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Introduction slide 2

g

Dictionary

Regression: (statistics) a measure of the relation between the mean value of
— one variable (e.g., output), denoted y (the response variable) and

— corresponding values of other variables (e.g., time and cost), denoted = (explanatory

variables).
0 The explanatory variables are also called covariates or features (ML).
0 We avoid the terms dependent variable (Y') and independent variable (x) used in older books.
O Questions we try and answer:
— (description/explanation) how does y depend on 7 How much of the variation of y is due
to 2? Do | need all of  to explain the variation in y?
— (prediction) what will y be if z = 2,7
— (causation) if | change x, what will happen to y?
O The causation question presupposes that we can change (some of) x, which is not always true.
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Linear model

0 Simplest explanation of y in terms of z is linear model:
Yy = g(:C) = xlﬁl + - +xpﬁp = xTﬁ’
where
y R, $T:($1,...,$p)€Rp, BT:(ﬂl,...,Bp)ERP.
00 The data consist of n instances/examples/cases (xj,y;) for j =1,...,n, so
1 11 0 Tip b1
Ynx1 = ) anp = ’ /8p><1 =
Yn Inl - Tnp Bp
and we write
y=Xpg.
[0 Key point: linearity refers to linearity in 5, not in terms of elements of X, which might be
polynomials, or basis functions, or ...
[0 Sometimes we can transform to a linear model. For example, the multiplicative expression
y= vmflscgg becomes
logy = log~ + By logx1 + B2 log xs.
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Notation

0 Vectors are column vectors

O We sometimes write X,,,,, to give the dimensions of a matrix or vector

O a" (row vector) is the transpose of a (column vector)

O je{l,...,n} (or sometimes i) indexes the rows of y (cases/examples)

O is the jth row of X

O rs,t,...€{1,...,p} indexes the columns of X (covariates/features)

00 Roman letters (y, X, z, ...) denote observed quantities, and may be the realisations of random
variables

O Greek letters (8,7,0,0,...) denote unknown (often vector) parameters of models

O B denotes an estimate of 3

[0 « denotes the level of significance tests and confidence intervals

O If Q is scalar (or a row vector) and f3 is a vector, then Q) /03 denotes the vector (or matrix) the

same shape as 3 with elements 0Q /00, .

O If Q is scalar and 3, are vectors, then 92Q/9B0~™ denotes the matrix with (r, s) element
0Q/95:0s.
[0 Y 1L Z means that the random variables Y and Z are independent
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Least squares fit
[0 Assume that
y=XpB

and find the ‘best fit' by choosing  to minimise the (squared) Euclidean distance between y and
X(, i.e., the sum of squares

n

ly — X8I = (y— XB)"(y — XB) = > (y; — 2] B)*.

j=1

O In vector space terms, y € R™ and X3 € span(X) C R™.

O The 'best fit' vector ¥ is the vector in span(X) closest to y; Pythagoras' theorem (sketch) gives
¥ L (y—7) (but see below).

[0 Below we call y € R™ the fitted value(s) and e = y — y € R" the residual (vector).
Lemma 1 Without loss of generality X has rank p. If n > p then y = XB = Hy, where
B=(X"X)'XTy, H=XX"X)'X"

The ‘hat matrix’ H has rank p, is symmetric and idempotent, and satisfies HX = X: it gives the
orthogonal projection of R™ onto span(X).
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Note to Lemma 1

O If X,,xp does not have full column rank, then there exists a linearly independent subset of
columns, X', say, such that X3 = X'+ for every 3, and we would then minimise [y — X'v||%.
Hence there is no loss of (mathematical) generality in supposing that X has full column rank.

[0 The sum of squares
Q=(y—XB)'(y—XB)=y'y— "Xy —y" X+ B X" XB=y"y - 29" XB+ "X "X
has first and second derivatives (respectively a p x 1 vector and p x p matrix)

oQ 0%Q

— = -2X" 2XTX
with respect to . Setting 0Q /05 = 0 implies that (X" X)8 = X"y, and as X" X has rank p it
is invertible, so we can write

=2X"X

B=(X"X)"'X"y, §=X3=X(X"X)"'X"y=Hy,

say. The matrix XX is positive definite, so (y — X3)"(y — X3) is minimised at B\

O The n x n ‘hat matrix’ H (which ‘puts a hat' on y) satisfies H* = H, H> = H, so it is
symmetric and idempotent, i.e., its eigenvalues equal 0 or 1, and their multiplicities must be n —p
and p, as its rank is p. H is the matrix that projects R™ orthogonally onto span(X).

O The inner product between y and y — ¥ equals zero, because y = Hy, y —y = (I — H)y, and
V' -y =y H(I-Hy=y"(H-H)y=0.
O Clearly HX = X(X"X)"'X"X = X, and H(X3) = XJ3 for any B € RP.
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Analysis of variance

[0 Let X’ be a subset of the columns of X, and let 7/ be the corresponding best fit. Then
y=y+@-9)+W@-9=Hy+H-H)y+I-Hy
(in an obvious notation) where (Pythagoras again)
gy L y-¥ L y-7
which implies that
H(H-H)=HI-H)=HI-H)=HI-H)=0, HH=H.
O This gives the analysis of variance (ANOVA)
lyll* = 17'1* +1[7 = 71I° + lly — 9l

which decomposes (‘analyses') the total variation ||y||? of ¥ into

— the contribution [|7’||? due to the columns of X,

— the contribution || — %||? due to the columns of X additional to the columns of X,
— the residual sum of squares ||y — 7||? left once the columns of X have been fitted.

[0 Clearly this generalises to vectors of fitted values from X', X" X" ...

Regression Methods Autumn 2022 - slide 7



Coefficient of determination

0 Coefficient of determination R? measures reduction in variance of y as

o _N7—71a)? _{U-H)JY'T - H)y _ y"(H - Hi)y
ly =y1all> I = H)y)}*(I = Hi)y  y*(I - Hiy~

where Hy and H are the hat matrices for regression on 1,, and X, and 1,, € span(X).

O R? e [0,1] is the squared empirical correlation between y and 7, so R? ~ 1 implies that most of
the variation in y is explained by 7.

O There is a geometric interpretation, as the terms on the right of
(In — Hi)y = (In — H)y + (H — H1)y

are orthogonal.
0 Adding columns to X must increase R?, so often use adjusted R?,

—1
R2=R*+(1- R} —.
n—p
O If 1, ¢ span(X), use
o Y'Y 2 2 2y 1
=27 = 1-— .
Ry Ty’ Ry, = Rj+ ( Ro)n g
Regression Methods Autumn 2022 — slide 8
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Moment-generating function

Definition 2 The moment-generating function (MGF) of a random vector Y, 1 is
My (t) =B Y) = B(e2i=14"9), teT ={teR": My(t) < oo},

and the cumulant-generating function of Y is Ky (t) = log My (t), t € T.

Then
O 0e€T7T,so My(0)=1and Ky(0) =0;

[0 if 7 contains an open set, then

OKy (t) O*Ky (t)
= E(Y) = K}(0) = Q=var(V) = —2 2|
p=5) = K0 = Z50) - a—wr) = T
O if A, B are disjoint subsets of {1,...,n} and Y4 denotes the sub-vector of Y containing

{Y; : j € A}, etc,, then Y4 UL Y3 if and only if
My (t) = E(e"AY4T5Y8) = My (tA)Myg(tg), teT;

O the MGF of Y4 equals My (t) evaluated with ¢z = 0;
O if we recognise an MGF, then we know the probability distribution that gave it.
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Multivariate normal distribution

Definition 3 The random vector Y = (Y1,...,Y,)" has a multivariate normal distribution,
Y ~ Np(u, Q), if there exist a vector = (1, ..., un)" € R™ and a symmetric matrix Q0 € R™*™ with
elements wjj, such that

uY ~ N@W p,u™Qu), ueR™

Theorem 4 IfY ~ N, (u,Q), then

(a)
EY)=p, var(Y)=Q,

(b) the MGF of Y is My (t) = exp(tTp + 1tTQt), t € R™;
(c) if A, B are disjoint subsets of {1,...,n}, then

Yo L Yg & Qup=0,

where Q 4 5 contains w;j fori € A, j € B;

d) if Yi, .. Yo 59 N (u,02), then Y = (Yi,...,Y)" ~ Noa(uln, 021,); and
o
(e) linear functions of Y are normally distributed, i.e.,

amx1 + BmxnY ~ Ny (a + Bu, BQB").
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Note to Theorem 4

(a) Let e denote the n-vector with 1 in the jth place and zeros everywhere else. Then
Y;=¢€jY ~ N(j,wj;), giving the mean and variance of Y.
Now var(Y; +Y}) = var(Y;) + var(Yy) + 2cov (Y}, Y%), and

Yi+ Yy = (ej +ex)"Y ~ N(uj + pur, wij + wir + 2w5r),

which implies that cov(Y}, Y}) = wjr = w;.

(b) Since Y ~ N (v, u*Qu), its MGF is M1y (t) = B(e*"Y) = exp(tu”p + $t2u™Qu). The
MGF of Y is My (u) = E(e*"Y) = M,y (1) = exp(u”p + $u™Qu), for any u € RP, as stated.

(c) Without loss of generality, let Y4 = (Y7,...,Y,)", for 1 < ¢ <n, and partition t* = (ty, 1),
" = (1, 1), etc. Also without loss of generality suppose that AUB = {1,...,n}, since
otherwise we can just set ¢; = 0 for j ¢ AU B. Then, using matrix algebra, the joint CGF of Y can
be written as

Ky (t) =tTp+ 37t = thpa + thus + 5t 4 Qaata + 25Qssts + t4Qasts.
This equals the sum of the CGFs of Y4 and Y5, i.e.,
KYA(t) + Ky, (t) = t;l:\,uA + %t:rleAAtA + tEHB + +%7%QBB7§B

if and only if the final term of Ky (t) equals zero for all ¢, which occurs if and only if Q45 = 0.
Hence the elements of the variance matrix corresponding to cov(Y;,Y;) must equal zero for any
r € Aand s € A, as required. Clearly this also holds if AUB # {1,...,p}.

(d) Each Y; has mean  and variance o2, and since they are independent, cov(Y;,Y};) = 0 for
j# k. If ueR" then u"Y is a linear combination of normal variables, with mean and variance

n n
g ujp = u'ply, E u?aQ = uTo?I,u,
J=1 Jj=1

so Y ~ N, (ul,,o%l,), as required.
(e) The MGF of a + BY equals
Elexp{t"(a+ BY)}] = Elexp{tTa+ (B"t)"Y)}]
= ¢ 9My (B
= exp{tTa+ (B™)Tu+ L(B"t)TQ(B"t)}
= exp{t"(a+ Bp)+ 5t (BQB")t},
which is the MGF of the N;,(a + Bu, BQB™) distribution.
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x? distribution

ind

6% = (43 + -+ + ) /o we write W ~ a®x3(5%). Then

to?6?
My (t) = exp (m

and its p-quantile is written c,(p).

Chi-square variables satisfy

O E(W) =o2%(v+6%), var(W) = 20*(v + 262);

O if Wi~ X2, 1L Wo ~ x2,, then Wy + Wy ~ X2 .;
O W ~ x2 implies that W has the gamma density

Bawa—l _Bw

with « = v/2 and g = 1/2.

flw) = (o) e ", w>0,

Definition 5 If Y; ~ N(uj,0?), then W =Y + --- +Y;? has the non-central chi-square
distribution with v degrees of freedom (df) and non-centrality parameter

> (1—20%)7"2, t<1/(207).

If 62 = 0 and 0> = 1 then W has the (central) chi-square distribution with v df, we write W ~ 2,

Regression Methods
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Central 2 densities

Here v = 1,2,4,6 (black, v = 6):

Chi-squared density, nu=6

wn

Density
0.3 0.4
l

0.2

0.0 0.1
I I

20

Regression Methods

Autumn 2022 - slide 13



Student ¢ distribution

Definition 6 If Z ~ N'(0,1) 1L W ~ x2, then T = Z/(W/v)'/? has the Student ¢ distribution
with v df, T~ t,, and we write t,,(p) for the corresponding p-quantile. The density function of T is

o M +1)/2) 1
1) == o) (14 £2/v) /2

—o<t<oo, v=1,2,....

Properties:
[0 the mean and variance exist only for v > 2 et v > 3 respectively, and then

v
E(T)=0 T) = ;
(1) =0, var(T) = 2
0 with v =1 we have the Cauchy density,
L <t < oo
—, —©
(1 +t2)’ ’

and then T has no moments;

O as v — oo, the limiting distribution of T is A/(0,1); usually the approximation is ‘good enough'’
for v > 25 (say).
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Student ¢ densities

Student ¢ density functions with v = 1,5,10,20 (black, ¥ = 20), and the standard normal density

(red):
Student t density, nu=20

Density
0.2 0.3 0.4 0.5
l

0.1

0.0
I

-4 -2 0 2 4
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F' distribution
Definition 7 If Wy, Wy "™ 2, X2, then

i Wl/ljl

F =
WQ/I/Q

has the I distribution with vy and v df: we write F' ~ F), ,,.
The density function is

1
1 1 v1/2 v2/2 -1
[ (511 + v2) 1 / Vy / u2"

L (501) T (5v2) (vg + vyu) 1 2)/27

fr(u) =

u>0, r,rn=12...,

and the p-quantile is written F,,, ,,,(p).
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Computation

O Quantiles of the N'(u,0?), X2, t,, F}, .., distributions can be found in tables, or in environments
such as R (see http://www.r-project.org/), where they can also be simulated.
0 Examples:

R : Copyright 2005, The R Foundation for Statistical Computing
Version 2.2.1 (2005-12-20 r36812)

> gnorm(0.025) # this is a comment; access normal quantiles
[1] -1.959964 # the [1] means this is the first element of a vector
> 7qnorm # help on use of function gnorm()

> qchisq(0.025,df=3) # chi-squared quantiles, nu=3
[1] 0.2157953

> qt(0.025,df=3) # t quantiles, nu=3

[1] -3.182446

> qf(0.025,df1=3,df2=4) # F quantiles, nul=3, nu2=4
[1] 0.06622087

Regression Methods Autumn 2022 — slide 17
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Statistical models

O Everything above gives a deterministic description of the variation in some numbers y as a linear
function of some other numbers X.

[0 A statistical model is a description of data via a probability distribution.

0 We distinguish
— primary aspects of a model, which specify what questions we aim to answer, from

— secondary aspects, which complete the model, indicate what analysis might be suitable, and
determine the precision of conclusions.

[0 Often the primary aspects are embodied in one or more parameters of the model.

O (Almost) all models are tentative, and we must check that they are reasonable.

Regression Methods Autumn 2022 — slide 19

Second-order and normal assumptions

[0 Two distributional assumptions in general use for the linear model:

— second-order assumptions,
E(y) = X,B, Var(y) = UQVanﬁ

— normal assumptions,
y ~ Nn(XB, UQV)v
i.e., ¥y has a multivariate normal distribution with mean vector X3 and (co)variance matrix
02V, assumed to be positive definite.
[0 X is called the design matrix: more later.

0 V is assumed known. Unless stated otherwise we set V' = I;,, so the y; are uncorrelated; if
normal they are therefore independent.

O If V # I, then we can perform weighted least squares (WLS) estimation, minimising
ly = XBIY = (y — XB)"W(y - XB),

where W = V1 is the weight matrix.

O Above the linearity is (usually) primary, whereas the distributional assumption, use of weights,
..., are (usually) secondary.

Regression Methods Autumn 2022 — slide 20
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Consequences of second-order assumptions

Lemma 8 Under the second-order assumptions, ﬁ is an unbiased estimator of f3,
E(B) =8, var(B) =o?(X"X)"L.
and S? = (n —p) Y|y — yl|? is an unbiased estimator of o2,

Theorem 9 (Gauss—Markov) The least squares estimator 3 has the smallest variance among all
estimators 3 = A,xny; it is the best linear unbiased estimator (BLUE) of .

O The results above also hold under the (stronger) normal assumptions.

O We can write
n

n
B=(X"X)"1XxTy = Z(XTX)_lxjyj =n! Z a;jy;,
J=1 J=1
say, where ay, ..., a, are p X 1 vectors. Hence as n — oo a central limit theorem will apply under
mild conditions on the (a;,y;), and thus B ~ N,{8,0*(X"X)~1}.

Regression Methods Autumn 2022 — slide 21

Note to Lemma 8

O Recall that expectation is linear, and that var(Agx,y) = Avar(y)A".

O Set Ayyxyp = (XTX)71XT and note that
E(B) = E(Ay) = AE(y) = (X"X)"'X"XB = B,

var(B) = Avar(y)A” = (X" X) ' X L2 {(X"X) ' X"} = o2(X X)L

O Recall that var(y) = E(yy") — E(y)E(y)* = oI, — X38" X", and note that
ly =3l = (v = 9)" (v =) = y" (In — H)"(In = H)y = y" (I — H)y = te{(l, — H)yy"}.
Hence E(||y — 7]|?) equals
Bltr{(In — H)yy"}] = tr{(In — H)E(yy")} = tr{(In — H)(c*L, + XpB"X")} = o*tr (I, — H),
because (I, — H)X = 0. Moreover tr(l,) =n and
tr(H) = tr{X (X" X) ' X"} = tr{ (X" X) ' X" X} = tr(,) = p,
so
E(lly = 91*) = o*tx(l, — H) = o*(n - p),

as required to show that E(S?) = o2.

Regression Methods Autumn 2022 — note 1 of slide 21
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Note to Theorem 9

O Let B~denote any unbiased estimator of 8 that is linear in y. Then a p x n matrix A exists such
that § = Ay, and unbiasedness implies that E(3) = AX 3 = (3 for any parameter vector 3; this
entails AX = I,. Now

~ -~

var(f) — var(f) = Ao’ AT —o*(XTX)™!
= o {AAT - AX(XTX) ' XTAT}
= o?A(I, - H)A"
= o?A(I, — H)(I, — H)TA"
and this p X p matrix is positive semidefinite. Thus B has smallest variance in finite samples
among all linear unbiased estimators of 3.

[0 Note that this is a finite-sample result that holds for all » and X, not an asymptotic result.

Regression Methods Autumn 2022 — note 2 of slide 21

Normal-theory linear model

The following results allow us to perform exact inference for the parameters 3 and o2, and in analysis
of variance.

Theorem 10 Under the normal-theory linear model,

_ )82
Fonpoarxy u DS e

Theorem 11 (Cochran) Let Y ~ N,,(0,,0%1,) and suppose that
K
Y'Y =) Qr  with Qp=YTALY,
k=1

where the matrices A, are positive semi-definite with ranks ry.. If 11 +--- +rg = n, then the Qy, are
mutually independent, and Qy,/o? ~ X%k.

Theorem 12 If y ~ N,,(,021,) and H is symmetric and idempotent, then y*Hy ~ UQXIQQ((SQ),
where p = tr(H) and 026% = u"Hp.

Regression Methods Autumn 2022 — slide 22
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Note to Theorem 10

O The first part is easy, because 3 is a linear combination of normal variables so it is normal, and its
mean and variance matrix were given by Lemma 8.

O Likewise the residual e = y — 4y = (I — H)y is a linear combination of y with mean 0,, and
variance (I — H)o?, so e ~ Ny, {0,, (I — H)o?}.

O As cov(a, e) equals
cov{(XTX) ' X Ty, (I — H)y} = (X" X) ' X cov(y)(I — H)" = e*(X"X)"H (I - H)X}" =0,
we see that B\ is independent of (any function of) e, and therefore in particular of
(n—p)S?/o? = |ly — §|2/0? = e"e/o™.

