5 or K = 10.

Performance of the decision function f̂ vs performance of the learning scheme A
Two natural questions :

How well will my decision function f̂ perform on future data ?

R(f̂) → simple validation / LOO

If f̂D = A (D), how well does my learning scheme A perform ?

ED
[
R(f̂D)

]
→ cross validation

However, even in the perspective of producing a single decision function, for
hyperparameter optimization or model selection, cross-validation will be more robust
than simple validation.
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Final decision function

How to build a final decision function given λ̂CV = argmin
λ

1

K

K∑
k=1

R̂val
Bk

(f̂
(λ)
D\Bk

) ?

Solution 1 : Retrain. f̂ = f̂
(λ̂CV)
D re-learned with all of the data D.

PRO : A single decision function from all the data.
CON : λ̂CV is optimized for other decision functions and for a sample size of
n′ = |D\Bk| < n.

⇒ Appropriate for LOOCV and large K (i.e., |Bk| small).

Solution 2 : Ensembling. f̂ = 1
K

∑
k f̂D\Bk

is just the average of the fold decision
functions.

PROs : No retraining + if the risk R is convex then R
(
f̂
)
≤ 1

K

∑
kR(f̂D\Bk

) which is

precisely estimated by R̂K−fold.
CON : Requires several decision functions at test time (unless they are linear in the
parameters in which case one just needs to average the parameters).
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Nested-cross validation
If the number and/or dimensions of the hyperparameters is large,
or if many models are considered, overfitting at the validation level
(e.g. in CV) is possible.

It becomes necessary to keep a test set for final evaluation.

Simple validation : Training (e.g. 80%) + Validation (e.g. 10%) + Test (e.g. 10%)

Cross-validation with simple test : The data set D is split into a CV set C and a test set T

Nested CV : Use multiple splits to have D = Ck ∪ Tk and apply CV to each Ck.

Data imbalance in classification : Proportions of each class should be kept in all sets.

Remark on time series data :

It is fine to have dependence within each Training, Validation or Test set.
There should be no dependence across these sets. This requires to throw away buffer
data at the interface between these sets.
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Summary and additional remarks

Simple validation is sufficient if a lot of data is available, and the only option if the data
distribution drifts over time (the validation/test sets have to be the most recent data)

Cross-validation remains the most standard procedure for small data sets (n < 500)
especially if the number of parameters is large compared to n.

LOO is often too computationally expensive but recommended if it is closed form and
the goal is evaluate a single decision function f̂ (vs not the learning scheme A )

A separate test set is needed if many hyperparameters/models are optimized/selected.
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