
Regression Methods: Problems MATH-408

Anthony Davison

Solution 1

library(mlbench)

library(MASS)

data(’BostonHousing’)

(a)

hist(BostonHousing$medv, breaks = 20)

It is essential to plot the data. Here it turns out that houses costing more than 50 were capped at 50.

If there were a lot of values at 50, you could consider how to downweight them, to limit their effect on the fit.

pairs(BostonHousing)

gives a general overview of data. Some variables take only two values, some nonlinear relations with the response are visible.

(b)

model1 <- lm(formula = medv ~ ., data = BostonHousing)

summary(model1)

R-squared value suggests that this is a decent fit. Except for "indus" and "age", all other variables seem to be quite significant.

95% confidence interval is Estimate +/- t_quantile * SE

Do the signs of the estimates make sense? (e.g., crim has a negative sign, so high crim is associated with lower prices)

Which of the variables are most significant? Why might that be?

(c)

par(mfrow=c(2,2)) # 2x2 matrix of plots

plot(model1)

Line above already plots residuals vs. fitted values, showing clear pattern and asymmetric residuals.

Next line shows fitted vales and standardized residuals.

plot(predict(model1, newdata=BostonHousing[, -14]), rstandard(model1), xlab = ’Fitted values’, ylab = ’Standardized residuals’)

Seems like variance of the response depends on its mean.

The QQ plots suggest that the standardized residuals are right-skewed.

Influential points may have large leverage and/or large Cook’s distance (see plots). The plots label points 369, 372, and 373 as outliers.

(d)

par(mfrow=c(3,4))

resstan <- rstandard(model1)

for (i in colnames(BostonHousing)[-14]) {

plot(BostonHousing[[i]], resstan, xlab = i, ylab = ’Standardized residuals’)

}

mean-variance relationship is due to rm and/or lstat?

Try transforming to squared

BostonHousing_transformed <- transform(BostonHousing, rm = rm^2)

BostonHousing_transformed <- transform(BostonHousing_transformed, lstat = lstat^2)

model_transformed <- lm(formula = medv ~ ., data = BostonHousing_transformed)

summary(model_transformed)

plot(model_transformed)

resstan_transformed <- rstandard(model_transformed)

for (i in colnames(BostonHousing_transformed)[-14]) {

plot(BostonHousing_transformed[[i]], resstan_transformed, xlab = i, ylab = ’Standardized residuals’)

}

Seems like there is quadratic relation for standardized residuals vs. "rm" and "lstat".

plot for rm suggests that the model underpredicts prices when rm is lower or higher than the range 5 to 7.5.

plot for lstat suggests that the model underpredicts prices when lstat < 10 or lstat > 30.

Above quadratic transformation for "rm" and "lstat" does not seem to improve the fit (R-squared decreased).

(e)

boxcox_lambdas <- boxcox(model1)

lambda <- boxcox_lambdas$x[which.max(boxcox_lambdas$y)] # Get the best lambda

plot suggests that a log transformation (i.e., relative prices) will be much better, even if optimal transformation has lambda = 0.1

BostonHousing_transformed_boxcox <- transform(BostonHousing, medv = (medv^lambda - 1)/lambda) # Optimal transform

model_boxcox <- lm(formula = medv ~ ., data = BostonHousing_transformed_boxcox) # Fit

summary(model_boxcox)

Box-Cox transformation increases R-squared quite a bit. Better fit?

Try log transformation and find almost no difference, so log is preferred as easy to interpret.

model_log <- lm(formula = log(medv) ~ ., data = BostonHousing) # Fit

summary(model_log)

plot(model_log)

the diagnostic plots are better; still some underprediction for the lowest prices. The cap at 50 is very obvious.

residuals now more symmetric, even if they are still heavy-tailed relative to the normal.

(f) Carry on with log prices

LogBostonHousing <- BostonHousing

LogBostonHousing[,14] <- log(BostonHousing[,14])

nullmodel <- lm(medv ~ 1, data = LogBostonHousing)

fullmodel <- lm(medv ~ ., data = LogBostonHousing)

Forward selection

model.step.f <- step(nullmodel, scope = list(lower = nullmodel, upper = fullmodel), direction = ’forward’)

Backward elimination

model.step.b <- step(fullmodel, direction = ’backward’)

Stepwise selection

model.step <- step(nullmodel, scope = list(lower = nullmodel, upper = fullmodel), direction = ’both’)

AICs and BICs

AIC(model.step.f)

BIC(model.step.f)

AIC(model.step.b)

BIC(model.step.b)

AIC(model.step)

BIC(model.step)

The models do not differ (not always the case). The models have "indus" and "age" removed, consistent with (b).

(g)

iterations <- 500

prediction_errors <- c()

for (it in 1:iterations) {

train_indices <- sample(1:nrow(LogBostonHousing), 0.7*nrow(LogBostonHousing))

train_boston_housing <- LogBostonHousing[train_indices,]

test_boston_housing <- LogBostonHousing[-train_indices,]

model2 <- lm(formula = medv ~ ., data = train_boston_housing)

predictions <- predict(model2, newdata=test_boston_housing[-14], interval=’confidence’)

prediction_error <- mean((predictions[, 1] - test_boston_housing$medv)^2)

prediction_errors <- c(prediction_errors, prediction_error)

}

hist(prediction_errors, breaks = 20)

The histogram gives an idea of the stability of the prediction errors over 500 random splits.

2