[0 The eigenvalues of H are p 1'sand n — p 0's, so those of I — H are n —p 1's and p 0's. The
spectral decomposition implies that there exists an n X n orthogonal matrix U such that
I — H=UDUT", where D = diag(1,...,1,0,...,0). Note that UU™ = U"U = I,,. Thus
Z = U"e/o has mean vector 0,, and variance matrix

var(Z) = Uvar(e)U/o? = U™ (I — H)o*U/o? = U"UDU™U = D,

i.e. the Z1,...,Z, are independent normal variables, n — p of them have variance 1 and p of
them have variance 0 and therefore equal 0 with probability one. Hence, as required,

n—p
2 2 _ 2 _ _ _ 2 2
(n—p)S?/o® =eTe/o® = (UZ)"(UZ)=Z"UUZ=> Z; ~X2,
j=1
Regression Methods Autumn 2022 — note 1 of slide 22
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Note to Theorem 11

O First we prove that for any vector of real numbers y = (y1,...,yn)", if

Q=y"y=Q1+  +Qx,

where Q. = yT Ay and Ay has rank 7y, then if r{ + --- + rx = n, then there exists an
orthogonal matrix U such that, with z = Uy, we can write

_ 2 2 _ 2 2 _ .2 2
Q1—21+"'+Zr1a Q2—2T1+1+”’+Zr1+7‘2’ ey QK—Zr1+~~~+rK,1+1+---+Zn~ (1)

(0 First let K = 2. If so, then @ = y" A1y + y" Ay, and there exists an orthonormal matrix U such
that UT A, U is diagonal, with r; positive eigenvalues di,...,d,,, say, and n —r; = ry zero
eigenvalues. Without loss of generality we can put the 71 positive eigenvalues first, and set
z2=U",soy=Uz.

O Hence the equation Q = yT A1y + y" Asy becomes

y'y=(Uz2)"(Uz)=2"2= Z 25 =(Uz)" AUz + (Uz2)" AUz = Z djz; + 2" (UT A2U)z,

J=1
which yields
71 n
Z(l —dj)2 + Z 2 = 2" (U AUz,
j=1 j=ri+1
and the fact that Ay has rank ro =n —ry implies thatd; = --- =d,, =1, Q1 = Z] 1 zJ and

_\n 2
Q2 = Djri41 %5
[0 This is not a result about random variables, but about quadratic forms of real numbers. Clearly it
can be iterated to K quadratic forms, giving (1).

O IfY; i N(0,02), then Z = U"Y /o ~ N(0,1,), and as Q1, ..., Qx are sums of independent

standard normal variables, they are independent, with Q. ~ sz.

Regression Methods Autumn 2022 — note 2 of slide 22

Note to Theorem 12

The spectral decomposition of H is VDV™, where D is diagonal with p 1's and n — p Q's, and
z=VTy ~ Np(VTu,0%l,); note that the z; are independent. Now

y"Hy = (VTy)"D(V"y) ZdJZJ Z zJQ-,
jidi=1

which has a (possibly non-central) x? distribution with p = tr(H) degrees of freedom, scale parameter
2
o and

0?0 = Y Bl(z)* = D diE(z)? = (Vi) DV ) = 1" Hp,
j=1

Jidj=1

as announced.

Regression Methods Autumn 2022 — note 3 of slide 22
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Inference on [

0 Theorem 10 implies that for each r € {1,...,p},

~

/37“_67’

1/2
O"Um{

=Z, ~N(0,1) L (n-p)S*e* =W ~x2,,

where v, the (r,7) element of (X"X)™!, so

~

/37“ - /37“ Zr

Sui? W/ —p)

~ by

[0 Hence we can test the hypothesis that 3, = 8° by comparing (53, — ﬁ,@)/(Sv;T/Q) to the t,_,
distribution, and a (1 — «) confidence interval for (3, has limits

By £ SvH2t, _p(a)2), 0<a<l.

O Likewise ¢T3 ~ NA{cB,0%c*(XTX)" e} for any constant vector c,x1, SO we base inference for
the scalar v = ¢¥3 on
B—1y
S{CT(XTX)flc}l/Q

~ by,

Regression Methods Autumn 2022 — slide 23

Prediction

[0 Inference for the value of a further random variable Y with known p x 1 covariate vector z and
satisfying the linear model, so Y} ~ N (2 3, 0%) independent of the other variables, is performed

by noting that Y, 1L B, S? and
Yy — a2 B~ N[0,02{1 + 25 (X" X)L, )],
so

Y+ — :L'E_E
S{1+ 23 (XTX) 1wy /2

~ tnfpa

which leads to prediction intervals for Y once 3 and S have been observed.

O Although we expect inferences for 3 and o2 to hold as approximations under second-order
assumptions, this is not the case for inference on Y. (Why not?)

Regression Methods Autumn 2022 — slide 24
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Analysis of Variance slide 25

Analysis of variance

0 The models with mean vectors X’3’ and X3, where the columns of X include those of X', give
rise to hat matrices H' and H with respective ranks ¢ and p (and p > q).
[0 We can write the response vector and the corresponding sum of squares as
y = J+@-9)+W-9=Hy+H-H)y+{-H)y,
2 2 e 2 ~12
lyl* = 511"+ 17 =91+ lly - glI*-
[0 Clearly the ranks of H', H — H' and I — H are respectively ¢, p — q and n — p, so Cochran’s
theorem applies, and if 5 = 0, then

712 /0% ~xg AL T=F1P/o* ~xy L Ny =31%/0% ~xi
and therefore (for example) the ratio of sums of squares satisifies

-7/ =q) .
= —q,n—p>
ly —gl2/(n—p) P77

with the numerator having a non-central x? distribution if X'/’ # X33.

[0 This gives a basis for saying whether the reduction in sum of squares ||z — 7||?

X' to X can be attributable to chance, or if it is ‘significant’.

due to augmenting

Example 13 Work out the sums of squares in detail when Y S N(p,0?).

Regression Methods Autumn 2022 — slide 26

Note to Example 13

O We have y ~ N, (plp,0%1,), 50 X =1, and H = X(X" X)) X" = n~11,17 clearly has rank
p=1. Alsoy=Hy=1l, and (I, — H)1, = 0.
O The variable ¢/ =y — ul, ~ Ny (0n,02%I,), so Cochran’s theorem applied to 3/ gives

yTHY [0 ~xi Ly (L= H)Y o ~ xi s
O Now (I, — H)y' = (In — H)(y — pln) = (In — H)y = y — Yln, so
Y (I = H)y' = y"(In — H)y = 0*Va ~ 0°x; 1,
whereas Hy ~ N (Hpul,,02HH") ~ N(ul,,0*H), and Theorem 12 implies that
y Hy = 0®Vi ~ a*x{(6%),
with 026? = p1THpul, = nu?. Hence the F statistic we compute is

P y"Hy/1 D a2vi/1 _ Vi
y'(In—H)y/(n—=1)  o*Va/(n—1)  Va/(n—1)

where V is non-central x? with 1 df and 62 = nu? independent of V5, which is central
chi-squared with n — 1 df.

O In fact F' is the square of the t statistic for testing p = 0.

Regression Methods Autumn 2022 — note 1 of slide 26
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Terms

O In practice we (almost) always include a constant column 1,, in the design matrix and write

Bo
B
Xﬁz(ln D CREERE Xm) . = 1,60 + X181 + - + Xin B,
Brm
where the matrices X1, ..., X,,, the terms, are successively included.

[0 The model with only 1,, is treated as the baseline model, and has fitted value and residual vector
Yo="ln, Y=Y =y Yln

[0 Starting from here we ask which terms lead to significant improvements in the fit, as measured by
a reduction in the sum of squares.

O The successive degrees of freedom, i.e., the ranks of the corresponding matrices I — H, are
n—l=wyw>v2>-2>uvn,

and v, 1 = v, when the columns of X, depend linearly on those of 1,, X1,...,X,, so inclusion
of X, 11 does not change the fitted value or improve the fit.

Regression Methods Autumn 2022 — slide 27

Sums of squares

[0 Decomposition of baseline residual into orthogonal vectors
Y= =" —=Um) + @Um = Ym-1) + -+ [H1 — %o)
with (v — ¥o)" (v — %o) equal to (Pythagoras)
Y = Um) (Y = Ym) + Um = Un=1)" U — Ym—1) + -+ (T — ¥0)" (1 — Yo),
giving sums of squares decomposition
SSy =SS+ (SSm—1—55n) + -+ (SSy — S51),

where
— 55, is residual sum of squares for the model with 1,,, X1,..., X,, on v, df,
- 85, — 55,41 is reduction in model sum of squares due to adding X, 1.

O Normality/geometry: ¥, — yr—1,y — Ym are orthogonal linear functions of the data, so SS,, and
all the §S,_1 — S5, are mutually independent and Cochran’s theorem can be applied.

Regression Methods Autumn 2022 — slide 28
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ANOVA table

Terms df  Residual | Terms df Reduction Mean square
SS added in SS

In n—1 SSo

Ln, X1 21 SS1 X1 n—1—u SSy — 9S, S;io;iSl

L, X1, X5 v SS | Xa  wi—w  SSi-SS,  S5=8m

b Xt Xm  Vm 8Sm | Xm vnoi—vm SSp1 -85, SSw=SS

[0 Usually show only right-hand side and the bottom line of the left-hand side, as ‘Residual’.

[0 F-tests used to assess need for terms, using reduction in sums of squares relative to the residual
estimate of error, SS,, /vp,.

[J Used to screen which terms give the largest reductions, don't necessarily remove terms that are
‘not significant’.

Regression Methods Autumn 2022 — slide 29

Example: Cement data

Percentage weights in clinkers of 4 four constitutents of cement (x1,...,24) and heat evolved y in
calories, in n = 13 samples.

Heat evolved y

Heat evolved y
80 90 100 110

80 90 100 110

5 10 15 20 3 40 50 60 70

Percentage weight in clinkers, x1 Percentage weight in clinkers, x2

80 90 100 110
80 90 100 110

Heat evolved y
Heat evolved y

5 10 15 20 10 20 30 40 50 60
Percentage weight in clinkers, x3 Percentage weight in clinkers, x4

Regression Methods Autumn 2022 — slide 30
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x1
7
1
11
11
7
11
3
1
2
21
1
11
13 10
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[ N
N = O

Example

> cement

x2
26
29
56
31
52
55
71
31
54
47
40
66
68

: Cement data

x3
6
15
8
8
6
9
17
22
18
4
23
9
8

x4
60
52
20
47
33
22

6
44
22
26
34
12
12

78.
4.
104.
87.
95.
109.
102.
72.
93.
115.
83.
113.
109.

B W0 O 0l NN OOWwWwOY
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Example: Cement data

0 Clearly 1 and x2 should be included, maybe not the others.

[0 Reductions in overall sum of squares when terms entered in the order given.

Term df  Reduction in  Mean square F
sum of squares
1 1 1450.1 1450.1 242.5
To 1 1207.8 1207.8 202.0
T3 1 9.79 9.79 1.64
Ty 1 0.25 0.25 0.04
Residual 8 47.86 5.98
Regression Methods Autumn 2022 — slide 32
Example: Cement data
O What if we change the order of the terms?
Term df  Reduction in  Mean square F
sum of squares
x4 1 1831.9 1831.9 306.2
T3 1 708.1 708.1 118.4
o 1 101.9 101.9 17.04
1 1 26.0 26.0 4.34
Residual 8 47.86 5.98

[0 Should 1 and x5 be included or not?

Regression Methods
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Orthogonality

O In general, ANOVA table depends on order of inclusion of terms.

[0 Interpretation unclear if term X, significant when included early, but not when included late. Is
X, important or not?

) In a model with orthogonal terms,

XB =100+ X161+ X262, X Xy=X,1,=0, r#s.

we obtain N
Bo 11 0 0\ "
Bl=(0 XIxi o0 (1 X1 X2)'y
B 0 0 X3Xy

so since 7 = XB\, we have
'y — 55 =y"y — ng — BIXT X151 — B3 X3 Xof,
and the residual sums of squares for the sub-models 1,,8y, 1,80 + X181, 1,80 + X208 are
vy —nt, Yy — g — BIXTX 1B yTy —ng? — By X3 Xab,

so clearly the reductions do not depend on the order of inclusion.

Regression Methods Autumn 2022 - slide 34

Balance

O Balanced design matrices induce orthogonality after fitting 1,, (or maybe a more complex design).

0 Gram—Schmidt orthogonalisation with respect to early terms makes later terms mutually
orthogonal, leading to a clear interpretation of the ANOVA.

O If we denote the centered versions of X7 and X3 as
Zp= (I —n ', X, = X, — 1,75 r=1,2,
where 7, is the row average for X, then we can write
1,80 + X181 + Xof2 = 1n(Bo + 71 B1 + T2 82) + Z1p1 + Z2fo = 10 + Z151 + Zafa,

so Z1'1, =Z51, =0.
O If the design is such that Z{ Zy = 0, then the order of inclusion of X3, X is irrelevant, provided
1,, is included first.

Example 14 (3 x 2 layout) Observations and their means written as

Y11 Y12 1 w+a
Y21 Y22, w+o1 p+o+a.
Ys1 Y32 Ptz p+o+a
Regression Methods Autumn 2022 — slide 35
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Note to Example 14

In terms of the parameter vector (u, «, d2,93)T, the design matrix is

Il
— = ) ==
—_ O Rk O RO
—_ -0 O O O

OO = = OO

with X7 the second column of X, and X5 the third and fourth columns of X. Evidently X; and X5
are not orthogonal and they are not orthogonal to 1,,. On the other hand Z; and Zs in the
corresponding centred matrix,

IO DL | 0| Lo o —

DO [0 R0 [ DO b | =

— = = = e

QO 00| 00 DO N | Lo [ =

are orthogonal to the constant by construction and to each other because the design is balanced: 0
and d3 each occur equally often with o and without «.. This balance implies that provided that p is
fitted first, the reductions in sums of squares due to X7 and X5, or equivalently Z; and Zs, are unique.

Regression Methods Autumn 2022 — note 1 of slide 35

Diagnostics slide 36

Assumptions and model checking

[0 How heavily do our conclusions depend on our assumptions?
0 In any given context,
— primary aspects relate to the questions our analysis will address,
— secondary aspects relate to how we go about finding answers to them.
[0 Queries about primary aspects suggest that we should start again.
[0 Queries about secondary aspects suggest that we modify the analysis.
O Regression diagnostics check that a fitted model is adequate:
— Does y depend linearly on the columns of X7
— Does y depend systematically on variables omitted from X7
— Are the variances constant?
— Are the responses uncorrelated /independent?
— Are there outliers or otherwise unusual data?
— Are the responses normally distributed?
[0 Usually these involve plots, sometimes tests — beware over-interpretation!

O Key question: ‘how would the failure | see/suspect change my conclusions?’

Regression Methods Autumn 2022 - slide 37
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Residuals

O Raw residuals defined as R
e=y—y=y—XB=(In—Hy
have E(e) = 0, var(e) = 0?(I,, — H) if model correct, so

var(ej) = o*(1 — hy;) cov(ej,er) = —0 hjy, j # k.

In a good model e and ¥ should be unrelated, because Ty = 0.
[0 Prefer standardized residuals
€; Yj — -T;FB

- - i=1,...
S(T—hg) 2~ s(T—hyy2 T

T

which satisfy E(r;) = 0 and var(r;) = 1; here s is residual standard deviation.
O Uses:

check linearity by plotting r; against covariates, both those in X and not;

— check constant variance by plotting r; against fitted value ¥j;
— check independence by ACF of residuals (if data time-ordered);
— outliers visible as unusual residuals;

— check normality by normal QQ-plot of r;.

Regression Methods Autumn 2022 - slide 38

Checking linearity

O Plot r against each covariate, included or not in the model, and against ¥, which is uncorrelated
with e (as y"e = 0):

o . o .
* :. b 1] o ° ®ee
_"A - .. .. . _"* .' ... .. o
o] ce g%t Sode e e, o,
5 B g0 e, d >
A nn:' g'A.. [y
R . ¥ .
@ . Nl )
T T T T T T T T T T T T
-2 -1 0 1 2 -15 -0.5 0.5 1.5
x1 X2
—— o :
.!.'. » . * : . L] °
_,_A. > ..' _'-A. ... '..l
So- g e, e . So-fe oete & o 4
3 -} o %o . 2 oo %0 e o
S_|"e e o g _ o’ oo
T e ¢ . ', 00 e o
o o
1 L] I L]
? P
T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6
x3 fitted(fit)
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Checking the variance

Does var(y) depend on E(y)?

Variance function shows how var(y) depends on p = E(y). For normal linear model should have

var(y) = o2, so variance is constant function of p

Plot r or |r| against ¥:

0 _| [ ] lo}
N\ ° ol | °
=9 | ° =0o
g ° ® Ta
%m__ e .'Em L R
£ ° ° g~ b °
ie] ) 5 ° [
B IO 524 L,
7] ° [ ) T e
Bl og.am Bo | esstes™,
o \ [J & ° o “:‘“"C‘ °
o | .0". L ) o_[e *%
c T T T T T © T T T T 1
0 2 4 6 8 0 2 4 6 8 10

fitted(fit) fitted(fit1)
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Checking independence

Dependence can greatly increase uncertainty of final conclusions.
Substantive knowledge is helpful in suggesting whether it might be present:
— were the data gathered in temporal/spatial/. .. order?

— were the data sampled/gathered in groups (e.g., spatial, several observations on different
individuals, ...)?

— was randomisation used? If so, how?

If observations are time-ordered, try using correlogram (ACF) and partial correlogram (PACF) to

estimate serial correlations and partial correlations
°)Tj+t71)a tzl,...

corr(rj, mj4¢), COrT(rj, rjte | i1, .-

On next page, top panels show uncorrelated residuals, lower ones show evidence of correlation,
suggesting use of a time series model.

Regression Methods
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Checking independence

Series std.residual

e ]
©
o
5o s [
Qe T T T T T 1
o [
S 4
1
<
T T T T
0 5 10 15
Lag
Series std.residual2
e
n
©
59 HH
<° TTTTTT]
o [
34
1
=
T T T T
0 5 10 15

Partial ACF

-1.0 -05

Partial ACF

-1.0 -05

1.0

0.5

0.0

0.5

0.0

Series std.residual
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Checking normality

O Outliers, skewness, heavy tails (easily) seen.

envelope.

O Normal Q-Q plot for Y7,...,Y, i N (u,0?) graphs ordered values
Yoy S ¥ <o =¥
against (approximate) expected normal order statistics
O H1/(n+ 1)}, @72/ (n+1)},..., @ Hn/(n+ 1)}

[0 Normality — roughly straight line, slope o, intercept p.

[0 Beware over-interpretation of such plots when n is small — often useful to add simulation

00 Apply to standardized residuals r; from regression model.

Regression Methods
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Checking normality, n = 50

Normal Q-Q Plot

10
|

Ordered sample
5
1

0
1

-1 0 1
Theoretical Quantiles
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T
2

10
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Normal Q-Q Plot
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1 1
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Normal Q-Q Plot

25
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Theoretical Quantiles

Regression Methods

Autumn 2022 - slide 44

Checking normality, n = 200

Normal Q-Q Plot

10
|

Ordered sample
5
1

0
1

-3

T T T T T
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Theoretical Quantiles

Normal Q-Q Plot

3

12
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Normal Q-Q Plot
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Leverage and influence
O Does case (z;,y;) strongly influence the fitted model (picture)?
O As
var(y; — gj) = var(y; — x}ﬁ) = 5%(1 — hij),

having leverage h;; = 1 implies that J; = y; — need one parameter to fit this case.
O Astr(H) =", hjj =p, the average hj; is p/n. If h;; > 2p/n, then jth case should be

checked (rule of thumb), e.g. by refitting without (x;,y;).
O Let y_; be fitted values for (all) data when (z;,y;) is dropped and use Cook’s distance

2
€= 5= )" = G5) == p(lf_—hh)

to measure the difference between y and y_;.
O Large C; implies large r; and/or large h;;.
O Cases with C; > 8/(n — 2p) worth a closer look (rule of thumb).
O High leverage and/or influence need not be bad, just need to be aware of it.
[0 These ideas are not very useful in large samples, since the plots become uninformative.

Regression Methods
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Response transformation

O Linear model for y may be better applied for some transformation g(y), especially if some y are
much larger than others, or the variance is non-constant.
O Survival times y,:; in 10-hour units of animals in a 3 x 4 factorial experiment with four replicates,

with (below) average (standard deviation) for the poison x treatment combinations:
— generally see higher SD and mean together,

— times must be positive, so linear model inappropriate?

