

Exercise set 2

Here is an exercise I forgot to add to the first set:

Exercise 1. Consider the complex manifold $\mathbf{C}^2 := \mathbf{C} \times \mathbf{C}$ and let U be the open subset $\mathbf{C}^2 \setminus \{0\}$. Let $f: U \rightarrow \mathbf{C}$ be a holomorphic function such that for every $\alpha \in \mathbf{C}^\times$ and every $z \in U$ we have $f(\alpha z) = f(z)$. Prove that f is constant.

Next, let us move to sheaves.

Exercise 2. (a) Let X be a topological space, and let \mathcal{F} be a sheaf of abelian groups on X . Show that $\mathcal{F}(\emptyset) = 0$.
(b) Suppose that the topological space X consists of a single point. Prove that the functor $\mathcal{F} \mapsto \mathcal{F}(X)$ induces an equivalence of categories of sheaves of abelian groups on X and of abelian groups.

Next, recall two general constructions for sheaves. First, let \mathcal{F} be a sheaf on a topological space X . For every open subset $U \subset X$ we then have the *restriction* $\mathcal{F}|_U$, defined by the formula

$$(\mathcal{F}|_U)(V) := \mathcal{F}(V).$$

Second, given a continuous map of topological spaces $f: X \rightarrow Y$ and a sheaf \mathcal{F} on X we define the *pushforward* $f_*\mathcal{F}$ by the formula

$$(f_*\mathcal{F})(U) := \mathcal{F}(f^{-1}(U)).$$

Recall that for each topological space we denote by \mathcal{C}_X the sheaf of continuous \mathbf{C} -valued functions on X . This is a sheaf of rings, more precisely, a sheaf of \mathbf{C} -algebras. Given a continuous map $f: X \rightarrow Y$ we have a morphism of sheaves $f^\sharp: \mathcal{C}_Y \rightarrow f_*\mathcal{C}_X$ sending a function $h \in \mathcal{C}_Y(U)$ to the function

$$f^\sharp(h) := h \circ f|_{f^{-1}(U)}.$$

By construction the composite $h \circ f|_{f^{-1}(U)}$ is an element of

$$(f_*\mathcal{O}_X)(U) := \mathcal{O}_X(f^{-1}(U))$$

so the morphism of sheaves f^\sharp is well-defined. For each open $U \subset Y$ the morphism $f^\sharp: \mathcal{C}_Y(U) \rightarrow (f_*\mathcal{C}_X)(U)$ is a homomorphism of rings.

Recall also that a *space with a sheaf of functions* is a pair (X, \mathcal{O}_X) consisting of a topological space X and a subsheaf $\mathcal{O}_X \subset \mathcal{C}_X$ such that for every open $U \subset X$ the subset $\mathcal{O}_X(U) \subset \mathcal{C}_X(U)$ is a subring. A *morphism* of spaces with sheaves of functions

$f: (X, \mathcal{O}_X) \rightarrow (Y, \mathcal{O}_Y)$ is a continuous map $f: X \rightarrow Y$ such that for every open $U \subset Y$ we have an inclusion

$$f^\sharp(\mathcal{O}_Y(U)) \subset (f_*\mathcal{O}_X)(U).$$

Let (X, \mathcal{O}_X) be a space with a sheaf of functions. Then every open subset $U \subset X$ has an induced structure of a space with a sheaf of functions $(U, \mathcal{O}_X|_U)$.

For every Riemann surface X we have the *structure sheaf* \mathcal{O}_X defined by the formula

$$\mathcal{O}_X(U) := \{ f: U \rightarrow \mathbf{C} \mid f \text{ is holomorphic} \}.$$

This is naturally a subsheaf of rings of \mathcal{C}_X . Consequently, the pair (X, \mathcal{O}_X) is a space with a sheaf of functions. But in fact much more is true, as elaborated in the next exercise:

Exercise 3. Prove that the construction $X \mapsto (X, \mathcal{O}_X)$ is a functor from the category of Riemann surfaces to the category of spaces with sheaves of functions. Prove further that the functor $X \mapsto (X, \mathcal{O}_X)$ defines an equivalence of categories of Riemann surfaces, and of spaces with a sheaf of functions (X, \mathcal{O}_X) that have the following additional properties:

- (a) The underlying topological space X is Hausdorff.
- (b) Each point $x \in X$ has an open neighbourhood U such that the object $(U, \mathcal{O}_X|_U)$ is isomorphic to a space with a sheaf of functions of the form (V, \mathcal{O}_V) where V is an open subset of \mathbf{C} .

Hint: Show that the functor $X \mapsto (X, \mathcal{O}_X)$ is fully faithful and essentially surjective. Note also that the structure of a Riemann surface is given by an equivalence class of atlases.

If you feel confident with Exercise 3, you can also do the following two variants:

Exercise 4. Formulate and prove an analog of Exercise 3 for complex manifolds.

Exercise 5. Formulate and prove an analog of Exercise 3 for smooth manifolds. Here you will need the sheaf $\mathcal{C}_{X,\mathbf{R}}$ of continuous \mathbf{R} -valued functions on a topological space X , and the corresponding notion of a *space with a sheaf of \mathbf{R} -valued functions*. Each smooth manifold M carries a sheaf \mathcal{C}_M^∞ of smooth \mathbf{R} -valued functions that is naturally a subsheaf of rings in $\mathcal{C}_{X,\mathbf{R}}$, and the construction $M \mapsto (M, \mathcal{C}_M^\infty)$ defines an equivalence of categories of smooth manifolds and of spaces with a sheaf of \mathbf{R} -valued functions with suitable extra properties.