MATH-412 Statistical Machine Learning
A few elements of algebra around SVD and PCA

Lecturer: Guillaume Obozinski

A key result in matrix algebra

Consider two matrices A € R™¥ and B € RP*X. Let a; and b, denote the kth column
respectively of A and B. One simple, but key result is that we have

K
ABT =) "axb] (%)
k=1

The simplest way to prove this result is to note that A = Zszl are, and B = Zle bre,
where e, € {0,1}* is the kth element of the canonical basis. We then have

K K K K
AB" = Z aje;r Z erb, = Z Z aj<€;ek)b;—7
=1 k=1

j=1 k=1

and hence the result since ejTek, =0k
A few applications of this:

The empirical covariance matrix

n

It is of the form % = %Z(Xz —x)(x; —x)".

i=1
So a direct application of (%) shows that

e if x =0, we have & = %XTX where X € R"*? is the design matrix;

e if the data is not centered then X = (I, — %11T)X is the centered data matrix and
we have R o
Y=1iXTX=1XT(1, - t117)X,

given that (I, — 2117) is symmetric and idempotent.

Orthogonal projectors

If U € RP*¥ is a matrix of orthonormal columns then the projection on the subspace spanned
by the u;s, i.e. the columns of U is a linear transformation whose matrix is UU . The fact
that UUT = Z,ﬁil upu, is true because of () regardless of the properties of U, but here
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ugu, is the projector on the span of ug. So, in this case, the identity has the interpretation
that the sum of the projections on the w;s are equal to the projection on the subspace
spanned by all of them. This is of course the main property that we seek in an orthonormal
basis.

Singular value decomposition

The theory of the SVD says that any matrix X € R™*? admits a decomposition, called the
reduced SVD, of the form X = USV" where U € R*K V e RP*E UTU =V'V = Iy
and S is diagonal with coefficients s, > 0. It is easy to see that US is the matrix whose
columns are the syuy and so, using (x), we have

K
USVT = Z skukv,;r.
k=1

Note that the same formula can be established for the full SVD (cf the slides of the
lecture on PCA).

Projection of the data on the principal directions

For the interpretations to be correct, we assume from now on that the data is centered.

With the previous notations, the principal directions are the vys, and they are sorted in
decreasing order of the s;s. The simple situation is the case where s; > so > ... > sg > 0.
Let’s discuss it first.

If Vi € RP*F is the matrix formed by the k first columns of V, by definition its columns
form an orthonormal basis of the principal subspace of dimension k. The projector on that
subspace is Vi V[,;r] The projection of x; is therefore Vj V[kT}xl = Z?Zl 'vk'v,;rxi € RP. Note
that the projection is still a vector in the same space as x;. To compute the projection of all

datapoints at once we can do the same calculation on the design matrix

K k k
XVigVig = USV VigVig =Y sjuw) Y v/ = sjuw] = Uy Sy Vi,

j=1 =1 j=1
because again 'vaw =00

The situation is more complicated if s; = s;,1 because in that case the subspace associated

with s; is of dimension d; > 1, and the principal directions are not unique because any
orthonormal basis of that subspace is acceptable. If the subspace associated with a singular
value is of dimension greater than 1 it makes sense to consider this subspace as a whole,
when projecting the data, i.e. we would prefer to only consider the projections with Vi V[,I]
for k such that s, > sii1. That way the projections computed depend only on the subspaces
and not on the choice of any particular basis. Apart from that, all the algebra above stays
the same.
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Principal components

As before, we assume that the data is centered.

Imagine that the data lives in R® and that we project the data on a generic plane going
through the origin. If we think of the plane as a sheet of paper, and if we want to have
the best view of the projection on the sheet of paper, it makes sense to put the sheet of
paper flat on the table and to look at it from top. This “rotation” or change of basis in
space corresponds to keeping the coordinates of the projection of a datapoint x; in the basis

(v1,...,v,) but to use these k coordinate in the canonical basis. The j th coordinates is
vaxz- which is the component of the projection of x; on v;. The set of coordinates (vaxi)é-’zl

are called the principal components.
For a datapoint x; the vector formed by its k first principal components is

V[,j]xi c R”.

Note that this is now a vector of dimension k. If the goal is to visualise the data we typically
consider k = 2 and plot v] x; vs v, x; for all i as a scatter plot.
Now, exactly as before we can do this for the whole matrix at a time and we obtain

XVi = U Sty

with the same calculations as for the projections.
Remarks:

e This shows that the principal components of x; can be read on the ith row of U} Sy

e This also shows that the principal components can be computed directly from 3. whose
eigenvalue decomposition is > = %U[k] S[Qk} Uy, although the principal components are

inaccessible from .

Principal variables

As before, we assume that the data is centered.

If we look at the design matrix X from the point of view of the variables and not of the
datapoints, then each variable corresponds to a column of X which lives in R”. With this
perspective, Xv, € R”, which is the vector of values of the kth principal component for all
the datapoints, defines a new variable from all the others. But Xwv, = s, u, so again the
SVD provides a direct representation of this new variable.

Furthermore, as we often like to have variables that are normalized, we can divide the
column by its standard deviation, which turns out to be s;/+4/n, and since uy, is a unit vector
V/nuy, is of variance 1. We therefore see that, up of a constant factor /n, the u;s can
be interpreted as a collection of new variables that are all perfectly decorrelated from each
other empirically (since they are orthogonal) and such that w; captures the largest amount
of information about all the variables, then wus, etc.
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In particular, U can be viewed as an interesting orthogonal basis for the original set of
variables, on which we can project the variables. The principal variables are to the variables
(colums of X') what the principal directions are to the datapoints (rows of X') ! In particular
if we would like to study the correlation structure between the variables we can project all
the columms of X on w; and u,. Correlated pairs of variables tend to be closeby in this
representation. This representation is called the circle of correlations because if all variables
are normalized appropriately their all fall in 2D in a circle of radius 1 (after dividing by /n).
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