Treatment Poison 1 Poison 2 Poison 3
A 0.31, 0.45, 0.46, 0.43 0.36, 0.29, 0.40, 0.23 0.22, 0.21, 0.18, 0.23
B 0.82, 1.10, 0.88, 0.72 0.92, 0.61, 0.49, 1.24 0.30, 0.37, 0.38, 0.29
C 0.43, 0.45, 0.63, 0.76 0.44, 0.35, 0.31, 0.40 0.23, 0.25, 0.24, 0.22
D 0.45, 0.71, 0.66, 0.62 0.56, 1.02, 0.71, 0.38 0.30, 0.36, 0.31, 0.33
Treatment Poison 1 Poison 2 Poison 3 Average

A 0.41 (0.07) 0.32(0.08) 0.21 (0.02) 0.31

B 0.88 (0.16) 0.82 (0.34) 0.34 (0.05) 0.68

C 0.57 (0.16) 0.38 (0.06) 0.24 (0.01) 0.39

D 0.61 (0.11) 0.67 (0.27) 0.33 (0.03) 0.53

Average  0.62 0.55 0.28 0.48

Regression Methods
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Example: Poison data

Upper panels: dependence of responses on the factor levels. Lower left: x3 probability plots of the
3554, where 57, is the sample variance of y,;. Lower right: same for y,

pt
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0

2 4

6
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0 2 4 6

Quantiles of chi-squared

j
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Box—Cox transformation

O For y > 0, the Box—Cox transformation

A
y()\):{yAI, A #0,

includes the inverse (A = —1), log (A = 0), cube and square roots (A = %, 1), original scale

logy, A=0,

(A =1) and square (A = 2); sometimes map y — y + ¢ > 0.

[0 Suppose normal linear model

applies for some 3, o and A to be determined. Here X contains 1,,, so use of y(*) just changes

intercept and rescales 8 and o.

O Use profile log likelihood for A to choose ‘best’ transformation (usually from list above to aid

interpretation).

[0 Interpretation of 8 depends on A, so usually we ignore the fact that A was estimated, unless we
are not interested in [ (e.g., when performing ‘automatic’ prediction).

y()\) ~ Nn(XBa UQIn)

Regression Methods
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Example: Poison data

statistic’.

[0 Fits of two-way layout model, with interaction:

Ytps ~ N(M + o + 6}7 + Yeps 02)7

[0 The terms explain appreciably more variation for y~".

t=1,2,3,4, p=1,2,3, j =1,2,3.4.

[0 Analyses of variance with responses y and y~!'. For MS and F read ‘Mean square’ and 'F

Term df Response y Response 3!

SS MS F SS MS F
Poisons 2 1.033 0.517 23.22 3488 17.44 72.63
Treatments 3 0921 0.307 1381 20.41 6.80 28.34
Treatments x Poisons 6 0.250 0.042 1.87 157 026 1.09
Residual 36 0.801 0.022 8.64 0.24

Regression Methods

Autumn 2022 - slide 50

Example: Poison data

Residual

Residual

Top: residuals for model without interactions ~;,; clearly problematic.
Lower right: profile log likelihood for Box—Cox A, showing 95% confidence interval.
Lower left: residuals for the two-way layout model (no interactions) for 1/y .

Ordered residual

0.2

0.4 0.6 0.8
Fitted value

-2

Quantiles of Standard Normal

-1

0 1

o
S
)

95%
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Model Building slide 52

Goals
[0 What to do faced with a set of data?
0 Two main aims:
— understand (science) — maybe have prior idea/hypotheses on how response depends on
explanatory variables. Interpretation is key.
— predict/control (technology) — don't really care how y depends on X. Interpretation not
critical (though this describes only prediction in the narrowest of senses).
L0 There is no reason that a single model will do both, or even that there must be a single ‘best’
model:
— maybe two models with different interpretations both fit about equally well, and then future
work might aim to choose between them;
— prediction with a mixture of models might be better than using a single model.
Regression Methods Autumn 2022 - slide 53

0
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O

g

Meta-algorithm

Collect data intended to answer question of interest;
examine data (graphs, look for outliers, problems with sampling scheme);
choose/construct response variable (transformations? independence?);

consider what models are coherent with context of problem (limiting properties, units, similar
problems/datasets, covariates that must be included, ...);

iterate:

— fit models, compare quality of fits;
— check interpretations of 3, 52 and

— check fit (diagnostics, outliers, .. .)
until satisfied; finally

give conclusions—careful interpretation of best model(s) in terms of original problem, consider
deficiencies, and explain what extra data might overcome them.

Regression Methods Autumn 2022 - slide 54

Initial examination of data

O Plot y against covariates, look for outliers, non-constant variance, nonlinearity, etc.
[0 Plot covariates against each other, look for dependence.
O Try to understand covariates (e.g., dimensions), are transformations needed?
0 May need to reduce dimension of X by regularisation — many ways to do this (later).
Regression Methods Autumn 2022 — slide 55
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Variable Selection slide 56

Albert Einstein (1879-1955)

‘Everything should be made as simple as possible, but no simpler.’

Regression Methods Autumn 2022 — slide 57

William of Occam (71285-1347/9)

Occam'’s razor: Pluralitas non est ponenda sine necessitate: entities should not be multiplied beyond
necessity.

Regression Methods Autumn 2022 — slide 58
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Automatic variable selection

0O Assume linear model E(y) = X8

[0 2P possible subsets of columns of X, plus transformations, ...
00 Example: p = 17 gives 131072 possible subsets of variables
O

Fast algorithms (e.g., branch and bound, leaps in R) exist visit them all or just subsets (e.g.,
stepwise), but we need criteria for comparing models.

O

Many proposals for model comparison

cross-validation,
information criteria (AIC, AIC,, BIC, NIC, TIC, ...)
Mallow's Cp,

[0 Most involve minimising estimated prediction error for future data like those observed!

Regression Methods Autumn 2022 — slide 59

Prediction error

O True model y ~ (u,021,), we assume (perhaps incorrectly) that u = X2, fit X,,x, and obtain
fitted value

XB=Hy~ (Hu,o’H).
[0 Terminology
— the true model has u = X and all 5, # 0;
— a correct model has = X but some 5, = 0;
— a wrong model has p € span(X);
so (I, — H)p = 0 if the model is true or correct, and (I, — H)u # 0 if it is wrong.

O The prediction error for an independent dataset y, with mean vector y is

n~ (I — H)p + (1+p/n)o?,  wrong,
A=nB{ (s — XB) gy — XB)} = { (1 +a/n)o?, true,
(1+p/n)o?, correct,

where E(-) is over both y; and y and p > g = #{f, : B, # 0} when u € span(X).
O In principle we should write A = A(X).

Regression Methods Autumn 2022 - slide 60
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Note: Computation of A
Let y ~ (u,0%I,) and fit X3, obtaining fitted value
XB=Hy~ (Hp,o’H),
where Hy = p, ie., (I — H)p =0 if p € span(X), but otherwise (I, — H)u # 0.

We have a new data set y; ~ (i, 021l,), and we compute the average error in predicting v using
X0, ie.,

A=nB{(y - XB) vy - XB)}
Let A=y, — XB and note that as the trace of a scalar is the scalar and trace is a linear operator,
E(ATA) = E{tr(A"A)} = E{tr(AA")} = tr{E(AA™)} = tr{var(A) + E(A)E(A)")}.
Now as y+ and y are independent,
s — XB ~ (n— Hp, 0L, + 0H),
so the computation above gives
E{ (s = XB)" (g4 = XB) | = t0{0* L+ H) + (I = H)ups" (I = H)} = 0*(n+p) + " (I — H)p
because tr(l,, + H) =n+p and I — H is symmetric and idempotent, giving

n~ (I — H)u+ (1 + p/n)a?, wrong model,

A=< (1+q/n)o?, true model,
(1+p/n)o?, correct model.
Regression Methods Autumn 2022 — note 1 of slide 60

Bias/variance trade-off

O Minimising A involves balancing the
— bias n= '™ (I — H)u, which is reduced by including useful terms in X, and
— variance (1 + p/n)o?, which is increased by including useless terms in X.
[0 We would like to minimise A, but this depends the unknown y and o.
[0 The cross-validation estimator of A splits the data into X', %’ and X*, y*, then
— for each possible subset S of columns of X*:
> compute 3} by regressing y* on Xg;

> use Eg to estimate the prediction error for S by
As= ()" — X5B8)" (v — X5B5);

— finally choose the set of columns S for which As is minimised.

[0 This estimator depends on the split, and since X’ # X* in general, 33 does not estimate Ag.
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Leave-one-out cross-validation
00 Simplest way to use entire dataset is leave-one-out cross-validation (CV), minimising
n
A 22
TZACV = CV = Z(y] — JT;B,J’) s
j=1

where E_j is estimate computed without (x;,y;). This seems to require n fits of each model, but
(exercise)

which can be obtained from one fit.

00 Generalised cross-validation (GCV) replaces hj; by its average tr(H)/n = p/n, giving

GCV = Z 1_p/n2,

and hence
E(GOV) = 1" (I — H)u/(1 — p/n)? + no?/(1 = p/n) ~ nA.

O Often choose the model that minimises GCV or CV.
Regression Methods Autumn 2022 — slide 62

Note: Properties of GCV
We need the expectation of £¢, where ¢ =y — X3 = (I — H)y ~ ((I, — H)p, (I, — H)o?), and
E (c%¢) = E {tr (ee™)} = tr {E(e)E(e)T + var(e)} = u™(I — H)p + o*tr(I,, — H).

Now note that tr(H) = p and divide by (1 — p/n)? to give (almost) the required result, for which we
need also (1 —p/n)~t ~ 1+ p/n, for p < n.

Regression Methods Autumn 2022 — note 1 of slide 62

35



Akaike information criterion

[J The above arguments apply only to least squares estimators. More generally, we could aim to
minimise the Kullback—Leibler discrepancy (information distance)

D(fo,9) = /10g { f‘c(];‘qj)e) } 9(y)dy > 0,
iid

between candidate model fy = f(y;0) and true model g, based on Y3,...,Y, ~ g.

[0 This fails, because many candidates may have the same minimum, so we need to penalise the
dimension of 6.

O Suppose that 8, minimises D( fy, g) within the family of candidate models, and is estimated from
Y1,...,Y, using the MLE 6.

[0 We suppose there is an independent sample Y1+, R S id g and aim to estimate
n +
9(Y;")
By | Ef | D log {7j = } =nEg {D(f39)}; (2)
J j=1 f(YjJr; ‘9)

the outer expectation is over the distribution of 9, which is independent of Y. Having dim 6§ too
high allows 6 to miss 6, by more, which should penalise D(f5, g).

[ We need to know the distribution of 8 in a mis-specified model.
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Likelihood asymptotics

O In a regular model where p = dim(#) and Y3,...,Y, S g = fo,, then

N 0?1 ;0
0~ Np {Hg’”fl—rg(‘gg)il} o 1g(0) =— / % 9(y) dy,

but in the mis-specified case fy, # g and (under regularity conditions) we obtain

0% N {0y 10 KO0, (o) = [ LRESWDTORIID) o) g,

0 Taylor expansions lead to

nEQ {D(f@ 9)} = nD(fgg,g) + %tr {Ig(‘gg)ilK(eg)} s

and the second term equals p/2 in the regular case, since then I,(6,) = K(6,).

O To estimate nE, { D(f;,9)} we ignore the terms with g only and after more expansions the
estimator is the Akaike information criterion

AIC = —2(?— P) (= nlog RSS + 2p in linear model)

where 7 is the maximised log likelihood for the model fjy.
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Note: Derivation of AIC

~

OO0 Taylor series expansion shows that log f(y; 0) approximately equals

~ dlog f(y;0,) ~ 921og f(y;0y) ~
log f(y;04) + (0 — Hg)TWg +5(0 — Hg)TWTg(Q —0y),

N[

and as 6, minimizes D(fp, g),

/78105; géy; %) () dy = .

Hence taking expectation over Y1+, LY we get

nD(f7.9) = n/log {% } 9(y) dy = nD(fo,, 9) + 3t {(5— ,)(6 — 9g)TIg(99)} :
Y3
where we have used the fact that the trace of a scalar is itself.

[ Expectation over the distribution of § gives its variance matrix, I,(0,) 71K (0,)1,(0,)7", and hence

nky {D(f§’ 9)} = nD(fo,,9) + %tr {Ig(eg)_lK(eg)} ) (3)

where the second term penalizes the dimension p of 6. The first term here is O(n) but the second
is O(p). When fy, = g, I;(6,) = K () so tr {I,(6,) 'K (6,)} = p.

O To build an estimator, note that [log g(y) g(y) dy is constant and can be ignored. Now
¢0) = £(6,) + {£8) - £9,)}. s0

By {00} = ~B,{t0,)+iW(0,)}

= nD(fo,.g) — btr {I(8,) " K(6,)} —n / log g(y) g(y) dy,

where we have used the fact that under the wrong model, the likelihood ratio statistic 1 (6,) has
mean approximately tr {1(6,) 'K (6,)}. Hence —((f) tends to underestimate

-~

nD(fs,,9) —n [logg(y) g(y) dy. On reflection this is obvious, because () > £(6,) by definition
of 0. As p increases, so will the extent of overestimation.
O An estimator is —6(5) + ¢, where ¢ estimates tr {(6,)""K(6,)}. Two possible choices of c are p

and tr(I 1K), and these lead to

~

AIC = 2{—£(f) +p}, NIC = 2{—L(0) + tr(J ' K)}; (4)

~

another possibility is BIC = —2/4(0) + plog n.
[0 The model is chosen to minimize AIC, say, with the factor 2 putting differences of AIC on the

same scale as likelihood ratio statistics. Such criteria are used far beyond random samples, and
even in cases where the theory above doesn't work.

0 In particular, the maximised log-likelihood for a normal-theory linear model with residual sum of
squares RSS can be shown to be

—g log(2mo) — g = —g log RSS + constants,

which leads to the formula given on the slide.
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Other model selection criteria

O ‘Corrected” AIC for (normal-theory) regression problems:

1+p/n

AIC, = nlog 5> —_—
c=nlogo +n1—(p+2)/n

[0 Also can use Bayes’ information criterion
BIC = —22\—|—plog n.

[0 Mallows suggested
SS
Cp= s—Qp +2p —n,

where S5, is RSS for fitted model and s? estimates 0.
O When the true model is a candidate and n — oo,

— AIC is inconsistent — it will not choose the true model with probability one, but tends to
pick a more complex model;

— AIC, is also inconsistent but gives better results in finite samples;
— BIC is consistent — it chooses the true model with probability — 1.

These results suppose that the models are fixed, but in practice we also have p — co when
n — 00, because we fit ever more complex models when we have more data.
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Simulation experiment

Number of times models were selected using various model selection criteria in 50 repetitions using
simulated normal data for each of 20 design matrices. The true model has p = 3.

n Number of covariates
1 2 3 4 5 6 7

10 G, 131 504 91 63 83 128
BIC 72 373 97 83 109 266
AIC 52 329 97 91 125 306

AIC, 15 398 565 18 4

20 G 4 673 121 88 61 53
BIC 6 781 104 52 30 27
AIC 2 77 144 104 76 97
AIC, 8 859 94 30 8 1
40 G, 712 107 73 66 42
BIC 904 56 20 15 5
AIC 673 114 90 69 54
AIC, 786 105 52 41 16
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Stepwise methods

g

g

g

In principle we might wish to fit all 2P possible choices of covariates, but in practice this is
possible only for ‘modest’ p, using leaps or similar methods (or approximations).

When p is too large for exhaustive searches, we instead consider subsets of the models, using the
methods below (or variants).

Forward selection: starting from model with constant only,

1. add each remaining term separately to the current model;

2. if none of these terms is ‘significant’, stop; otherwise

3. update the current model to include the most significant new term; go to 1
Backward elimination: starting from model with all terms,

1. if all terms are 'significant’, stop; otherwise

2. update current model by dropping the ‘least significant’ term; go to 1
Stepwise: starting from an arbitrary model,

1. consider three options—add a term, delete a term, swap a term in the model for one not in
the model,

2. if model unchanged, stop; otherwise go to 1

‘Significant” might be assessed using F' tests, or AIC comparison, or ...
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Stepwise methods: Comments

[0 Systematic search minimising AIC or similar over all possible models is preferable, but is often
infeasible.

O Original formulation of stepwise used F tests (or even arbitrary numbers!) to assess significance,
but this finds spurious models.

OO Nowadays compare AIC for different models at each step—uses AIC (or AIC,) as objective
function.

[0 Important not to fixate on a specific model, or assume that there is a single ‘best’ model, but to
consider any models whose AIC is within (say) 2 of the minimum.
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Example: Nuclear power stations

\4

nuclear

cost date tl1 t2

1 460.05 68.58 14 46 687 O 1 0 O 14 0
2 452.99 67.33 10 73 1065 0 O 1 O 1 0
3 443.22 67.33 10 85 1065 1 O 1 O 1 0
4 652.32 68.00 11 67 1065 0 1 1 O 12 0
5 642.23 68.00 11 78 1065 1 1 1 O 12 0
6 345.39 67.92 13 51 514 0 1 1 O 3 0
7 272.37 68.17 12 50 822 0 O O O 5 0
8 317.21 68.42 14 59 457 0 O O O 1 0
9 457.12 68.42 1555 822 1 0O O O 5 0
10 690.19 68.33 12 71 792 0 1 1 1 2 0

32 270.71 67.83 7 80

cap pr ne ct bw cum.n pt

886 1 0 0 1 11 1

Regression Methods
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Example: Nuclear power stations

Full model Backward Forward

Est (SE) t Est (SE) t Est (SE) t
Constant —14.24 (4.229) —3.37 —13.26 (3.140) —4.22 —7.627 (2.875) —2.66
date 0.209 (0.065) 3.21 0.212 (0.043) 491 0.136 (0.040) 3.38
log(T1) 0.092 (0.244) 0.38
log(T2) 0.290 (0.273) 1.05
log(cap) 0.694 (0.136) 5.10 0.723 (0.119) 6.09 0.671 (0.141) 4.75
PR —0.092 (0.077) —1.20
NE 0.258 (0.077) 3.35 0.249 (0.074) 3.36
CT 0.120 (0.066) 1.82 0.140 (0.060) 2.32
BW 0.033 (0.101) 0.33
log(N) —0.080 (0.046) —1.74 —0.088 (0.042) —2.11
PT —0.224 (0.123) —1.83 —0.226 (0.114) —1.99 —0.490 (0.103) —4.77
s (df) 0.164 (21) 0.159 (25) 0.195 (28)

Regression Methods
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Post-Selection Inference

Selection effects

O Contrast

— exploratory analysis, where we study data with no strong prior hypotheses, aiming to find
something ‘interesting’ for future study, and

— confirmatory analysis, where we specify an analysis protocol (hypotheses/tests/...) in
advance and stick to it.

[0 Most statistical procedures assume we are doing the second, but there can be a strong temptation
to cheat and treat an exploratory analysis as confirmatory.

O In ‘the garden of forking paths’ we make a series of choices (which response? transformation?
which explanatory variables? ...) but do not then allow for them.

[0 This leads to non-reproducible results, ‘false discoveries’, bad science ...

0 If we compute a confidence interval Z for 6 following a sequence of choices summarised in a
selection event S that is based on the data, and compute

P(@ €Z) when we should compute P(0eZ]|S),

we are effectively pretending that S did not exist.

Regression Methods

Simple example

Example 15 Suppose T ~ N (0,1) and we perform a two-sided test of Hy : = 0 at level « = 5%
and then construct a 95% confidence interval around the observed t.s if we reject Hy. Compare the
resulting confidence intervals when we do and do not allow for selection.

|

4.5

4.0
1

%

25

\

95% confidence intervals for 6 without (black) and with (red) allowance for selection on event
S = {T > 20.975}.

slide 71
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Note to Example 15

0O Recall the basis of confidence intervals for 6 based on an estimator T satisfying '~ N'(6,1). We
use the fact that T'— 6 ~ N/ (0,1) to argue that

P(T < tops) = P(T — 0 < tops — 0) = B(tops — 6)

and then set this equal to «,1 — « to obtain the (1 — 2«a) confidence interval
(tobs — Z1—as tobs — Za), Which reduces to the 95% confidence interval to,s + 1.96 when oo = 0.025.

