

Exercise set 5

As in the lectures we denote by Ab the category of abelian groups, and by Ab_X the category of sheaves (of abelian groups) on a topological space X .

First, let us recap some material of the lectures. Recall that an abelian category \mathcal{A} has *enough injectives* if for every object A of \mathcal{A} there exists a monomorphism $A \hookrightarrow I$ into an injective object.

Exercise 1. Suppose that an abelian category \mathcal{A} has enough injectives. Show that every object of \mathcal{A} admits a (right) injective resolution.

Recall that an additive functor is *left exact* if it transforms kernels to kernels, and is *right exact* if it transforms cokernels to cokernels.

Exercise 2. Let \mathcal{A} be an abelian category and let A be an object of \mathcal{A} . Show that the functor $\text{Hom}_{\mathcal{A}}(A, \cdot)$ from \mathcal{A} to Ab is left exact.

Exercise 3. Let R be an associative unital ring. Show that a left R -module is projective if and only if it is a direct summand of a free left R -module. Hint: Every left R -module is a quotient of a free left R -module.

Exercise 4. Let X be a topological space, and let $\underline{\mathbf{Z}}_X$ be the sheaf of locally constant \mathbf{Z} -valued functions on X . Prove that for each sheaf \mathcal{F} on X we have a natural isomorphism

$$\text{Hom}(\underline{\mathbf{Z}}_X, \mathcal{F}) \cong \mathcal{F}(X).$$

Deduce that the global sections functor $\mathcal{F} \mapsto \mathcal{F}(X)$ from Ab_X to Ab is left exact. (This is an alternative to the argument given in the lectures.)

Next, here are some exercises of slightly increased difficulty:

Exercise 5. Let $n > 1$ be a positive integer, and consider the functor $F: Ab \rightarrow Ab$ that sends an abelian group A to the subgroup nA .

- (a) Show that the functor F transforms monomorphisms to monomorphisms, and epimorphisms to epimorphisms.
- (b) Show that the functor F is neither left nor right exact.

Exercise 6. Let \mathcal{A} be an abelian category, and let I^\bullet be a complex of injective objects of \mathcal{A} . Suppose that the complex I^\bullet is

- *bounded below*, i.e. $I^n = 0$ for all $n \ll 0$, and is
- *exact*, i.e. $H^n(I^\bullet) = 0$ for all n .

Show that in the homotopy category $K(\mathcal{A})$ we have

$$I^\bullet = 0,$$

i.e. the complex I^\bullet is a zero object. Hint: Construct a homotopy between the identity and the zero endomorphisms of I^\bullet .

Here are more exercises concerning sheaves:

Exercise 7. Let X be a Riemann surface. Let \mathcal{F} be the presheaf of functions on X admitting a holomorphic logarithm, i.e. functions of the form $e \circ f$ where $f: U \rightarrow \mathbf{C}$ is holomorphic and $e: \mathbf{C} \rightarrow \mathbf{C}^\times$ is the exponential function. Important: The addition of sections of \mathcal{F} is given by *pointwise multiplication* of functions.

(a) Show that there is a short exact sequence of *presheaves* of the form

$$0 \longrightarrow \underline{\mathbf{Z}}_X \xrightarrow{f \mapsto 2\pi i f} \mathcal{O}_X \longrightarrow \mathcal{F} \longrightarrow 0.$$

(b) Show that \mathcal{F} is not a sheaf.

(c) (extra) Let \mathcal{O}_X^\times be a presheaf on X defined by the formula

$$\mathcal{O}_X^\times(U) := \{ f: U \rightarrow \mathbf{C}^\times \mid f \text{ holomorphic} \}.$$

As in the case of \mathcal{F} the addition of sections is given by pointwise multiplication of functions. Show that \mathcal{O}_X^\times is the sheafification of \mathcal{F} .

Exercise 8. Let \mathcal{F} and \mathcal{G} be sheaves on a topological space X . Consider a presheaf on X given by the formula

$$U \mapsto \text{Hom}(\mathcal{F}|_U, \mathcal{G}|_U)$$

where the Hom is taken in the category of sheaves on U . Show that this presheaf is a sheaf.

Remark. The sheaf in Exercise 8 is called the *Hom sheaf* and is denoted by $\mathcal{H}\text{om}(\mathcal{F}, \mathcal{G})$.

Finally, here are some more exercises on abelian categories:

Exercise 9. Let \mathcal{A} and \mathcal{B} be abelian categories and let $F: \mathcal{A} \rightarrow \mathcal{B}$ be an equivalence of categories. We *do not* assume a priori that F is additive.

- (a) Show that the functor F is additive. Hint: Use Exercise 1 from the previous set.
- (b) Show that the functor F is exact, i.e. transforms short exact sequences to short exact sequences. Hint: Deduce separately that F preserves kernels and cokernels.

Exercise 10. Let k be a field and let Vec_k be the category of k -vector spaces. Recall that a *graded k -vector space* is a k -vector space V equipped with a direct sum decomposition $V = \bigoplus_{i \in \mathbf{Z}} V^i$. A morphism of graded vector spaces is a morphism of underlying k -vector spaces that preserves the grading. Let GrVec_k be the category of graded k -vector spaces. Show that the functor

$$F: K(\text{Vec}_k) \longrightarrow \text{GrVec}_k, \quad A^\bullet \longmapsto \bigoplus_{i \in \mathbf{Z}} H^i(A^\bullet)$$

is an equivalence of categories. Deduce that the homotopy category $K(\text{Vec}_k)$ is abelian. (This is essentially the only case in which the homotopy category happens to be abelian.)