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Solution 1

library(mlbench)

library(MASS)

data(’BostonHousing’)

# (a)

hist(BostonHousing$medv, breaks = 20)

# It is essential to plot the data. Here it turns out that houses costing more than 50 were capped at 50.

# If there were a lot of values at 50, you could consider how to downweight them, to limit their effect on the fit.

pairs(BostonHousing)

# gives a general overview of data. Some variables take only two values, some nonlinear relations with the response are visible.

# (b)

model1 <- lm(formula = medv ~ ., data = BostonHousing)

summary(model1)

# R-squared value suggests that this is a decent fit. Except for "indus" and "age", all other variables seem to be quite significant.

# 95% confidence interval is Estimate +/- t_quantile * SE

# Do the signs of the estimates make sense? (e.g., crim has a negative sign, so high crim is associated with lower prices)

# Which of the variables are most significant? Why might that be?

# (c)

par(mfrow=c(2,2)) # 2x2 matrix of plots

plot(model1)

# Line above already plots residuals vs. fitted values, showing clear pattern and asymmetric residuals.

# Next line shows fitted vales and standardized residuals.

plot(predict(model1, newdata=BostonHousing[, -14]), rstandard(model1), xlab = ’Fitted values’, ylab = ’Standardized residuals’)

# Seems like variance of the response depends on its mean.

# The QQ plots suggest that the standardized residuals are right-skewed.

# Influential points may have large leverage and/or large Cook’s distance (see plots). The plots label points 369, 372, and 373 as outliers.

# (d)

par(mfrow=c(3,4))

resstan <- rstandard(model1)

for (i in colnames(BostonHousing)[-14]) {

plot(BostonHousing[[i]], resstan, xlab = i, ylab = ’Standardized residuals’)

}

# mean-variance relationship is due to rm and/or lstat?

# Try transforming to squared

BostonHousing_transformed <- transform(BostonHousing, rm = rm^2)

BostonHousing_transformed <- transform(BostonHousing_transformed, lstat = lstat^2)

model_transformed <- lm(formula = medv ~ ., data = BostonHousing_transformed)

summary(model_transformed)

plot(model_transformed)

resstan_transformed <- rstandard(model_transformed)

for (i in colnames(BostonHousing_transformed)[-14]) {

plot(BostonHousing_transformed[[i]], resstan_transformed, xlab = i, ylab = ’Standardized residuals’)

}

# Seems like there is quadratic relation for standardized residuals vs. "rm" and "lstat".

# plot for rm suggests that the model underpredicts prices when rm is lower or higher than the range 5 to 7.5.

# plot for lstat suggests that the model underpredicts prices when lstat < 10 or lstat > 30.

# Above quadratic transformation for "rm" and "lstat" does not seem to improve the fit (R-squared decreased).

# (e)

boxcox_lambdas <- boxcox(model1)

lambda <- boxcox_lambdas$x[which.max(boxcox_lambdas$y)] # Get the best lambda

# plot suggests that a log transformation (i.e., relative prices) will be much better, even if optimal transformation has lambda = 0.1

BostonHousing_transformed_boxcox <- transform(BostonHousing, medv = (medv^lambda - 1)/lambda) # Optimal transform

model_boxcox <- lm(formula = medv ~ ., data = BostonHousing_transformed_boxcox) # Fit

summary(model_boxcox)

# Box-Cox transformation increases R-squared quite a bit. Better fit?

# Try log transformation and find almost no difference, so log is preferred as easy to interpret.

model_log <- lm(formula = log(medv) ~ ., data = BostonHousing) # Fit

summary(model_log)

plot(model_log)

# the diagnostic plots are better; still some underprediction for the lowest prices. The cap at 50 is very obvious.

# residuals now more symmetric, even if they are still heavy-tailed relative to the normal.

# (f) Carry on with log prices

LogBostonHousing <- BostonHousing

LogBostonHousing[,14] <- log(BostonHousing[,14])

nullmodel <- lm(medv ~ 1, data = LogBostonHousing)

fullmodel <- lm(medv ~ ., data = LogBostonHousing)

# Forward selection

model.step.f <- step(nullmodel, scope = list(lower = nullmodel, upper = fullmodel), direction = ’forward’)

# Backward elimination

model.step.b <- step(fullmodel, direction = ’backward’)

# Stepwise selection

model.step <- step(nullmodel, scope = list(lower = nullmodel, upper = fullmodel), direction = ’both’)

# AICs and BICs

AIC(model.step.f)

BIC(model.step.f)

AIC(model.step.b)

BIC(model.step.b)



AIC(model.step)

BIC(model.step)

# The models do not differ (not always the case). The models have "indus" and "age" removed, consistent with (b).

# (g)

iterations <- 500

prediction_errors <- c()

for (it in 1:iterations) {

train_indices <- sample(1:nrow(LogBostonHousing), 0.7*nrow(LogBostonHousing))

train_boston_housing <- LogBostonHousing[train_indices, ]

test_boston_housing <- LogBostonHousing[-train_indices, ]

model2 <- lm(formula = medv ~ ., data = train_boston_housing)

predictions <- predict(model2, newdata=test_boston_housing[-14], interval=’confidence’)

prediction_error <- mean((predictions[, 1] - test_boston_housing$medv)^2)

prediction_errors <- c(prediction_errors, prediction_error)

}

hist(prediction_errors, breaks = 20)

# The histogram gives an idea of the stability of the prediction errors over 500 random splits.
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