O If we condition on the selection event that |T'| > z;_g and, if this event occurs, compute the 95%
confidence interval for 6, we are effectively using the conditional distribution

P(TStObS’T>21,5) = P(T—HStObS—HIT—0>z1,5—9)
(I)(tobs - ‘9) - q)(zlfﬁ - 0)
1— @(21_5 — 9)

and the (1 — 2«) interval for 6 has as endpoints the solutions of the equations

D (tops —0) — P(21-p5 — 0)
1-— @(21,5 — (9)

=a,1l —a.

O If we set 5 =0.025 and o = 0.025, then we get the limits shown in the graph, which shows that
even having t.,s = 3 still leads to a 95% Cl that contains 0 when we allow for selection. Hence
making allowance for selection can radically change inferences, especially when Hy is only just
rejected.
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Implications

[0 Need to be aware of possibility of selection effects and to read the literature critically.
[0 Must be clear if a study is exploratory or confirmatory:
— if confirmatory, need to clarify protocol for inference beforehand;

— if exploratory, need to avoid (any?) conclusions that might be due to ‘forking paths’.

[0 Active area of research, likely to change in next few years.
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Selective reporting of results
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Robustness and Estimating Functions slide 76

M-estimation

[0 The least squares estimates are linear in y and therefore very sensitive to outliers.
O When y; — y; + ¢,

n n
B= Y (X" X) Mgy o Y (XTX) My + (XTX) e = B (XTX) e,
j=1 i=1

which could be arbitrarily far from B\

O Try and fix this by replacing
n n
mﬂinZ(yj —aiB)> by mﬁinzp{(yj —aB)/o},
j=1 j=1

for function p(-) that will give a more robust M(aximum likelihood-like)-estimator, or
equivalently solving the p x 1 system of estimating equations

LS, 1 .
—> il {y —2jB) o} = X"p' =0
=1

say, where p/ ., has jth element dp(u)/du for u = (y; — 2% 3)/o.
nx1 J J
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Choice of p

O Choose p(u) to have desirable properties, e.g., to downweight outliers:

p(u) = u%/2 (normal errors),
p(u) = |u| (Laplace errors),
p(u) = vlog(l+u®/v)/2 (t, errors),
2/2 <
plu) = v/, [u C_’ (Huber function).
c(2lu| —¢)/2, otherwise,

0 The function p'(u) is also called the influence function of the estimator, as its value determines
what influence an observation at u has on the estimator:

— Huber p/(u) is bounded,
— t, function is bounded and redescending, as lim, 4 p/(u) = 0;
— Tukey's biweight
/ _ 1 2 21’
p(u) =u{l = (u/c)*}" I(ju| <c),
which gives p/(u) = 0 when |u| > ¢, is also redescending, giving no weight to observations
outside =c.
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p and o

(cyan) estimators.

Functions p and p’ for least squares (black), ¢5 (red), Laplace (blue), Huber (green) and biweight

q-_

. /
—~ "5 %
N2 — o
< < e =7 |

Regression Methods
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Estimation

0 We need to solve

where p’ has jth element

{w; ~a38)/o}

Ny . p
o ' {(y; — ] B)/o} o T

(yj — x5 B) = wyi(B,0)(y; — x; B),

say, so we write the estimating equation as
X"W(y - X8) =0,

with W = diag{w1(B,0),...,w,(8,0)}.
We use iterative weighted least squares: choose some initial 3 and o, then iterate to
convergence the steps

— compute W using the current A,

— compute the weighted least squares estimate,

B=(X"WX)1XTWy.

[J Estimate o using median absolute deviation of residuals y; — xJTB at each iteration, or similar

robust scale estimate.

Regression Methods
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M-estimator variance

[0 Estimator B is solution to p x 1 system of equations
9(y: 8) = X"p' =0.
[0 Can show that if the estimating function g is unbiased, i.e.
E{g(Y;p);8} =0, forany g,

then under mild regularity conditions
~ . 0 Y; -1 5 Y; B
BN, <5,E{_%} Var{g(y;g)}E{_%} ) |

This is another sandwich variance matrix, with

E{—%} =X"WX, var{g(V;8)} = X"WyX,

so if W1 = A(o)I,,, Wy = 0?B(0)I,, then

var(B) = o?(X"X)~! x B(o)/A(0)?.
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Note: Sandwich matrix |

[0 The p x 1 estimating function is
n T
yj — ;B
9(y; B) = ijp’ (%) :

J=1

and unbiasedness implies that if the individual densities are o f{(y; — z;B)/o}, then
n T T
yi—xiB\ . (vi— %P
0 =E{g(y; 8)} :lej/Pl <7j — )0 'f <7j — ) dy; = X" a1,
J:

say, where a; is the jth integral above, and setting u = (y; — 2 3)/0 shows that all the a; equal

/p' (u) f(u)du = 0; ()
this is true by symmetry if the error distribution and p’ are symmetric around the origin. Now

dg(y; B) __l - T yj_x;B
oB7T o Tits P o ’

J=1

whose expectation is (using the same transformation)
69(956) 1O T " YJ_SCJTB
E{_aﬁ_ RIS Ul G

1 — 1
- —gi;wﬁ/QWMﬂMduz—;X%xuw,
]:
say.

[0 The components of these sums are independent, so

i - o18

S "  (Yi—ai8
. — ) — T
var {g(Y; B)} = var Zx]p ( . ) ; Z:cjx]var {p ( - )},
j=1 7=1
where the substitution u = (y; — 273)/0 and (5) show that the variance term can be written as

var {pl (LW)} - /p'(u)2f(u) du = B(o).

g
O The sandwich variance formula is therefore

{-%XTXA(U)}_IXTXB(J) {—%XTXA(U)}_l = (X"X)7! x j%(;)'

The variance of the LSE is var(Y;)(XTX) ™!, so the asymptotic relative efficiency of the
M-estimator based on p and the LSE is
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Note: Sandwich matrix 1l

[0 As a check on this, note that for the normal distribution p/(u) = u, f(u) = (27)"te™"*/2, so
A(o) = B(o) = 1, which gives ARE of 1. If we take p/(u) = sign(u) with the normal density, we
have B(o) = 1, A(o) = —2/(2m)'/?, so the sandwich variance formula gives o?(X"X)~'7/2. So
using the p-function corresponding to the Laplace distribution when the data are in fact normally
distributed leads to an estimator which is /2 &~ 1.57 times more variable than would be the case
if the appropriate p-function were used.

O If we take the p-function p’(u) = u corresponding to the normal density, and the errors are in fact
Laplace, g(u) = (1/2)e~1% we have

A(o) = /(—1)f(u)du =1, B(o)= /qu(u) du =2

and the asymptotic relative efficiency is 1/2.
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Efficiency

[0 Efficiency of M-estimators of (3 relative to LSEs of 3 is

var(¥,)  Ao)?.
oz B(o)’

for example, the Huber estimator is 95% efficient if ¢ = 1.345.
[0 In practice need to balance robustness and efficiency, increasing the latter by increasing c.
O High numbers of outliers can wreck M-estimators.

[J Highly robust least trimmed squares estimators obtained by minimising

1

q
Jj=

where ¢ = [n/2] + [(p +1)/2].
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Example: Survival data

Left: log survival proportions for rats given doses of radiation, with lines fitted by least squares with
(solid) and without (dots) the outlier, and a Huber fit for the entire data (dashes). Right: simulated
data with a batch of outliers (circles), and fits by least squares to all data (solid), least squares to
good data only (large dash), Huber (dot-dash), biweight (dashes), and least trimmed squares
(medium dash). The Huber and biweight fits are the same to plotting accuracy.

Log survival time

0.2 0.6 1.0 1.4 0 2 4 6 8 10 12 14

Dose X

Regression Methods Autumn 2022 - slide 83

Simulation (right-hand panel on slide 83)

Table 1: Bias (standard deviation) of estimators of slope in sample of 25 good data and k outliers,
estimated from 200 replications.

k Least squares M-estimation Least trimmed
No outliers  With outliers Huber Biweight squares

1 0.00 (0.07) 0.17 (0.06) 0.07 (0.07) 0.01 (0.07) —0.01 (0.13)

2 0.00 (0.07) 0.26 (0.06) 0.13 (0.07) 0.02 (0.09) 0.01 (0.14)

5 0.00 (0.07) 0.41 (0.05) 0.38 (0.06) 0.19 (0.19) 0.01 (0.14)

10 0.00 (0.06) 0.48 (0.04) 0.48 (0.04) 0.46 (0.12) 0.05 (0.20)

Good strategy is initial fit using least trimmed squares, then robust fit using this as starting point.
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Quantile regression
[J The Laplace distribution has
p(u) =ul(u >0) —ul(u < 0),

and for continuous Y, the solution to E{p/(Y — 6)} = 0 is the median of Y. Hence
n
argmin Z p(y; — x; B)
j=1

estimates the median of y as a linear function of X§.

O Quantile regression takes 7 € (0,1) and uses the check function
pr(u) =7ul(u>0) — (1 = 7)ul(u < 0);

then
_ n
B, = argminy pr(y; — 7)
j=1
estimates the 7 quantile of y as a linear function of X§.
[J  For numerical purposes it may be better to smooth the bottom p.
[0 Note that p/(u) = 0, so it's better to bootstrap to find var(8;).
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Expectile regression

O Quantile regression can be used to estimate value-at-risk in finance settings, but it has the
drawback of just counting how many residuals are above/below the quantile.

[0 Expectile regression extends the LSE in the same way, taking

pr(y—0) =n:(y—0) —n:(y), nr(u) = [I(u<0)— 7,

so 7 = 1/2 gives the LSE, while taking 7 > 1/2 leads to a more general form of LSE, with good
properties for risk estimation in finance applications (coherent elicitable risk measure).
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Regularised Regression slide 87

0

Tall and wide regressions

So far we have supposed that we have a tall regression:

— the number of units n exceeds the number of variables p,

— the design matrix X has rank p.

In many ‘modern’ settings we instead have a wide regression:

— n and p are comparable, p > n, maybe even p > n;

— in genomics, for example (typically) n = O(10%,10?), p = O(10°, 10%);
— hence rank(X) = min(n,p) = n.

Even tall X may be ‘almost singular’, making 5 ‘almost inestimable’.
Solutions:

— subset selection (drop certain columns of X);

— regularisation (often with prediction in mind);

— seek different good explanations of response variation, not single model.
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Semi-descriptive analysis

O With p > n, perhaps p > n, X is rank-deficient and (perhaps) many g give X = y.
O To find important variables we include intrinsic variables (gender, ...) in all models, and then
— choose some k (preferably < 15) such that k£ < n and suppose that p < k (let a = 3 for easy
visualisation);

— assign each variable to a cell of a hyper-cube with coordinates {1,..., k}%;

— fit a linear model containing each set of k variables corresponding to the ak®~! rows,
columns, ... of the cube, so each variable appears in a distinct models;

— for each such model, retain the two variables that are most significant.

[0 Iterate the above procedure, retaining only the significant variables at each stage, aiming for a
final set of 10-20 variables, for which a careful analysis is performed, perhaps leading to several
different good explanations of the response variation.

[0 Some cells of the hyper-cube may be empty, and important variables might be assigned to several
cells.

O The above design is a form of balanced incomplete block design (BIBD) (with £ treatments
and ak®! blocks).

[0 See Cox and Battey (2017, PNAS)
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Singular value decomposition

O Write
anp = UananpV;)Txp
where
- U= (u,...,uy) and V = (vy1,...,vp) are orthogonal and D is n x p diagonal with diagonal
entries (singular values) dy > --- > d,, > 0, where m = min(n, p),
— if one or more d; = 0, then X is singular, and
— the u; and v, respectively span the column and row spaces of X.
O If the columns of X are centered (i.e., sum to zero), the spectral (eigen) decomposition of the
sample covariance matrix n !XT X is
n 'VDTDVT,
and the v, are the principal components (Karhunen—Loéve directions) of X, i.e.,
le = U1d1 = Zl,XUQ = u2d2 — 22y,
say, have the largest, second largest, ... variances of the normalised linear combinations of the
columns of X, with
n 12 2 = n7H(Xo) (X)) = d2/n.
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Collinearity

0 Columns of X collinear if there exists a non-zero vector v, such that Xv =0, i.e,,
rank(X) < p.
0 Then X™X has no unique inverse, and B\ is not unique.
O  Similar problems if Xv = 0: consider distribution of the (squared) distance of ﬁ from its target S,
ie.,
Q=1B8-8I>=B-H"G-5),
and find (in normal model) that
P P
E(Q) = o? Z d2, var(Q) = 20* Z a1,
r=1 r=1
[ Collinearity often measured using condition number (d,/d;)'/?, but its statistical meaning is
unclear.
O Simplest solution: drop columns from X. But which?
Regression Methods Autumn 2022 — slide 91
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Note on collinearity

00 When p <n and m = p we have y ~ (X3,0%1,) ~ (UD~, JQIn),Awhere ~=VTB, and as v is
just an orthogonal transformation of 5 and (in this case) ¥ = VT3, we have

B=B"(B-8)=@E-1"E .
O Now having y ~ (UD~, 021,) implies that

7 ={(UD)'UD} " (UD)"y = (D*D)'D"U"y = diag(d; ,...,d,",0,...,00U"y,

b p b
o)
var(7) = o*diag(d;?, . .. L ?).
Thus if d, =~ 0, there is at least one direction in which v, i.e., v™3 for some vpx1, is extremely
poorly determined.

O Under the normal model the 7, are independent A (v, 0% /d?), so A, — » 2 0Z,/d,, where
Zy,..., Zy S N(0,1), giving

Q={-7)" ZUQZ2/d

and as E(Z2) = 1 and var(Z2) = 2 we get the desired results.
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Principal component regression

[0 Assume columns of X have been centered, then
— regress Yy on uj,..., Uy, then
— choose m’ < m to trade off model dimension m’ and good fit.

[0 Used to reduce variance, to deal with collinearity, for dimension reduction, and regularisation, but
generally hard to interpret results in terms of original columns of X.

[0 Assumes that high variation in X corresponds to high variation in y: is this true?

O Alternative: max,, corr(y, Xaj), then max,, corr(y, Xag) subject to |ja,.|| = 1, afas = 0, etc.
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Regularisation

0 Subset selection/PC regression take only a subset of (transformed) columns of X, but
discreteness (retain/delete) of process increases variance of predictions.

00 Regularisation via shrinkage aims to make this smoother, as more continuity should decrease the
overall variance.

OO0 Typically we first center both y and X so that the intercept is zero, i.e., map
y— (I -H)y, Xw— (I,—-H)X, with H=1,(1%1,)"17F,

sometimes we also rescale to give the columns of X unit variance.

[0 Then we minimise the sum of squares subject to a penalty on 3, taking
Py = argming [ly — XBI3 + Ap(8), A >0,

where among many possibilities,

- p(B) = BlI3 = >_P_, B? gives ridge regression (aka Tikhonov regularisation);
- p(B) =8Il = X_, |B:| gives the lasso (aka L; regularisation);
- p(B) = (1= )83 + al|B]]1 for 0 < a < 1 gives the elastic net;

_ NG 1/2

- p(B) = g=1Pg |Bgll2, with B4 being py x 1 sub-vectors of 3, gives the grouped lasso,
which penalises factors with parameters (3.
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Bound form

[0 Equivalently we can take the bound form of the minimisation problem, i.e.,
minimises ||y — X 8|3 subject to p(3) <t,

for some t > 0, where setting ¢t = oo just gives the least squares estimates.

[0 Below: constraint balls for ridge (left), lasso (centre) and elastic-net (right) regularisation. The
sharp corners of the last two allow for variable selection as well as shrinkage.
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Ridge regression

O  Writing the criterion in matrix form gives

By = argming (y — XB)"(y — XB) + A",
and thus
By = (XX +A,)"'XTy
V(D™D + \I,) " 'D"U"y

dj T
= Z Ui X = WY
d]'>0 dj + )\

i.e., a linear combination of the v; with coefficients uJyd;/(d7 + A) that are more shrunk towards
zero when d; is small.

[0 The fitted value is a linear combination of the principal components of X,

1

y)\_XB/\_H/\y_Zqu1+)\/d?u]y7

d;>0

with increasing shrinkage as j increases and A/d? increases (sketch).
[0 Hence the SVD of X gives the ridge solution for all A > 0.
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Bias-variance tradeoff

Lemma 16 Under the second-order assumptions y ~ (X 3,0%1,), with n > p and rank(X) = p, E)\
has bias vector and variance matrix

p p
2
vy X o v
ZT 1+d2/)\7' Zd2+)\2r
r=1 r=1

[0 As A — oo, the bias increases to S and the variance decreases to zero.

[0 The interpretation of A is unclear, but by analogy with the usual linear model we define the
degrees of freedom to be

p 2
d:
T 1yvT
tr(Hy) = tr{X (X" X + A\[,) ' X"} = E:d2+)\
which

— starts at p provided d,, > 0, corresponding to a standard least squares fit with A =0, and

— is monotone decreasing in A, and hence gives another more interpretable measure of regularity.
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Note to Lemma 16

[0 The objective function for ridge regression is
y'y =2y  XB+ BN (XX + A,)B,
and differentiation with respect to § gives first and second derivatives
—2yXTy+2(X"X +M)B, X'X + A,
The second derivative matrix is positive definite for any A > 0, and setting the first to 0 gives
By = (X"X + ML) ' XTy.
0 Setting X = UDV™" gives XTy=VD"U"y = deo vjdjuiy and

(X*X +AL,) = (VD™ DV* + AL) ' = {(V(D"D + A[)V} L = VS VT,

where Sy = diag(d? + A, ...,d% + \)! exists because all its elements are positive. Hence
~ B d;
Br=(X"X + AL) ' XTy = VSV (VDU )y = ) y er Uy X ).
d]'>0 J
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Note Il to Lemma 16
0 Under the second-order assumptions
. P g2
_ T Tr7T Tno T
E(By) = VS\WVVD'UTUDV™S = Z; P B X o,
a 2 d% d}% T
_ T7rrT TrrT\T _ .
Var(ﬁ)\) = VS)\D U COV(y){VS)\D U } =0 leag W, PN W V.

The latter is just the given formula for the variance, and the bias is

) ! d2 T - T - A T
E(B/\)—ﬁzz UT,BXU,«—ZU,«UT,@:—Z v B X v,
r=1 r=1 r=1

a2+ — A2+ N
O Finally,
p d2
_ T T T\T\ _ T T _ r
tr(Hy) = tr{(UDVH)VS\VH({UDV")'} =tr{U'UDS\D"} = ; 2
as required.
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Choice of A
O Can aim to choose A for best prediction at an individual x4, minimising
MSE(z,A) = E{(2] 8 — 2} 8)*} = {} Bias(B)}* + 2} var(By)a?,
or the generalisation to a matrix X .
O Usually choose A to minimise the (generalized) cross-validation sums of squares
n n

~ (yj — rg)?
CV(N) = (yj —r—j)% GCV(N) =) =,
(A) j:l(y Yx—j) (A) = {1 - tr(Hy)/n)

where ¥ _; is the fitted value for y; predicted from a ridge fit without case j.

Lemma 17 For a fit with y = Hy where H has jth diagonal element h;;,
n n

2
PEIEDHEEDY %

Jj=1 J=1
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Note to Lemma 17
O Suppose we leave out (z;,y;) and solve
minimiseg Z(yz — 27 B)? + \p(B),
i#]
leading to solution B_;. Let yi=7_;;= 2TB_; be the corresponding fitted value for x;.
g J j JiJ jP=7 J

[J Inserting back the pair (xj,yj) into the dataset used to compute ﬁ_j changes nothing, because
(y* — w}ﬁ_j)Q = 0 and p(3) does not depend on the data. Now For this new dataset,

v =D i+ hyjys = D Ry i (65 = ) = G+ b5 — )
i#] i

which implies that

*

Yi —yj =Y — Ui+ hyi(y; — ),
leading to
* ~ Yi—Yj
Yy — Y =Y —Y—5,5 = )
’ 1 — hjj

and thus to the given formula.

