
MATH-412 Statistical Machine Learning

A few elements of algebra around SVD and PCA

Lecturer: Guillaume Obozinski

A key result in matrix algebra

Consider two matrices A ∈ Rn×K and B ∈ Rp×K . Let ak and bk denote the kth column
respectively of A and B. One simple, but key result is that we have

AB⊤ =
K∑
k=1

akb
⊤
k (∗)

The simplest way to prove this result is to note that A =
∑K

k=1 ake
⊤
k and B =

∑K
k=1 bke

⊤
k

where ek ∈ {0, 1}K is the kth element of the canonical basis. We then have

AB⊤ =
K∑
j=1

aje
⊤
j

K∑
k=1

ekb
⊤
k =

K∑
j=1

K∑
k=1

aj(e
⊤
j ek)b

⊤
k ,

and hence the result since e⊤
j ek = δj,k.

A few applications of this:

The empirical covariance matrix

It is of the form Σ̂ = 1
n

n∑
i=1

(xi − x̄)(xi − x̄)⊤.

So a direct application of (∗) shows that

• if x̄ = 0, we have Σ̂ = 1
n
X⊤X where X ∈ Rn×p is the design matrix;

• if the data is not centered then X̃ = (In − 1
n
11⊤)X is the centered data matrix and

we have
Σ̂ = 1

n
X̃⊤X̃ = 1

n
X⊤(In − 1

n
11⊤)X,

given that (In − 1
n
11⊤) is symmetric and idempotent.

Orthogonal projectors

If U ∈ Rp×K is a matrix of orthonormal columns then the projection on the subspace spanned
by the uis, i.e. the columns of U is a linear transformation whose matrix is UU⊤. The fact
that UU⊤ =

∑K
k=1 uku

⊤
k is true because of (∗) regardless of the properties of U , but here
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uku
⊤
k is the projector on the span of uk. So, in this case, the identity has the interpretation

that the sum of the projections on the uks are equal to the projection on the subspace
spanned by all of them. This is of course the main property that we seek in an orthonormal
basis.

Singular value decomposition

The theory of the SVD says that any matrix X ∈ Rn×p admits a decomposition, called the
reduced SVD, of the form X = USV ⊤ where U ∈ Rn×K , V ∈ Rp×K , U⊤U = V ⊤V = IK
and S is diagonal with coefficients sk > 0. It is easy to see that US is the matrix whose
columns are the skuk and so, using (∗), we have

USV ⊤ =
K∑
k=1

skukv
⊤
k .

Note that the same formula can be established for the full SVD (cf the slides of the
lecture on PCA).

Projection of the data on the principal directions

For the interpretations to be correct, we assume from now on that the data is centered.
With the previous notations, the principal directions are the vks, and they are sorted in

decreasing order of the sks. The simple situation is the case where s1 > s2 > . . . > sK > 0.
Let’s discuss it first.

If V[k] ∈ Rp×k is the matrix formed by the k first columns of V, by definition its columns
form an orthonormal basis of the principal subspace of dimension k. The projector on that
subspace is V[k]V

⊤
[k]. The projection of xi is therefore V[k]V

⊤
[k]xi =

∑k
j=1 vkv

⊤
k xi ∈ Rp. Note

that the projection is still a vector in the same space as xi. To compute the projection of all
datapoints at once we can do the same calculation on the design matrix

XV[k]V
⊤
[k] = USV ⊤V[k]V

⊤
[k] =

K∑
j=1

sjujv
⊤
j

k∑
ℓ=1

vℓv
⊤
ℓ =

k∑
j=1

sjujv
⊤
j = U[k]S[k]V

⊤
[k],

because again v⊤
j vℓ = δj,ℓ.

The situation is more complicated if si = si+1 because in that case the subspace associated
with si is of dimension di > 1, and the principal directions are not unique because any
orthonormal basis of that subspace is acceptable. If the subspace associated with a singular
value is of dimension greater than 1 it makes sense to consider this subspace as a whole,
when projecting the data, i.e. we would prefer to only consider the projections with V[k]V

⊤
[k]

for k such that sk > sk+1. That way the projections computed depend only on the subspaces
and not on the choice of any particular basis. Apart from that, all the algebra above stays
the same.
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Principal components

As before, we assume that the data is centered.
Imagine that the data lives in R3 and that we project the data on a generic plane going

through the origin. If we think of the plane as a sheet of paper, and if we want to have
the best view of the projection on the sheet of paper, it makes sense to put the sheet of
paper flat on the table and to look at it from top. This “rotation” or change of basis in
space corresponds to keeping the coordinates of the projection of a datapoint xi in the basis
(v1, . . . ,vk) but to use these k coordinate in the canonical basis. The j th coordinates is
v⊤
j xi which is the component of the projection of xi on vj. The set of coordinates (v

⊤
j xi)

p
j=1

are called the principal components.
For a datapoint xi the vector formed by its k first principal components is

V ⊤
[k]xi ∈ Rk.

Note that this is now a vector of dimension k. If the goal is to visualise the data we typically
consider k = 2 and plot v⊤

1 xi vs v
⊤
2 xi for all i as a scatter plot.

Now, exactly as before we can do this for the whole matrix at a time and we obtain

XV[k] = U[k]S[k],

with the same calculations as for the projections.
Remarks:

• This shows that the principal components of xi can be read on the ith row of U[k]S[k].

• This also shows that the principal components can be computed directly from Σ̂ whose
eigenvalue decomposition is Σ̂ = 1

n
U[k]S

2
[k]U[k], although the principal components are

inaccessible from Σ̂.

Principal variables

As before, we assume that the data is centered.
If we look at the design matrix X from the point of view of the variables and not of the

datapoints, then each variable corresponds to a column of X which lives in Rn. With this
perspective, Xvk ∈ Rn, which is the vector of values of the kth principal component for all
the datapoints, defines a new variable from all the others. But Xvk = skuk, so again the
SVD provides a direct representation of this new variable.

Furthermore, as we often like to have variables that are normalized, we can divide the
column by its standard deviation, which turns out to be sk/

√
n, and since uk is a unit vector√

nuk is of variance 1. We therefore see that, up of a constant factor
√
n, the uks can

be interpreted as a collection of new variables that are all perfectly decorrelated from each
other empirically (since they are orthogonal) and such that u1 captures the largest amount
of information about all the variables, then u2, etc.
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In particular, U can be viewed as an interesting orthogonal basis for the original set of
variables, on which we can project the variables. The principal variables are to the variables
(colums of X) what the principal directions are to the datapoints (rows of X) ! In particular
if we would like to study the correlation structure between the variables we can project all
the columms of X on u1 and u2. Correlated pairs of variables tend to be closeby in this
representation. This representation is called the circle of correlations because if all variables
are normalized appropriately their all fall in 2D in a circle of radius 1 (after dividing by

√
n).
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