[0 Note that the argument above applies to any linear fit.
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> cement

x2 x3 x4
26 6 60
29 15 52
56 8 20
31 8 47
52 6 33
55 9 22
71 17 6
31 22 44
54 18 22
47 4 26
11 1 40 23 34
12 11 66 9 12
13 10 68 8 12

= >
= o= =N

8(000\10)0‘!.&00[\)»—‘
N =
NP, W N

78.
4.
104.
87.
95.
109.
102.
72.
93.
115.
83.
113.
109.

Example: Cement data

B W0 O 0l NN OOWwWwOY
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Example: Cement data

Full model Reduced model
Parameter Estimate Standard error Estimate Standard error
5o 62.41 70.07 71.64 14.14
51 1.55 0.74 1.45 0.12
Bo 0.51 0.72 0.42 0.19
53 0.10 0.75
B4 -0.14 0.71 -0.24 0.17

[0 Looks like 3 df is optimal for prediction.

[0 The singular values for the centred X matrix are 78.8, 28.5, 12.2, 1.7, and those for the centred
and scaled X matrix are 5.18, 4.35, 1.50, 0.14, so it matters which is used.

O The singular values for the (centred) reduced matrix are 78.8, 19.8 and 9.15.

[0 The shrinkage due to increasing A occurs more slowly for the reduced model

[0 The next slide shows results for ridge fits for these models.

Regression Methods
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Example: Cement data/Ridge analysis

CV criterion

-05 0.0

Top left: CV (black) and GCV (red) as functions of degrees of freedom df. Top right: dependence of
dfy on \. Bottom left: ) as a function of A, with all four covariates. Bottom right: 8y as a function
of A, with x1, x2, and x4 only.

4.0

35
L

dfy

3.0
L

T T T T
0 20 40 60 80 100
A

15

1.0

-05 0.0
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Comments

Yy | ﬁ NNn(ﬁoln —I—Xﬁ,o2[n),

[0 Be careful with software: any pre-processing of X is not always described.

[J  The literature on ridge regression is very large and very dispersed, with many variants and many
connections to ML techniques.

[0 Bayesian interpretation: B)\ is the posterior mean/mode for 3 in the model

B~ Ny(0.0%I,/N),

with X centred, an improper uniform prior on 3y and o2 and \ fixed. The latter can be
estimated/chosen using empirical Bayes or REML (later).

O  Similar Bayesian interpretation as posterior mode (not mean) for other penalties.

o2, A >0,

In ‘ordinary ridge’ the penalisation is the same for all elements of 5 and shrinkage is towards the
origin. More generally, we could minimise

ly = Boln — XBII* + A(B = B) "W (B - §),
corresponding to shrinkage towards 3’ according to dispersion matrix W, equivalent to taking prior
B~ Np(B, 0 W), a® A >0,

above.

Regression Methods
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Lasso

O Lasso (least absolute shrinkage and selection operator) (aka basis pursuit) solves
minimises ||y — XB||3 such that ||B]l; <t,

or equivalently finds

By =argming (y—XB)"(y — XB) + AllBllr, A>0.

O Ift>to=| 5|1 then A =0 and 3, = B, whereas if t ~ t;/2 then the estimates are shrunk by a
factor around 0.5 on average, with

lim By =0, lim By = (X"X)"'XTy =73

A—00 A—=0
00 Orthogonal design matrix X' X = I, gives soft thresholding function

0 1B,] < A,

sign(B,)(1B:| — A), otherwise, b

/é)\,r = g/\(gr) = {

and this happens in general: if the constraints bite, then some of the BM are zero.
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Note on soft thresholding
0O We have X" X = I, and hence B\: XTy. The Lagrangian

r=1

P
L=350"y—2y"XB+5"8)+ A (Z |8:| — 75)
is a sum of two convex functions and therefore is convex in 3. Apart from constants, we can write
p ~
2L = (82 — 28,8, +2)|6,]) — 2pXt,
r=1

which is differentiable except at 3, = 0. This is a sum of p separate functions which can be
minimised individually, and in which we replace 3, by the scalar 3.

0 In each case, either the minimum is at 8 = 0 or elsewhere. Differentiation gives
OL/0B = 8 — B + sign(B),

and
lim OL/0B8 =A— 3, lim OL/OB = —X—B.
B—04 B—0_

For a minimum at 8 = 0 we must have A — B\ >0and -\ — B\ < 0, or equivalently ]E] < A
Elsewhere OL/0f = 0 gives o .

B =B — Asign(B),
soif 3> 0, then B = B— A, whereas if 3 < 0, then § = B\+ A. This leads to the function g(+)
given on the slide.

O The top graphs on slide 103 show grey lines corresponding to ||| and (5 — B)Z; the black line is
their sum. In both cases A = 0.5. In the left panel with 3: 0.9 the minimum is at 8 = 0.4, and
on the right panel with B = (0.4 the minimum is at 5§ = 0.

The lower panels show the corresponding derivatives (black) and the value of 3 (red) at which
they equal zero (shown by the blue horizontal line). If 3 is sufficiently far from zero, then the
intersection will not be at zero, but otherwise it is.
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Soft thresholding

gamma=0.5, betahat=0.9

=
B
>
o -
T T T T T
-1.0 -05 0.0 0.5 1.0
beta
gamma=0.5, betahat=0.9
< -
o~
£
§ o
©
o
I
<
i

-1.0

T

T T T T
-05 0.0 0.5 1.0
beta

gamma=0.5, betahat=0.4

<
o
o~
o -
T T T T
-1.0 -05 0.0 0.5 1.0
beta
gamma=0.5, betahat=0.4
< -
o~
o
o
I
¥4
T T T T
-1.0 -05 0.0 0.5 1.0
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Threshold functions

(right).

O  Soft threshold of lasso (left), hard threshold of subset selection (middle), no threshold of ridge

Soft threshold Hard threshold Ridge
< - < -
<
o - N~
N
) ) )
8o 8o 8o
=) =) =)
o
N I o
| |
S 4
Y A Y A
T T T T T T T T T T T T T T T
4 2 0 2 4 4 2 0 2 4 4 2 0 2 4
beta beta beta
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Example: cement data

[0 Estimated coefficients for lasso fit against L1 norm and A:

Coefficients

Coefficients
0.5
|

0.0

0.0 0.5 1.0 1.5 2.0 -2 -1 0 1 2
L1 Norm Log Lambda
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Comments
O Least angle regression (LAR) is similar to the lasso, and the LAR algorithm can compute the
lasso solution path for all A in O(n) operations (as with ridge).

O For any regression model we can define the degrees of freedom as

n
o2 Z cov(y;, J;) = tr{cov(y,y)}/o*;
j=1

this reduces to previous definitions but can be computed in more situations.

[0 Theory: one can ask about the properties of BA in suitable settings (e.g., n,p — oo with
p/n — ¢ > 0). Then under certain conditions one can show that the selection of variables is
consistent (i.e., the probability that the variables with 53, # 0 are selected tends to 1), but that
the () are inconsistent (because soft thresholding implies that |3, ,| is systematically smaller than
18- 1).

00 Many (many!) variants and related procedures exist to overcome such problems.

[0 Computation: lasso and elastic net penalisations available in R package glmnet and extend to
generalized linear models and more general regressions (later).
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Components of Variance slide 107

Background and motivation
[0 All the models so far have involved just one level of randomness, corresponding to ‘measurement
error’ on individual responses.
[0 Complex layering of randomness can arise in applications, and then conclusions may depend on
how it is dealt with.
O Two conceptually different set-ups (which may give the same models):
— observational /experimental setup generates several layers of randomness;
— we find it useful to treat the parameters of some model as drawn from a distribution.
The first concerns logical properties of the data, whereas the second is a modelling assumption.
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Example: Blood pressure
[0 Blood pressure data: P = 25 patients each made V' = 16 visits to a clinic, and on each occasion
their systolic and diastolic blood pressures were measured twice.
[0 Consider just the diastolic pressure. We expect there to be variation
— between patients,
— between visits within patients, and
— between measurements within visits,
which we could model as
Ypom = P +bp+epy +€pom, p=1,...,Pv=1,...,.Vm=1,..., M,
where
— v is the (hypothetical) population mean diastolic blood pressure (DBP),
— by is the difference between the (hypothetical) patient and population mean DBP,
— epy is the difference between this and the (hypothetical) mean DBP on the vth visit, and
—  €pum is the difference between the mean DBP for the pth patient at the vth visit and the mth
measurement on that visit.
[0 The existence of some of these hypothetical means may be problematic.
Regression Methods Autumn 2022 - slide 109
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Example: Blood pressure

patno patient visno dbpl dbp2 sbpl sbp2
1307 1 7 95 85 150 130

1307 1 8 85 85 140 140
1307 1 9 90 90 150 150
1307 1 10 80 80 135 135
1307 1 11 80 80 130 125
1307 1 12 85 85 150 155
1307 1 19 80 80 130 130
1307 1 20 80 80 140 140
1307 1 21 90 85 145 140
1307 1 22 75 75 130 130
1418 2 7 104 106 160 148
1418 2 8 98 104 158 162
9202 25 21 91 90 142 139
9202 25 22 80 78 162 160
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Example: Rat growth

Weights (units unknown) of 30 young rats over a five-week period

Week Week

1 2 3 4 5 1 2 3 4 5
1 151 199 246 283 320 16 160 207 248 288 324
2 145 199 249 293 354 17 142 187 234 280 316
3 147 214 263 312 328 18 156 203 243 283 317
4 155 200 237 272 297 19 157 212 259 307 336
5 135 188 230 280 323 20 152 203 246 286 321
6 159 210 252 298 331 21 154 205 253 298 334
7 141 189 231 275 305 22 139 190 225 267 302
8 159 201 248 297 338 23 146 191 229 272 302
9 177 236 285 340 376 24 157 211 250 285 323
10 134 182 220 260 296 25 132 185 237 286 331
11 160 208 261 313 352 26 160 207 257 303 345
12 143 183 220 273 314 27 169 216 261 295 333
13 154 200 244 289 325 28 157 205 248 289 316
14 171 221 270 326 358 29 137 180 219 258 291
15 163 216 242 281 312 30 153 200 244 286 324
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Example: Rat growth

01234 01234 01234
) I B |
8 26 11 2 14 9
- — 350
- — 300
- — 250
- — 200
- — 150
30 13 3 6 25 27 21 19
350 — '
300 - -
250 — -
—~ 200 -
< 150 -
E, 17 28 18 1 20 5) 24 16
(3]
- ~ 350
= - ~ 300
- r 250
- — 200
-1 ~ 150
29 10 4 22 23 7 15 12
350 — -
300 — ~
250 — -
200 -
150 — -
rrrrJirrrrirrrr1rrrrrirrrrIirrrrIirrr1rIrroroT
01234 01234 01234 01234
Week
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Example: Rat growth

[0 Here a natural model is that growth is linear for each rat, i.e.,
yTw ‘ aT’BT’ 1}151 N{ar +l37‘(w - ]‘)70—2}7 r = 17"'7307w = 17"'757

where £, represents measurement variation for each rat and week.

[0 If we are not interested in the particular o, and (3., but in population mean values, we might write

iid iid
lrlv ((X,O'i), BT’ lfl\’

N(B,05), corr(ar, Br) = p,

a

and try and estimate the population means o = E(«,) and g = E(S,), allowing for
— variation between rats, and

— within rats between measurements.
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Fixed and random effects

Chimpanzee Word
1 2 3 4 5 6 7 8 9 10
178 60 177 36 225 345 40 2 287 14
78 14 80 15 10 115 10 12 129 80
99 18 20 25 15 54 25 10 476 55
297 20 195 18 24 420 40 15 372 190

AN =

00 The table shows times (min) for four chimpanzees to learn each of ten words.
[0 A possible model for log time is

ycw‘awﬁ’w iEgiN(u—’—ac—’—B’wvo—z)’ CZI,...,C:4,?U:1,...,W:10.

O The a. and/or the §,, would be considered as constant fixed effects if we were interested in the
relative linguistic abilities of these particular chimps and/or if we planned further tests with these
particular words.

O Either (or both) of the a. and 3, might be considered to be random effects if they were
thought to be sampled from a larger population whose variation is of interest.
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Two distinctions

O We distinguish fixed and random effects (above).
O We distinguish nested and crossed effects:

— in the blood pressure data, replicate measurements at each visit are nested within visit,
because there is no logical connection between y,, ,,, 1 and Y, ., 1 (we could permute the final
index m within each patient/visit combination without changing the data structure). Likewise
if we ignore any possible time effects between visits, we could consider that visits are nested
within patients;

— in the chimp data, the effects are crossed, because permuting chimps or words would entail
permuting entire rows or columns of the data table: there is a logical connection between y.,
and Ye,w, and between Yoy, and Yeus,;

[0 In R syntax, with patient and visit number declared as factors, for nested effects we write

y ~ patient/visno

read as ‘separate effects for visit number within the levels of patient’ and for crossed effects with
chimp and word declared as factors we write

y 7 chimp + word
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Example
Example 18 (One-way layout) Consider R units in each of T' blocks with the random effects model
’ytﬂf’bt 1’151 N(M—Fbt,O’z), Tzl,...,R,
by X N(0,02), t=1,...,T.
Find the joint distributions of the responses and of the sums of squares
T R T R T
SSu =33 (-7 SH=>> @ —-7.)=RY G —7.)°
t=1r=1 t=1r=1 t=1

within and between blocks. How do you test for o2 = 07

O Similar arguments apply in other balanced settings ...
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Note to Example 18

O Recall that if X,...,X, N (u,0?), then > (X — X)?~o?x2_,, and if

ind m 2
Vi,ooiyVi '~ TXVI, . ,TXVm, then ijl Vi~ TX0 4ty

[J A convenient way to write the model is

D iid iid
Yt = B+ bt + Et,ry by ~ N(0,0’E) A Etr ™ N(0702)7

which immediately gives the block diagonal covariance structure
coV(Ypry Yy 1) = 02Tt =t ,r =7") + o2 I(t = t).

Moreover b
Yor =Y. = €tr — €ty Yp. — Y.
One can easily check that
cov(Yir — Ty, Up. — U..) = cov (g4 — &4, by + & — b. —E..) = 0,
so Y — s L Y, — 7. because all these variables are normal. Hence S5, L SS;.
O Now y; — T,. does not depend on the by, so as usual
T R D T R
DAL 3 3 LI
t=1 r=1 t=1 r=1
iid

The ;. are independent and G = ju +b; +&. ~ N(u, 07 +0°/R), so

T T
SSy=RY_ @ ~7.)° 2 RY (b +5. — b —2.)" ~ R(0} + 0" /R)xs,
= t=1
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Note Il to Example 18

[0 Tests and confidence intervals for the ratio 05/02 can be based on the F'r_y 1(r—1) distribution of

o? " SSy/(T —1) (6)
0?2+ Ro? = SS,/{T(R—-1)}
[ One aspect of interest may be statements of uncertainty for the population mean 4, which is
estimated by the overall sample average, 4. = 1+ b. +€... This has variance
02/T + 0*/(TR) = (0 + Ro})/(TR), which is estimated unbiasedly by SS,/{(T — 1)TR},
independent of /.., and confidence intervals are based on the tp_1 distribution of
(@.. — 1)/[SSp/{(T — 1)TR}]'/>.
[0 Homogeneous variance across all blocks and normality can be checked using probability plots.
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Nested model ANOVA
O Similar calculations for the nested model
Ypom = P +bp+epy +€pom, p=1,...,Pv=1,...,Vim=1,..., M,

give the ANOVA table below, in which each sum of squares is summed over p, v and m. Mean
squares are formed by dividing sums of squares by their degrees of freedom.

O Below 67 and 62 are non-centrality parameters measuring differences among the b, and e, when
they are treated as fixed:

(P — 1)} = Z(bp —b)? PV -1)8 = MZ(SP,U —Ep,-)Q,

p

and when b, < N(0,02) 1L epy % N(0,02), we have E(6?) = o2, E(6?) = o2.

Term df Sum of squares E(Mean square) when terms below random
g g, e g, €, b
Between patients P—-1 Wy —¥.)%  VM& +Ms: VM +Mo? VMop+ Mp?
+0? +0? +0?
Between visits PV —-1) > Gpo — Up.)? M2 + o2 Mo? + o2 Mo? + o2
within patients
Between measures  PV(M —1) > (Ypom — Upo.)? o? o? o?
within visits
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Analysis of variance

[0 Nested analysis of the blood pressure data:

summary( aov(dbp ~ patient/visno, data=blood.dia) )
Df Sum Sq Mean Sq F value Pr(>F)

patient 24 23059 960.8 124.29 <2e-16 **x
patient:visno 375 39082 104.2  13.48 <2e-16 ***
Residuals 400 3092 7.7

[0 Likewise, crossed analysis of the chimpanzee data:

summary ( aov(log(y) “chimp+word,data=chimps) )
Df Sum Sq Mean Sq F value Pr(>F)
chimp 3 5.33 1.778 2.719 0.0642 .
word 9 45.69 5.077 7.765 1.5e-05 *x*x*
Residuals 27 17.65 0.654

There are C' — 1 degrees of freedom for chimps, W — 1 for words, and (C' — 1)(W — 1) for the
residual.

[0 In both cases, we can use the ANOVA table to estimate the variance components and then
perform synthesis of variance: e.g., how large would W need to be to distinguish the learning
abilities of two chimps with probability 0.957
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Example: Blood pressure

O Solving the equations
0?2 =77, Mo?+0%=1042, VMo}+ Mo?+ o* =960.8,
gives (in units of millimeters of mercury, mmHg)
=28 5.=69, &,=>52,

so the largest variation is between different visits within patients, while that between
measurements on a single visit is smallest.
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Summary

[0 Components of variance ANOVA is easily performed for relatively simple linear, balanced data.

[0 Standard ANOVA tables have different interpretations, depending on which components of
variance are taken to be random or fixed.

[J Extensions are needed to deal with more complex settings, with unbalanced data, or with
non-linear or non-normal errors.

[0 This leads to us to mixed models, i.e., models with both random and fixed parts.
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Mixed Models slide 121

Mixed models

O The term mixed models encompasses many different situations/models:
— components of variance,
— classical experimental design (split-plot designs, ... ),
— repeated measures,
— longitudinal models,
— multi-level models,
— hierarchical models.

[0 Can subsume linear versions into the linear mixed model, which can be extended to nonlinear
models, GLMs, ...
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Linear mixed model

[0 The linear mixed model may be written as
Ynx1 :anpﬁpxl +Zn><qbq><1+5n><1’ bNNq(OaQb)a 5,\;./\/'”(0’ Q),

where
— [ represents the fixed effects,
— b represents the random effects, and
— usually Q = ¢?1,.
0 Equivalently,
y|b ~ No(XB+2Zb,Q), b ~ Ng(0,8),

which gives marginal response distribution
Y~ No(XB,Z0WZT +Q), ZWZT + Q= A71(y),

say, with 1) denoting the vector of distinct variance ratios appearing in A~! (e.g., 02/02 in
Example 18).

O Although Q is often diagonal, Z£2,Z" is not, so inverting Z§, Z™ + € involves O(n?) flops in
general, and we should try and avoid working with A.
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Naive maximum likelihood estimation

[0 The log likelihood based on f(y; 3,02%,1) is

1 n
0B, 0% ) = —5o5(y— XB)"Aly — XB) - §log02 + 1log |4,

where A = A(v)). For known v (and hence known A) the MLEs of 3 and o2 are
By = (XTAX)TIXTAy, 7 =07y = XBy) Ay - XBy),
so the profile log likelihood for v is

lo(y) = —%nlog Ei + %log |A()].

O We could maximize ¢,(¢) to estimate ¢, and then obtain maximum likelihood estimates 3@ and
33. This involves maximization of £,(¢), either by Newton—Raphson (quadratic convergence,
may be unstable) or using the EM algorithm (linear convergence but more stable) (later).

0 We also want inference on b ...
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Improved approach

[0 Let b denote the MLE of b for fixed 8 (and ). Then
FiB.ot ) = [ 58,020 f 0%, 0) b

- Qﬁ)pﬂ
= 7b; 7 27 X (
fly 8,0 ) f(b] o)
127017 4 Q1|12
so (apart from additive constants) —2log f(y; 3,02%,1) equals

)

(y— XB—2b)"Q (y— XB — 2Zb) + b b+ 1og{|Q|]| 277" Z + 0, |}

[0 The first two (quadratic) terms here depend on 3 and b, so given ¢ and o we can find B\w and
b(B3,1) explicitly, and thus obtain £,(¢)).
0 By noting that

Fbyi B 0) = fy | b B,a?, ) f(bso?,4) ) f(y; B,o?, )

and taking logs, we obtain

bly~Ng {B, (ZTQ7'Z + Qb‘l)*l} , b= (zro iz Z2ra T (y - XB).
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Note on improved approach

[0 Suppressing the parameters 3, 02 and v for now, we write the log integrand in

fly) = / f(y,b) db = / Fy | B)F(b) db

in the form . 3 R 3
where the linear term of the Taylor series equals zero, because it is evaluated at the maximising
value b, and the given Taylor series is exact because the log likelihood is quadratic.

O On ignoring terms not involving b we have
~2log f(y,b) = —2log f(y | b) — 2log f(b) = (y — XB — Zb)"Q Ny — X5 — Zb) + 5", ",
Sso
Hb)=H=7"0"'Z+q;!
does not depend on b, and thus
) = 1D [en{-30-bTHE-D} @

= fly,b) x @m)?|H|?
- (gw)qﬂ
= 7b >< 7
J(:0) |ZT™Q~1Z + le|1/2
as announced; the integral equals the normalising constant for a Gaussian density with variance
matrix H1.
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Reminder: Matrix inversion formulae

[0 Assume that any inverses needed below exist.
O The (Sherman—Morrison)-Woodbury formula

(A+BCD)'=A"' —A7'B(C™' + DA™'B)"'DA™!

is easily checked by multiplying the formula above by A + BC'D.

O For the partitioned matrix A and its correspondingly partitioned inverse,

_ (A Ax o (AT A2
A_<A21 z422>7 A _(A21 A% )

we have
A = (A — AAyy) An) A = A A A%,
AP = A Ay AT, A2 = (Agy — A AT A1),

as is also easily checked.
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Inference on [

O Since
y~Nu(XB,Z0WZ" +Q),

weighted least squares gives
B={X"(ZNWZ"+ Q) ' X} ' X" (ZWZ" + Q)" Ly,
with R
B~ Ny [BAXT(Z0Z" + Q) X},
where in general we need O(n?) flops to invert the n x n matrix ZQ,Z" + Q.

-~

O For cheaper calculation of var(3), we use the inversion formulae and obtain

(var(g)pxp > _ (X;Q_llX TXiTlQ_lZ _1>1
' ' X 22+ (p+9)x(p+q)

)

which involves only O{n(p + ¢)?} flops, as € is usually diagonal.
O Note that var(b | y) = (Z7Q71Z + Q,1)~! can be obtained as a by-product.

O In practice these formulae would be evaluated at the MLEs 5% and 12 and used to compute
confidence intervals etc. for elements of S.
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Inference on random effects

[0 Conventional terminology: we estimate parameters 8 and predict random variables b.
[ To find the best predictor b(y) of b we minimise

By [{B) — 0} {bw) -},

which gives b(y) = E(b | y), with (Woodbury formula):
Eb|y) = (2'9'Z+9;") " 2" (y— XB),

var(b|y) = (Z"Q7'Z+ Qb_l)_l.

its estimated variance.
O Residuals
y—XB = Zb+y—XB—Zb
7 TA—1 A-1 -1 TA—1 )
— Zb+ In—Z(Z Oz+0 ) 770 <y—Xﬁ>,

split into two parts, with Zb attributable to random effects, and the second the usual residual
y — X B shrunk towards zero; this estimates e.

[0 Replace parameters 3, 02, 1) by estimates to get best linear unbiased predictor (BLUP) b and
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Note on conditional mean and variance

O First we write ~ ~
b(y) —b="0b(y) —E(|y) +E@[y) -,
expand {b(y) — b}"{b(y) — b} and take expectation over b conditional on y to get

B [{b(y) — 0" (b(y) — b} | ] = {b) ~E@ 1)} {0) —E® | 9)} +var(v| ),

which is minimised when B(y) = E(b| y). Any other choice will give a larger expectation when we
take E,, so this is optimal.

O To obtain E(b | y), we note that

(y) N { (XB) (Q+ZQbZT ZQb>}
b nta 0 )’ 0 Z" O ) [
so using standard formulae for conditional normal distributions, we have
E(ly) = Q2" (Q+ 202" (y - XB),
var(b | y) = Q— WZ" (Q+ Z027) 7 ZQ,.
[0 The Woodbury formula applied to the conditional variance gives

var(b | y) = (Z27Q7'Z + Qbfl)il

as required.
O For the conditional mean we apply the Woodbury formula to (2 + ZQbZT)_1 and get
Eb|y) = WZ" {Q—l —alz (ot zra ) ZTQ—l} (y — XB)
= o {l,-2'07z (' + 2'072) '} 270 (y - Xp)
= o {7t (@t + 2707 2)  Z2re T y - XB),

as required, where we wrote the term in braces in the second line as
I-B(A+B)'=AA+B), withA=Q, ' and B= 270717
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Example
Example 19 (One-way layout) Work out the details for the unbalanced one-way layout model
ylj:M+bZ+€Z]a j:]-a"'ania izla"'aQa

in which B B
bz‘ 1{1\(/1 N(O,Ug) aiR Eij lfl\(} N(O,JQ).
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Note to Example 19

O We have
l,, O 0
0 1, -~ O
O=0l,, YW=oil, X=1, Z=| . |,
0 0 1,

where n =njg + -+ ng.

O We first need to compute B\: (XTYX)"1XTYy, where 02T~ = Z0,Z" + Q. Letting I; = I,,,,
1; =1,, and J; = 1;17 for shorthand, we see that Z,Z" 4 Q is block diagonal with blocks

Uz[i+0—gJi:0—2(Ii+in)7 izlv"'va w:02/027
and hence that Y is block diagonal with blocks

Y

I — J:
? 1+nzw 1)

SO

- - Q,Z) q q n;
X =3 (1= ) 1= 3 (- i) -

Similarly we find that
v ) ~ong o Sl g /(L ni)
X" Ty = 1L (L ;= v == : .
a Z ( Tong” )%~ ; Trng M i1 ni/ (14 nith)

O Note that fiy, = ¥.. if all the n; are equal. If ¢ =0, then fiy, = >, ;vij/ >, ni equals the grand
mean, whereas if 1) — 00, iy, — ¢~ >, ;.. In the first case, there is no variation among the b;,
and so the data should be treated as a simple random sample of size ). n;, whereas in the
second case, the variation of the y;; around b; tends to zero, so the replicates cannot be used and
the best estimate of y is the average of the group means.

[ It is easy to check using calculations similar to the above that
(2T Z + N7t = oPdiag{y /(1 + )}, (2707 Ny — XB)i = ni(T. — ig)/a’,
and hence that the ith element of b and its estimated variance can be written as

= Yi. _ﬁqg 1
T 11 6% (el 1/l + mifol

)

SO ;. — ﬁ@ is shrunk towards zero by an amount that depends on the estimated variance ratio.
The shrinkage will be considerable if 52/n; > 57, corresponding to large variation in the group
averages owing to individual variances compared to the variation between groups. The data are
then almost a simple random sample of size n, so strong shrinkage is not surprising.

0 Note also that var(b; | y) — 0 when o2 — 0, 02 = 0, or n; — 0o. In the first case, there is no
variation between groups, and hence b; = 0 with probability one. In the second two cases, the
value of b; is known exactly, because variation around it is negligible. Thus consistent inference
for b; is impossible when o and o2 take positive values: even if ¢ — co, the amount of
information on any given b; does not accumulate unless n; — oo, and this is rarely the case.
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REML
O Problems with the usual MLEs:

— the MLEs 52 and 12 are downwardly biased (no adjustment for estimation of f3);
— variance ratios ¢, > 0, so maybe 12," = 0, making usual asymptotic properties fail;
— n can be very large in applications, raising computational issues.
O Restricted maximum likelihood (REML) estimation is often used to reduce the bias:
— a form of marginal likelihood, i.e., based on the marginal density of a statistic s = s(y);

— but can also be derived as a conditional likelihood, based on the conditional density of y
given a statistic s(y).

0 REML maximised using Newton—Raphson or EM algorithms.
Lemma 20 A restricted log likelihood for o and 1 is
E(B\w, JQ,w) + g logo? — %log |IXTAX]|

n—p
2

1 N N
%log |A| — %log IXTAX| - ﬁ(y — XBy) Ay — XBy) — log 2.
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Note to Lemma 20

O Suppose f(y;a,3) depends on two parameters, that interest is focused on «, and that for fixed «
there is a sufficient statistic s, for 5. Then

f(y;Oé,,B) = f(y ‘ 3a§a)f(3a§a7/3)a

and since the first density on the right is a proper conditional density not depending on 3, we can
base inference for a: on

log f(y | sa; ) = log f(y; o, B) — log f(sa; @, B).

0 In the normal mixed model we take v = (02,4). If all the variance parameters are fixed, then
Sa = fo = (XTAX) 1 XTAy is sufficient for j3; its distribution is N, {3, o (XTAX)~1}.

[0 Apart from constants, the logarithm of the required conditional density is therefore

log f(y; 02,4, B) —log f(By; 02,4, 8) = —glog02+%10g|A|—%(y—Xﬁ)TA(y—Xﬂ)

—|—§log o? — Llog | XTAX|
1~ ~
+o2 (B = BT XTAX(By — B),
which reduces to the given form on writing
y—XB=(y—XBy) +X(By ~ )

in the first quadratic term and expanding out, noting that the cross-product vanishes because
By — B)"X Ay — XBy) = By —B)"X"A{y — X(XTAX) X" Ay}
= (By— B {X Ay — XTAX(X"AX) "' XAy} = 0.

Regression Methods Autumn 2022 — note 1 of slide 130

I



Example: Rat growth
Example 21 (Rat growth data)
OO Write

yjt = Bo +bjo + (Br + bj1)xje +ej¢, t=1,...57=1,

where the random variables (bjo,b;1) have a joint normal distribution with mean vector zero and

, . iid .
unknown variance matrix and the £;; ~ N(0,02). In matrix terms,

€j1

Yj1 L xj 1@
= <BO>+ L (ZJ°>+ S d=1 80
b ) i1

Yj5 1 x5 Zj5 €5

the overall model with n = 150 is obtained by stacking these expressions.

O We set (xj1,...,x55) = (0,...,4), so that [y is the mean weight in week 1.

0 p = 2 parameters; ¢ = 60 since two random variables per rat.

..., 30,

Regression Methods
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Example: Rat growth

> rat.growth
rat week y

1 1 0 151
2 1 1 199
3 1 2 246
4 1 3 283
5 1 4 320
6 2 0 145

> fit.reml <- 1lme(fixed= y~week, random="week|rat, data=rat.growth)
> summary(fit.reml)
Linear mixed-effects model fit by REML
Data: rat.growth
AIC BIC logLik
1096.58 1114.563 -542.2899

Random effects:
Formula: “week | rat
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 10.932986 (Intr)
week 3.534747 0.184
Residual 5.817426

Fixed effects: y 7 week
Value Std.Error DF t-value p-value

(Intercept) 156.05333 2.1589786 119 72.28109 0
week 43.26667 0.7275228 119 59.47122 0
Correlation:
(Intr)
week 0.007
Regression Methods Autumn 2022 — slide 132

79



Example: Rat growth

Results from fit of mixed model to rat growth data, using REML. Values in parentheses are for ML fit.
In each case 52 = 5.822,

Parameter Fixed Random
Estimate Standard error Variance Correlation
Intercept  156.05 2.16 (2.13) 10.932 (10.712)
Slope 43.27 0.73 (0.72) 3.532 (3.46%)  0.18 (0.19)

[0 REML estimates of €2 slightly larger than ML estimates, but effect is small since p = 2.
[0 Estimated mean weight in week 1 is 156, but SD of individual rats around this is 11.

[0 Correlation between slope and intercept is small but positive: initially heavier rats tend to gain
weight faster.

O Variation around individual slopes is given by &, smaller than for the intercept variance.
[0 Shrinkage of intercept estimates, shown on next page, is small in this case.

0 Residuals look acceptably normal.
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Example: Rat growth

Residuals and random effects

Normal Q-Q Plot
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Comments

OO0 Testing for non-zero variance components (e.g., ¥» = 0 in Example 19) involves tests on the

boundary of the parameter space, which have nasty asymptotic properties: if ©» = 0, then in that

example, the likelihood ratio statistic for testing ¢ = 0 satisfies W ~ %X% + %X% as n — oo,

meaning that
Po(W=0)=3, Po(W>w)=3P(i>w), w>0.
Unfortunately,
— Po(W =0) can be very different from % even in large samples, and
— in more complex problems, the limiting distribution can be much more complex.

[0 Sometimes clearer to write a mixed model in multi-level model form
y:Xﬂ—f—ZLbL—i‘"'—f—Zobo,
where the ¢; X 1 vectors b; are all mutually independent with means zero and variance matrices
O, s0Y ~ N, (X5, ZZL:O Zi0ZF), where Zy = I,,, by = € and Qy = 02 1,,.
[0 The same basic approaches apply in nonlinear mixed models and generalized linear mixed

models (GLMMs), but integrals appear everywhere and have to be approximated numerically,
leading to heavier computational burdens (later).

Regression Methods Autumn 2022 - slide 135

81



Scatterplot Smoothing slide 136

Motivation

[0 Normal linear model has two main aspects:
— systematic variation, E(y) = p, and = X3 with parameters (;
— stochastic variation, y ~ A, (11, 0%1,).

[0 Can relax the stochastic assumption using other distributions or second-order assumptions, but
still have parametric model for the systematic part.

[0 Often want to relax systematic part for more flexible models, for

— exploratory data analysis — ‘will a linear model be adequate?’
— confirmatory data analysis — ‘I've fitted a linear model, is it adequate?’
— general modelling — ‘the data are too complex to expect a simple parametric model to work,

so what can | do?’

— semiparametric modelling — ‘I will use a parametric model for the effects of interest, but can
I model nuisance effects more flexibly?’

O Introduce non/semi-parametric regression models—widely used in applications.

Regression Methods Autumn 2022 - slide 137

Example: Motorcycle data

Measurements of head acceleration (g) at time after impact (ms) in a simulated motorcycle accident,
used to test crash helmets:

50
1

Head acceleration (g)

-50
1
o %o ‘r‘ LAt L4
.

-100
1
-~ o

Time after impact (ms)
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Example: Spring barley data

Plot yield at harvest for 75 varieties of spring barley sown in 3 blocks each of 75 plots:

Location x Block 1 Block 2 Block 3
Variety Yield y Variety Yield y Variety Yield y
1 57 9.29 49 7.99 63 11.77
2 39 8.16 18 9.56 38 12.05
3 3 8.97 8 9.02 14 12.25
4 48 8.33 69 8.91 71 10.96
5 75 8.66 29 9.17 22 9.94
6 21 9.05 59 9.49 46 9.27
7 66 9.01 19 9.73 6 11.05
8 12 9.40 39 9.38 30 11.40
9 30 10.16 67 8.80 16 10.78
10 32 10.30 57 9.72 24 10.30
11 59 10.73 37 10.24 40 11.27
12 50 9.69 26 10.85 64 11.13
13 5 11.49 16 9.67 8 10.55
14 23 10.73 6 10.17 56 12.82
15 14 10.71 47 11.46 32 10.95
16 63 10.21 36 10.05 48 10.92
17 41 10.52 64 11.47 54 10.77
18 1 37

11.09

63

10.63

11.08
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Yield y

22

20

18

16

14

12

10

Example: Spring barley data

pobrtat g T,

Location x

Yield as a function of location for the three blocks, with yields for blocks 2 and 3 offset by the
addition of 4 and of 7 respectively. Value 37 in block 3 is missing.
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Comments
O The motorcycle data are pairs (z1,Y1), .- -, (Zn, Yn), with

ind .
Yj ' (,u(acj),o2), ji=1,....n,

with u unspecified and z1,...,z, € X, say (ignoring the heteroscedasticity). We might aim to

estimate the function u(-) using a scatterplot smoother.

[J For the spring barley data we could envisage an additive model

ind
Yo ~ (Bopw) + p(),0°), b=1,2,3,z=1,...,75,

where
—  Bu(b,z) denotes mean yield for the variety v(b, ) planted at location z of block b, and

—  pp(x) represents smooth variation in the mean yield in block b, as fertility changes with
location z.

In this case we are mostly interested in the variety effects 31,..., 875, but need to account for
changes in the (nuisance functions) .

O More generally we might have random effects (the (3,7) and/or non-linear models and/or
non-Gaussian responses . ..
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Polynomial regression

[0 Fit polynomial of degree p — 1, i.e.,
w(xj) = Bo + Braj + - + 5p719€§71,

and choose Sy, ..., Bp—1 to minimise the sum of squares

;{yj @)Y =3 {ui— Bo+ Bray o4 Bzt H)

J=1

giving Bpxl = (XTX)"1 X"y, where (j,i) element of n x p matrix X is x;fl.

0 Comments:

— easily copes with missing values/unequally spaced observations;

use orthogonal polynomials to avoid numerical problems if n, k large;

sensitivity to observations at extremities of series often leads to poor fit;

usually doesn’t work well because polynomials are too restrictive.
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Spring barley data and polynomial fits

Yield y
14 16 18 20 22
I I I I

12
1

10
1

Location x

Yield as a function of location for the three blocks, with yields for blocks 2 and 3 offset by the
addition of 4 and of 7 respectively, with fitted polynomials of degrees 20, 10 and 50.
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Local polynomial regression

O Idea is estimate pu(x) near z = xq by fitting a low-order polynomial to the data nearest to z.

0O Use kernel function w(-) with bandwidth & to give weights
wp (2 — 20) = h™'w{(z — x)/h}

that downweight observations far from x(, and minimise weighted sum of squares
Y 2
> wnlay — o) [y; — {Bo + Bilws — o) + -+ + Bp-1wj — )P},
j=1

giving
Blzo) = (X"WX) ' X" Wy, [fi(zo) = Bo(xo),
where y and X are as before and the n x n diagonal matrix W contains the weights.
O Refit for numerous ¢, and interpolate the fitted values to estimate p(x).
0 Since
fi(wo) = Bo(xo) = (1,0,...,0)"B(x0)

is a linear function of y, the vector of fitted values can be written as [i,x1 = Spy after setting g
successively equal to x1,...,T,.
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Local linear smoother

Left: observations in the shaded part of the panel are weighted using the kernel shown at the foot,
with A = 0.8, and the solid straight line is fitted by weighted least squares. The local estimate is the
fitted value when x = x(, shown by the vertical line. Two hundred local estimates formed using
equi-spaced xo were interpolated to give the dotted line, which is the estimate of u(x).

Right: local linear smoothers with h = 0.2 (solid) and h =5 (dots).
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Motorcycle data

Data with four local constant (Nadaraya—Watson, p = 1) estimates: uniform kernel, h = 10 (red);
normal kernel, h = 10 (blue); normal kernel, h = 5 (green); normal kernel, h = 3 (cyan).

Head acceleration (g)
-50

-100

=,

Time after impact (ms)
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Comments

[0 Local polynomial fitting provides linear smoothers that depend on:

— a kernel function w (not really important, provided edges smooth);

— a bandwidth A (important, chosen by cross-validation, AIC or similar);

— degree p — 1 of polynomial, with p = 2 (local linear smoother) most common.
0 Can robustify by downweighting observations with large residuals in initial fit.

O Lowess (locally weighted scatterplot smoother) uses nearest neighbourhood smoother, which
smooths the 2/3 of the x; closest to zp—equivalent to a varying bandwidth.

[0 Extends to other models using local likelihood estimation, where we maximise
n
0(0;20) = > wp (x5 — 0) £;(B; 0)
j=1

to get (o) using iterative weighted least squares (later) and a suitable definition of AIC, (k).
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Function Estimation slide 148

Loss, risk and admissibility

O A loss function (i, i) represents cost of estimating u by fi.

O The average cost of estimating u by 1z is measured by the risk function
Ra(p) = E{I(5, 1)} -
0 An estimator 11 of i is inadmissible if another estimator [i exists such that
Ra(n) = Ru(p),

with strict inequality for some p. Then [ is never worse than ji, and sometimes better than it, so
11 should not be used.

O An estimator is admissible if it is not inadmissible.

[0 There are many possibilities, but for simplicity we consider squared error loss
Wi, p) = (0= p)* (1 — ),
whose corresponding risk is the mean square error
Ra(p) = E{(F — )" (i — 1)} -
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Stein’s theorem

Theorem 22 (Stein) Ify ~ N, (u, I,) and n > 3, then the maximum likelihood estimator [i of y is
inadmissible in terms of mean square error: the shrinkage estimator

b
ﬂ:yln+<1—a> (y —9ly), b>0,

where w = 3. (y; — y)? andy = n~1Y" y;, has risk
Ryl) = n+b{b—2(n — 3)} B(w™b),
and thus Rg(p) > Ry(p) for any pp € R™.

0O Asb—0,g—y,and asb— w, o — yl,.

O As E(w™!) >0, 1i is inadmissible if n > 3: it is always better to shrink y towards 71,,.

O The minimum of Rz(u) is n — (n — 3)*E(w™') when b=n — 3.

O fpug ==y, then E(w™) = (n—3)~! and R;(u) = 3: the decrease in risk can be enormous
if the 1; are very similar, but it is smaller if they are very variable.

[0 This assumes it makes sense to cumulate risk over all yi;; there may be no improvement for
estimating individual parameters.
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Proof of Theorem 22
[0 We first note that the MLE of y is y, and that its risk is

n

Ra(p) =E{(fi— )" (@ - )} =B{(y — ) (-} =B (yj —pj)* p=> var(y;) =n
j=1

J=1

(A=) (i—p) = > (i — py)
= Z{§+(1—b/w)(yj—§)—ﬂj}2

= Z {y; — 1 — bly; —9)/w}?
n n 9 n
= D wi—m) - 25 > (i — )y —9) + % wi—9* ()
j=1 j=1 j=1

The first and third terms have expectations n and b?E(w™!), so we must deal with the second.

O Consider E{(y1 — p1)h1(y1)}, where hy is a sufficiently well-behaved function. Integration by
parts, recalling that y; d N(p1,1), and that ¢'(z) = —z¢(z), implies that conditional on
y-1=(¥2,---,Yn),

E{(y1 —p)hi(y1,y-1)} = /(?Jl = p1)o(y1 — pa)ha(y1,y-1) dyn

= —[o(yr — p)ha(y1,y-1) /¢ y1 = p)hi(y1,y-1) dy
= E{hll(ylayfl)})
where h} = Oh/0yi, so the same is true unconditionally, and also for indices 2,...,n.
00 Now we set _
h(ylyl) y1 — y: y—-y
’ w >y —7)?
and note that (after a little algebra)
1—nt —
h/(yl,?/fl) = _2(y1 2y) )
w w

which implies that

b n B n
Bq—> (i—u)ly—9) ¢ = (n—1bEw™) - 2F Z - 7)
j=1 WA
= (n—3)bE(w™),
so the central term in (7) has expectation —2b(n — 3)E(w 1), from which the result follows
directly.
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Comments

[0 Stein's theorem is the first of a class of results that imply that suitable shrinkage (a form of
regularisation) can improve frequentist estimation, making the MLE inadmissible in some cases.

[0 Examples:
— the lasso, with shrinkage by soft thresholding;
— ridge regression, with shrinkage towards the origin;
— variable selection, with shrinkage by (less stable) hard thresholding.

0 From a theoretical point of view it seems hopeless to try and estimate O(n) parameters, but (we
hope that) the effect of shrinkage is that the ‘degrees of freedom’ p,, is of smaller order than n,
i.e., pp — 00 as n — oo but with p,/n — 0. If, so, information accumulates about x(-), which
can be consistently estimated.

[0 However, the convergence rate for nonparametric estimation is typically slower than usual
parametric rate O(n~'/2), and can be as low as O(n~'/5).
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Basis functions

O We seek to estimate a function p(z) based on data (z1,91), ..., (Tn, Yn)-
O There are n parameters pg = u(x1),. .., tn = p(x,) (plus noise, ...), so we assume that u(z)
belongs to a suitable class of functions, defined for x € X.
[0 Simple linear model is
Hnx1 = Bpxpfpx1, rank(B) = p < n,
with the columns of B evaluations at z1,...,z, of basis functions.
[0 The basis functions may be
— global (e.g., polynomials, trigonometric/Fourier functions),
— local (e.g., splines),
— multiscale (e.g., wavelets).
[0 We choose the basis for
— suitability for the problem at hand (e.g., suitably smooth), and
— computational reasons—want fast, preferably O(n), handling of n x n matrices.
[0 Later mostly use spline functions, on which there is a huge literature.
O First, wavelets:
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NMR Data

NMR data Wavelet Decomposition Coefficients
o _
©
] |
o - [
o | |
3 — |
o ™ | I |
3
9 4 ] . N [ .
c
>0 | .g,_n,‘ Lo o , Ll .
Y =] ‘
S ©— - P P Y ITFLEN P TRRTPRRPRRY) [TRRPN
[
o T e e R —
o 00 | i g At
0 | weret b et b
T T T T T T T T T T T

0 200 400 600 800 1000 0 128 256 384 512
Translate
Daub cmpct on ext. phase N=2

Left: original data, with n = 1024
Right: orthogonal transform with n = 1024 coefficients at different resolutions
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Orthogonal transformation

O Original data y with noisy signal jtnx1 : y ~ Ny (, 021,).
O Suppose znx1 = Wiy, Ynx1, Where WTW = WW™ = [, is orthogonal.

O Choose W such that § = W7y should have many small elements, and a few big ones, giving a
sparse representation of w in the basis corresponding to W;

[0 then ‘kill" small coefficients of Y, which correspond to the noise, giving

Onx1 = kill(z) = kill(W™"y);
[J then estimate the signal i by ~
p=W0=W xkill(W"y),

where the kill(-) operator minimises a suitable risk function.

[0 The operator used below applies a form of soft thresholding with parameters chosen from the
data.
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Wavelet decomposition

this matrix by

1 1
1 1
1 1
1 1
1 -1
1 -1
1 -1
1 -1

0
0
0

__-0 O o O

—1
-1

0 Here are the Haar wavelet coefficients, with n = &:

1 0
-1 0
0 1
0 -1
0 O
0 0
0 0
0 0

= o o o o

)

0

-1

[0 A good choice of W is wavelets, which have nice sparseness properties.

_ O O O O oo

[0 We set up W so that each column of this orthogonal matrix has unit norm., i.e., we post-multiply

{dlag(\/gv \/gv 27 27 \/57 \/57 \/57 \/5)}717
to ensure that WW™* = WTW = Ig.
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Some Wavelets

W(x)
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NMR data, after transformation and shrinkage

Original coefficients

T T T T 1
0 128 256 384 512
Translate
Daub cmpct on ext. phase N=2

Shrunken coefficients
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Daub cmpct on ext. phase N=2

I
512
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NMR data, after cleaning

Bayesian posterior median

NMR data
o _| o _|
o ©
o _| o _|
< <

wr(w)
20
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0 200 400 600 800 1000

800 1000
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Spline Smoothing

slide 159

0

U
U

Splines

The pth degree spline basis with knots k1 < -+ < K is
La,....20 (x — k)5, ..., (z — ki)t

where u; = max(u,0) is the positive part function.

The resulting matrix B is highly collinear and gives an implausible statistical model.

B-spline bases span the same linear space, but have better numerical properties. They are
defined by adding boundary knots k¢ and xj11 and setting up an augmented knot sequence

T < <7ty <Ko S TMp1 =K1 S STk = Kk S Rkt S T m < S T

typically the 7; outside [kg, k1] are set to the boundary knot values. Then
BZ'J(CC) = I(Ti§$<7'i+1), i=1,...,k+2M — 1,

Xr —T;
Bz,m(x) = Bi,mfl(x) +
Titm—-1 — T Ti+m — Ti+1
where we set B; 1 = 0 if ; = 7,41 (avoiding division by zero).

Ti+m — X

Cubic splines (p = 3, M = 4) give visually smooth functions.

k = 10 on the next slide, with M = 2 (linear), M = 3 (quadratic) and M = 4 (cubic).

Bi+17m,1($), i=1,....k+2M —m,

Regression Methods
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Linear, quadratic and cubic B-splines

Spline functions

00 02 04 06 08 1.0

i /
DO
QSN

KOS

T
00 02 0.4

Spline functions

00 02 04 06 08 1.0

Spline functions

00 02 04 06 08 1.0
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Natural cubic spline

O Suppose the z; are distinct (no loss of generality, see later) and
a<z<--<zp<b, X=]Ja,b CR.

O A natural cubic spline adds the constraint that the function is linear outside [z1, z,,], and thus
avoids high variance due to quadratic and higher terms outside this interval.

0 A natural cubic spline
— has k =n knots, at 1 < --- < x,,
— is a cubic polynomial on each interval between knots,
— is continuous, with continuous first and second derivatives at each knot, and
— s linear on [a,z1] and [z, b], with zero second and third derivatives at z; and xy,
— has
2+ 4(n —1) + 2 parameters — 3n linear constraints =n
degrees of freedom (df), which can be split into
> 2 df for a linear fit, plus

> n — 2 df for the second derivatives u”(x2), ..., 1" (xn—1).
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Natural cubic spline

Second derivati
10 1
I I I

Third derivative

[0 A natural cubic spline may constructed by integrating a second derivative function u” which is
linear and determined by its values at x = 2,...,9; the values at x = 1,10 are zero, and so is u”
for z ¢ [1,10].

[0 On integrating twice we gain two constants: u(x) = o + Sz + [ fox/ w (u) duda’.
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Optimality of natural cubic splines

0O Let S2(X) denote the set of functions 4 differentiable on X' = [a, b] with absolutely continuous
first derivative 1/: there exists an integrable function " such that [ ;" (u)du = p/'(x) — 1/'(a)
forx € X.

O Clearly any p with two continuous derivatives on X’ lies in Sa(X).

Theorem 23 Suppose n > 2, that a < x1 < --- < x, < b, and that p is the natural cubic spline
interpolating the values yi,...,yn at x1,...,op. If i € So(X) also interpolates the y;, then

/ ~//2 / NHQ
X

[J  Thus the natural cubic spline i minimises the roughness measure fx 1% in a larger class of
functions than that to which it belongs, making it a natural choice as an interpolant.

with equality iff i = .
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Note to Theorem 23

Let v = i — p € S3(X), and note that v(z;) = 0 for each j, since p(x;) = fi(x;) = y;. The natural
boundary conditions imply that x”(a) = u”(b) = 0, so integration by parts yields

0= @], = [ Gy = [ e [,

and hence the facts that p/” is piecewise constant and that v(x;) = 0 yields

"n_n n_ 1 /// AR / — n —+
/XMV Z—/u V=2 (] / V==Y p" @) {v(wj) — v(z)} = 0.
zj j=1

Hence

/~//2 / M +V /Iu//2_|_2/ M//V//+/V//2:/M//2+/ V//2Z/M//2
X X X X X

wth equality iff v”(z) = 0. This occurs iff v(z) is linear, but since v(z;) = 0 at at least two points,
v(z) =0 forall z € X.
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Roughness penalty

O To choose p to balance fidelity to the data and smoothness, we chose some A > 0 and take
i € S3(X) to minimise the penalised sum of squares

Z{yj — u(z)}?* + /\/X,/’(xy dz,

where the second term is a roughness penalty on 1", with a stronger penalty if the smoothing
parameter A — oo and no penalty when A = 0.

0 Theorem 23 implies that the resulting p is a natural cubic spline: for any fi(x) € Sa(X) there
exists a natural cubic spline p(x) such that p(z;) = fi(z;), so the sum of squares is the same for

i and for p, but
/ Ia//2 > / ,u//2’
X X
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giving a lower penalty.

Roughness penalty and equivalent formulations

Theorem 24 In the setting above, the roughness penalty can be expressed as
//Y p'(@)? de = p"Kp =" Ry,

where

T T

pto= (p@), ), =W (@), 0 (@),
Q'u = Ry,
and Knxn, Rm-2)x(n-2)s @nx(n—2) all have rank n —2.
Moreover
O the fit is linear outside (x1,x,), so p'(x1) = p”"(z,) =0,
O @ and R are band matrices, leading to O(n) matrix manipulations, and

O imposing the roughness penalty corresponds to using the prior -y ~ Ny,_2(0, 029 R™1) for
Bayesian inference, or a mixed effects model

1= Boln + Brnx1 + Zux(n-2)b, b~ Nn—2(0,0°91,_3),

for a suitable basis matrix Z and 1) = A7 1.
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Note | to Theorem 24

O Let X = [a,b] and suppose that a < z1 < -+ < ,, < b; sometimes below we set xy = a and
ZTp+1 = b. If p(x) is a cubic spline on X, then 1”(x) is continuous and piecewise linear.

O Taking ¢’ (a) = ¢/ (x1) = " (b) = 1’ (x,) = 0 implies that 1" (z) = 0 outside [x1,x,], so there is
no contribution to [(u”)? from outside [z, x,]; this makes sense because the penalty should not
depend on a and b. The optimal u(x) will be linear outside [z1, z,,], because the corresponding
w1 is zero outside this set.

O Write v; = p"(x;), parametrise p”(x) in terms of 72, ..., v,—1, set hj = x; — x;_1, and obtain

() = vz — le):L"le(ﬂCj - x)’ moa<z<z, j=1...m+1 (8)
J
where Yo = 1 = Y = Y41 = 0; note that p’(z) = (v; — vj—1)/h; on [xj_1,x;]. Now
"
wir)yde = ———yile—zj_1) +7vi-1(x; —x
[ =y Do~ a) 4 i )]
J J Tj—1
1
— — (B33 — 33,
3h(v; = vi-1) (i = 15-1)
h,
= gj(ﬁ +%-1+ V1),
so
2 o 2 [ 2 RS 2 2
" " "
[ oaras= [ Tapan =3 [ @l de =53 o} + 14230
X 1 =271 =2
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Note Il to Theorem 24

O Recalling that y1 = 7y, = 0, we see that [, #”(z)? dz equals

1
3 {hovs + h3(V5 + 372 +93) + a1 (Vo1 + Yn1Vn—2 + Vo) + Va1 } =" Ry,

say, where
2hs + hy)  hs 0 .. 0
hs 2(hs +hy) ha . 5 72
Rin-2)x(n-2) = § 0 hy R 0 o=
: ' . - Tn—1
0 0 hnt 2(hn_1 +hn)

As 7T R~ equals a non-negative integral that is zero iff v = 0, R is positive definite, and it is
symmetric by construction. It is also strictly diagonal dominant, i.e., |rj;| > >~ .. [rj| (which
also implies that it is invertible).
The unusual labelling of the elements of ~, starting from 5, simplifies things below.

O Aside for time series experts: if we regard R as the precision (inverse variance) matrix of a
Gaussian distribution for «y, then we see that

—hy1/{4(hy + hrg1) (Rrg1 + hr+2)}1/27 s=r+1,

corr(vy, rest ) =
(27 | ) {0, otherwise,

corresponding to a Markov process. If the x; are equally-spaced, then all the h; are equal and
corr(yy,7ys | rest ) =I(r=s) —I(Jr — s| = 1)/4 is PACF of an AR(1) model.

[J Integration by parts yields

[ e do= @' @]} - [ a" @ @)
X X

where the first term on the right-hand side equals zero because p”(a) = 1 (b) = 0, and as the
third derivative is constant on each interval (z1,2],..., (zn—1, %] and zero elsewhere, the
second term on the right-hand side equals

n—1 Tt n—1 Vil — i
-
Sl [ e = 3B g )
j=1 z; j=1 Jt+l
n—1
_ Z’y' Hi+1 — Hy  Hy — Hj—1
— 7\ hjn h;
7j=2
= ’YTQF(Fn—2)><nIU" (9)

say, because 1 = 7, = 0; here and below, " = (1, .., tn), Where p1; = p(x;). If we label the
n — 2 rows of QT like those of «y (i.e., starting at row j = 2), then the jth row of Q" p is

Hi+1 — Ky Hy — Hj—1
hj1 hj

ji=2...,n—1,

so Q7 is tridiagonal and fast (i.e., linear in n) matrix operations with it are possible.

O Note that Q™1,, =0 and Q™x = 0, which verifies that linear functions are not penalised.
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Note Ill to Theorem 24

O If we integrate ' (z) twice, we see that for z;_; <z < z; we can write
(z —aj1)pj+ (25 — )i

plz) = h;
T—Tj_1 Tj—T
—%(CC — ijl)(zvj —x) { <1 + 7}1‘] > Yj—-1+ <1 + Jh‘ > 'yj} .
J J

Hence the first derivatives at z1,...,x, from the right and from the left may be written as

p(al) = (i —pg)/hirr — ghiza (29 + i),

W) = (g —pj—1)/hj + ghi(vj-1 + 27;).
As v1 = v, = 0 the limits at z; and x,, reduce to

R L I B T (10

n

Outside [x1, z,] the function p(z) is linear and may be written as

H(CC) — Ml - (fI:l - .’I])M/(.’I]ii_), &z S fI:l,
pin + (z = xp)p' (7)), T = T,

which guarantees that p/(z) is continuously differentiable at z1 and .
O Now u(x) is everywhere continuous, has u”(xj) = p"(z}) = ; for each j, and y' is continuous
at x1 and x,, so to make u a natural cubic spline we must ensure that y/ is continuous at

Ty Ty, ies, p(T)) = u’(x}') for j=2,...,n—1. Thus (10) yields

Hi+1 — Hy  Hy — Hj—1
hj1 h;

= ghivi-1 + 5(hy + hjp)y + ghirvie, J=2...,m—1,

which on comparison with (9) can be written in matrix form as Q™ = R~.

[0 Hence using invertibility of R we can write the penalty as
/XM//(Z,)Z dr = ,),TQTM — 'YTR’Y — MTQRleTM — MTKM.

[0 Then x 1 vector y lies in the vector space R™, and we can form a basis of this space starting
with the vectors 1,, and = (z1,...,2,)" and then adding any n — 2 linearly independent
vectors. In particular, on integrating (8) up to x, twice, we see that we can write

n—1

w(x) = o+ Brr + > pj(x)y, weX, (11)
j=2

where the term Sy + B1x comes from the constants of integration and the cubic polynomials
p;(z) stem from integrating the linear functions ;”’(x) in each of the intervals [z;_1,z;]. On
evaluating (11) at x1,...,x, we obtain

:U‘Zﬁoln-'—/ﬁlx-'—PrY) ,80,51,’}/2,...’)/”7161&,

where the n x (n — 2) matrix P has rank n — 2, because its first row consists of zeros and rows
2,...,n — 1 are lower triangular (as p(z) involved integration from a to x).
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Note IV to Theorem 24
O Recall that Q*1,, = QTz = 0, giving QT = QT P~, and thus
V' Ry = p"QRT'QT =" PTQR™'Q" Py = " (PTQR™)R(R™'Q"P)n,
which implies that PTQR~! = I,,_5. Hence Qnx(n—2) and Kpxn = QR'Q" have rank n — 2.
O Now consider a model in which p = By + f1z + P~ and « is random, with
Y|y~ Nu(p,0L,), v~ Np2(0,0*X7'R7H, A >0. (12)
Apart from constants, the logarithm of the posterior density f (80, 31,7 | ¥;02, \) equals

2n — 2 -2
n2 10g02—|—n2 log A,

log f(y | 7) +1log f(v) = — {(y — )" (y — 1) + M Ry} /(20%) —

and for fixed o2 and A the values of By, 31 and v that maximise f(f, 81,7 | y; 02, \) are found
by minimising the penalised sum of squares

(=) (y— 1)+ MRy = {y; — plx;)} + A/ p'(x)? da.
j=1 x

O As R is not diagonal, the elements of v in (12) are not independent, but we can use the spectral
decomposition to diagonalise R, writing 7/ Ry = (Av)T(Ay) = bb, say, where A is invertible
and R=A"A,so R~! = A71(A")"t and AR"'A™ = I, 5. Thus

b= Ay ~ N, 20,0’ X TARTIAT) = N, _2(0, 021, 5), ¥ =A""1
In this parametrization we have
1= Boln+ Bz + Py =Boly + Pro+ 2Zb, Z=PA,

and with the stated normal distribution for b we see that this is a mixed model with fixed effect
Bol, + Bix and random effect Zb.

[J Hence imposing the ‘natural’ smoothness penalty based on f(u”)2 is equivalent to Bayesian
inference using an improper (constant) prior for By and 31 and a proper Gaussian prior for ~,

Y ~ Noo2(0,0%WR ™)
or using the mixed effects model with
p=XB+Zb= Byl + Pix+2Zb, b~ Ny_2(0,0°¢I,_2),

or any other equivalent formulation in terms of an invertible transformation of the columns of Z.

O In this setup we could set ¢» = 0 (equivalent to A = c0), corresponding to fitting the fixed effects
alone. Testing ¢ = 0 against ¢ > 0 corresponds to testing a linear model against the spline fit in
which b #£ 0.
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Penalised fitting
O On writing

> {yj — )} + /\/ p'@)de = (y—m)"(y—p) + I Kp
j=1 X

= p (In+AK)p =2y " p+y'y,
we see that the fitted values are

ﬁnxl - (In + )\K)_lynxl - S)\y

in terms of the smoothing matrix S).
[J The natural cubic spline will change as A varies:

— as A — 0 (equivalently, 1) — 00), we have S\ — I,, and we obtain the spline interpolating
Y1, - - -, Yn, Which has n df, corresponding to the n elements of u;

— as A — oo (equivalently, ) — 0), we recover the best-fitting straight line u(z) = fo + Sz, for
which ¢/ (z) = 0, with 2 df; and

— intermediate values of X\ correspond to intermediate fits.
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Natural cubic

=) =)
[T} [T} h
> >
o o
0 0
10 -05 00 05 1.0
X X

[0 The unpenalized natural cubic spline on the left passes perfectly through the 15 points, but is
very sensitive to their values: think of beads on wires.

0  On the right we see the effect of a roughness penalty with 2 (solid), 7 (dashes) and 3.7 (dots) df.
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Variants

0 Obvious generalisation allows weight matrix W = diag(wy, ..., w,).

O If the z1,...,x, are not unique, write E(y) = N, «n/ftn'x1 in terms of the means p at the n’
unique elements of x, and minimise

(y = Nu)"W(y — Nu) + A" Kp.

where K/, arises as before as the roughness penalty on u(z).

0 Could use a truncated power basis of degree p — 1 with knots at k1, ..., kg, i.e.,

q
w(x) = Bo+ Pz + -+ BporaPt + Z bi(x — Hi)}:l,
i=1

set 07 = (87,b") where 8" = (B, ..., Bp-1), b" = (b1,...,by) and minimise
(y — BO)"W(y — BO) + \0" Do
where the penalty matrix D does not affect § (e.g., D = diag(0,...,0,1,)). This gives
0, = (B"WB+AD)"'B"Wy, 7=B(B"WB+AD) 'B"Wy = S,y.

Since 5 is unpenalised, S)y tends to the polynomial fit when A — cc.
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Modelling choices

0 Choose 6 to minimise .
> {yj — 0" B(x;)}* + A0 D6
j=1
for basis functions B(:), D symmetric positive semi-definite and some A > 0.
O Primary choices (affect fit):
— spline model, i.e., degree, knot locations, boundary constraints (if any);
— form of the penalty (imposes smoothness through prior variance structure for 6).

O Simple choice of number of knots is ¢ = min(35,n,/4), where n, is the number of unique x;,
placed at (i +1)/(¢ + 2) quantiles of the unique z;, fori =1,...,q.

0 Secondary choices (only affect fit through any numerical error):
— basis functions, chosen for interpretability;

— basis functions as used in the computations—by setting B = B,L ™!, where L,y is invertible,
we can transform any choice of basis functions B to the (very stable and numerically efficient)
B-spline basis B, and then set

7y =B(B"B+\D)"'BT = B.(B'B, + AL"DL) !By,

so no need to worry about numerical aspects.
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Choice of )\ by cross-validation

O Fitted values are §j = Syy.

O Fitted value 3y_; for y; obtained when (z;,;) is dropped from fit is given by
Sii(MWs —¥—5) = U5 — Y-

[0 Cross-validation sum of squares is

and generalised cross-validation sum of squares is

n ~ 2
Y5 — Yy
A\) = _ YT
GOV =2 terevie
where S;;(A) is (4,7) element of Sy.

[J Both tend to give curves that are too variable, and so do approaches based on minimising
Mallows' C,,.

O Better to use mixed model formulation and REML, if normal model credible ...
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Mixed model: Reminder
[0 Linear mixed model formulation
y1b ~ Nu(XB+2b,Q), b ~ Ny(0,0),
yields
Y~ Nu(XB, Z0Z" +Q), Z0Z" +Q=* A7 (1),
with 1) the vector of distinct variance ratios and log likelihood
1
UB.0° ) = —55(y — XB)"Aly - XB) — 3 logo” + Jlog |A.
O REML inference for 1, o2 is based on the restricted likelihood
2y — 1 1 T 1 2 \T 2 n—p 2
tr(¥,0%) = glog|A| = 5 log [XTAX]| = o—5(y — XBy) Aly — XBy) — logo”,
where R
By = (XTAX) X" Ay,
which involves taking a grid of values of ¥, or iterating on 2, or ...
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(RE)ML estimation of A
O With 7 = (B7,b"), the penalised sum of squares

y;i — 0T B(z:)}? + X\0"DO = (y — BO) (y — BO) + \0* DO
j j

is obtained as —202 times the likelihood exponent on setting
Y| b~ NW(XB + Zb,0°1,), b~ N (0,021,),

where

- B=(X,Z)isann x (p+ q) matrix,

— X, xp corresponds to the unpenalized columns of B,

—  Zyxq corresponds to the (transformed?) penalized columns of B,

- D = diag(0,, 1,), and

— 07 =0?/), so in the general notation, ¢ = 1/\ and A(¢)) = (I, + A1 ZZ")~L.
0 Can estimate 02 and \ using ML or REML (better), giving A= 52/52.
0  Comparison with GCV on page 106 of notes.
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A useful lemma
Lemma 25 Let A and B be q x q positive semi-definite matrices, and suppose that (A + AB)~!
exists for some A\ > 0. Let ) be an eigenvalue of (A + A\B)~'A. Then

O if B is invertible, then
/

__n
=1 e
where 1 is an eigenvalue of B~1/2AB~1/2;
O if A is invertible, then )
=1 + A"’
where 1" is an eigenvalue of A~Y/2BA~1/2;
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Note to Lemma 25
Exercise!
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Equivalent degrees of freedom

OO0 Least squares estimation gives y = Hy, with tr(H) = p, in terms of the projection matrix
H=X(X"X)"1XT.

O In the spline case X, is replaced by B, (p1q) = (X, Z).

[0 Define the equivalent degrees of freedom as dfy = tr(S)), i.e.,

p+q
dfy = tr{B(B"B + AD)'B"} = tr{(B"B+ AD) 'B'B} = » _ !
j=1

— 1+77j)\

where 71, ..., 0p44 € [0,1] are eigenvalues of (BTB)~'/2D(B*B)~1/2.
O Since perfectly polynomial data of degree p — 1 would be unchanged by smoothing, p of the
eigenvalues of S\ must equal 1: since D, ¢)x(p+q) has rank g, p of the n; equal 0.

O Clearly tr(S)) is monotone decreasing in A, with

A —
tr(S,\) — p; 0
p+q, A—0.

O Hence we can specify smoothness using either \ or dfy (easier to interpret).
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Note on equivalent degrees of freedom
Using the lemma we obtain

p+q
tr(Sy) =tr {B(B"B+AD) 'B"} = tr {(B"B+ AD) 'B"B} = Z !
j=1

= 1+)\’I7j7

where BTB is invertible and 1, < --- < 1,4, are the eigenvalues of (B*B)~/2D(B"B)~!/2. Since
D has rank ¢, 1 = -+ =1, = 0, and therefore

_l’_

p
J LS

EO |
<p-+aq,
1+)\77j_p 9

<.
I
-

with the limits attained when A — co and A — 0 respectively.
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Simulation

Equivalent degrees of freedom (EDF) estimated by GCV, ML and REML for 100 replicate datasets
simulated by

in —0.35 i — 0.8 it .
y; | @; NC‘N{1.5¢ <x]0715> _(b(x]oT) ,0.12}, 2 S U0,1), j=1,...,100.

The EDF for GCV is almost always larger than for the other two, which are essentially identical in this
case.

o oo o2
o gy e

o (53 " /
° B

1

B Rt]

7

53
Vg REML
et
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Motorcycle data

Splines fits estimated using GCV (left) and REML (right), giving EDF=8.69 and 8.62. Both fits are
dodgy for small x because of the heteroscedasticity.

s(mceycle$times,8.69)
s(mceycle$times,8.62)

mcycle$times mcycle$times

Regression Methods Autumn 2022 — slide 177

107



Comments

[0 Spline smoothing is widely used because:

it is flexible, links nicely to parametric regression and mixed models;
— automatic choices of number and placing of knots feasible;

— under normality assumptions, the smoothing parameter can be chosen in a principled way
using ML or REML, with a Bayesian interpretation;

— can easily remove the assumption of unique x;, only made for convenience;

— extends to several smooth functions, or to higher dimensions, in a natural way, using
appropriate basis functions and penalties.

0 Extends to other bases (support vector machines, Gaussian processes, . .. )

[0 Links naturally to Bayesian modelling, by setting joint prior density on 3, €2, £, number and
placing of knots, ....

0 Next: inference ...
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Inference for Spline Fits slide 179

Error of a linear smoother

Lemma 26 A linear smoother giving ij = Sy applied to data y ~ (u,0?1,,) satisfies

n

EQY 0 —w)? p = I = S)ul® + o?te(STS),
j=1

where terms on the right represent the squared bias and variance contributions to the overall mean
squared error.

This suggests that (as in the usual linear model):

O there is a bias (I — S)u unless p lies in the kernel of the matrix I — S, which will happen only if
— the columns of the fitted X contain all the true covariates, and
— there is no need for smoothing, i.e., the spline columns are unnecessary;

O another EDF definition could be tr(S™S), since in the linear model case, the second term would
be tr(H"H) = tr(H) = p.
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Note to Lemma 26

Since
W5 — 13)* = {05 — E@)}* + 2{0; — E@)HE®@;) — ni} +{E@)) — 15},

the expectation is clearly

> var (@) + ) {E@) —u}* = tr{var@)} + (Su — )" (Sp — p)
j=1 j=1

— tr {var(Sy)} + ||(T — S)pl?
= tr{Svar(y)S”} + (I — S)pl?
= o2r(SS™) + (I — )%,

as required.
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Inference
O So far we have discussed only ‘point estimation’ of the smooth function p(z), but in applications
we also want
— pointwise confidence intervals for p(x),
— overall confidence bands for {u(x) : x € S}, where S is some subset of X', and
— tests of hypotheses such as ‘is the spline part needed?’ and '‘is the curve monotonic?’
O Simplest approach to pointwise inference for p(x) is to note that since the spline estimator is

linear, we can write [i(z) = a,y, giving

var {fi(z)} = alvar(y)a, = 0%ala,

when var(y) = o21,,.
OO This leads to the (1 — 2«) variability band,

p(z) £ ov/atag x tag,. (1 — ),

where df ¢ is the residual degrees of freedom; this does not account for the bias of fi(z) or the
estimation of .

OO0 The use of ¢4, (1 — ) is intended to allow for estimation of o; for a pointwise 95% variability
band we often take tq¢,. (1 — @) =~ 2.

res
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Mixed model
O Recall that in the linear mixed model
Y| b~ NG (XB+Zb,Q), b~ Ny(0,9),
we have predictors/estimates (both with circumflexes and called BLUPs for short)
B=(X"AX)"'XAy, b=NZ"A(y— XB),

where A = 62( + Z0,Z7) "1 is evaluated at the (RE)ML estimates 52, 1.

O In our case we write
Y| b~ Nu(BO,o?L,), b~ N, (0,0°271),

where B = (X, Z) is the n x (p + ¢) basis matrix, and
- 0= <§> represents the linear unknowns,

Xnxp corresponds to the (unshrunk) polynomial columns of the basis matrix B,
Znxq corresponds to the spline columns of B.
[0 The BLUP fi(z) = By = X3 + Zyb of pu(x) predicts By = X8 + Zyb, where

By = (X4, Zs), Xo=(Lz,...,aP V), Zy=((x—r) .. (@ — k).
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Properties of BLUPs

O In the mixed model set-up, the target quantity u(z) = BI0 is regarded as random, and we have
two bases for inference:

— compute uncertainties conditional on the realised value of b;
— treat b as random and use unconditional uncertainty computations.

[0 The following lemma gives the conditional and unconditional means and variances.

Lemma 27 [f in the mixed linear model y = X + Zb+ ¢ = B + ¢ we write

(B (P
0= <b , 0= 7|
then § — 6 = (B*B + AD)~Y(B™c — AD#) satisfies
b

E@—0(b) = —AB"B+AD)"" (O>

E@-6) = 0,
var( — 0 |b) = o*(B"B+ AD) 'B"B(B"B + AD) !,
var(f —0) = o*(B"B+ AD)" .
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Note to Lemma 27

O Conditional on b, we have y ~ N, (XS + Zb,021,), s0 y ~ Ny(B6,021,). In this case 8 is just
the value that minimises
(y — BO)"(y — BO) + A0 D9,

with D = diag(0,,1,), i.e., @ = (B*B + AD)"'B™y = AB™y, say.
[0 For the first result, we have

6—60=AB"y — 0= AB" (B0 +¢)— A(B*B+ AD)f = AB"c — AAD{

which has expectation —AAD6, which is the stated formula, because D6 = (0",b")".
0 The second result is immediate from the first, as E(b) = 0.

[ The third result is also immediate from the first, as var(e) = 0°I,, and var(6 | b) = 0, giving
var(f | b) = 02 ABTBAT, as stated.

[0 For the final result, note that here 6 is random, independent of ¢, and hence
var(d — 0) = Avar(B"e — AD) A",
with the inner variance becoming
B"0%I,B + (\)?D?¢? /A = ¢*(B"B + A\D) = ¢%?A™!,

because var(b) = 02\~ 1,, giving var(0 — 0) = Ac2A~1A = 02A~!, which equals the stated
formula.
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Conditional analysis

[0 Lemma 27 gives us the variance and mean of the normally-distributed quantity
[i(z) = By

and it follows that, conditionally on b,

fi(z) — E{i(z)} b~ N(0,1)
var ()} o

where
E{fi(z) | b} = B.(B"B+ D) 'B"B9,
var{fi(z) | b} = 0?’B.(B"B+AD)"'B"B(B*B+ AD) !B},
which yields approximate confidence intervals for E{fi(x)} when the parameters are replaced by
estimates.
O If the bias is small, then this interval is also an interval for p(z) ~ E{fi(z)}.

(0 But this interval will fail if the bias is large, i.e., when " is not small ... it needs to be wider ...
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Unconditional analysis

0 Lemma 27 implies that the unconditional bias of ji(z) is zero, because
E{ji(z) - p(x)} = E (B, — B.o | =0,
so fi(x) is (unconditionally) unbiased for p(x).
[0 To account for the added variability due to the conditional bias, we average the conditional mean
square error of fi(z), i.e.,
El{ji(z) — u(@)}? | 8] = var{fi(z) | b} + E{fi(z) — p(x) | b}?,
over the distribution of b, and this is
By (E[{ji(x) — pu(x)}? | b)) = var{ji(z) — u(x)} = Byvar(d — 0)BL,
which equals
0*B,(B"B+\D)"'B..
O Hence R
H(aj\) — M(CC) ~ N(O, 1)’
Vvar{ii(e) — u(z)}
yielding a confidence interval i(z) 4 v/vVar{zi(z) — p(z)} X tag,.. (1 — ) for u(x).
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Comparison

Lemma 28 Let [i = BO be the BLUP of i = B6, which contains the values of w(x) corresponding
to the sample (xj,y;) for j =1,...,n. Then setting B, = B above, we have

where Sy = B(B"B + A\D)"'B".

var(fi — p) = 028y, var(fi —p | b) = 028,55,

OO The eigenvalues of Sy lie in [0, 1], with p of them equal to 1, ¢ of them in the interval (0, 1), and
the rest equal to zero, so ¢ of the eigenvalues of S)\S} are smaller than those of S).
O Since S)S} corresponds to ‘smoothing twice', the result is less variable than for Sy, so the
unconditional confidence limits will be wider.
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Motorcycle data

Splines fits with conditional (left) and unconditional (right) uncertainty bands. Any differences are
almost invisible.

s(mcycle$times,8.62)
s(mcycle$times,8.62)

-50

-100

meycle$times mcycle$times
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Motorcycle data

Splines fits with conditional (left) and unconditional (right) uncertainty bands, with too few degrees
of freedom. Differences between the confidence bands are visible.

50 100
I

.

°®
100

I

.

s(mcycle$times,2.96)
s(mcycle$times,2.96)

-50
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-50
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-100
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10 20 30 40 50 10 20 30 40 50
meycle$times meycle$times
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Simultaneous confidence bands

O For simultaneous (or overall) bands on S, we seek functions of the data, L(z) and U(z), such that
P{L(z) <p(z) <U(z),z €S} =1-2a.
[0 We approximate S by a grid S of M points with corresponding M x (p + q) basis matrix B,
and BLUP i, = B4 #.
0  We note that
fiy —pr #BL(0—0), 0—0~N{0,0°By(B"B+AD)'B}},
simulate many times from the fitted model to obtain the (1 — a) quantile my_, of
ph(x) — ph(x pho(x) — ph(x
;%%X 1y (x) AM+( ) 5|~ sup 1 (z) AM+( ) ik
+ {8*2Bx(BTB + )\*QpD)le;;r} xeS {/O.\*ZB:E(BTB + )\*ZpD)lemT}
where a star indicates something computed from a fit to the simulated data, and then set L(x)
and U(x) to be
N . 9 . ~ a2
fiy £ mi_a [dlag {a B.(B"B + AD) B+H . €S,
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Comments
O The computation above uses the marginal distribution of jiy — p, but the bands tend to be a
little too wide, so the overall coverage probabilities are too high.
O Using the conditional distribution of fi; — u4 fixes this, giving confidence bands with coverage
closer to nominal.
[0 Other approaches are
— based on the method of tubes, which uses a Gaussian process approximation from
upcrossing theory, and
— taking a Bayesian approach,
but they seem not to work as well as using the mixed model formulation of spline smoothing.
O In general it's useful to plot example simulations (picture on board).
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Testing parametric fits

00 When writing
y b~ Na(XB+2b,0% L), b~ Ng(0,0°37 1),
the matrix X can include variables we don't smooth on, so
Xnx(m+p) corresponds to m covariates and p polynomial columns of B,
Znxq corresponds to penalised columns of B,
and then testing for no smooth effects corresponds to testing A = oo or equivalently
Ug =’ =0.
[0 The likelihood ratio statistic for this based on the restricted log likelihood ¢ is
2{0(6%5}) — €(35.0)} ~ 5x5+3x%, n— oo,
but this approximation may be poor, so using improved asymptotics or simulation from the fitted
null model is better.
[0 We can also use F-tests, as with local polynomial smoothing, based on comparing the
distributions of y*(I — H)y and y™(I — S)\)"(I — S\)y through an F-statistic.
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Comments
[0 The mixed model formulation allows an integrated treatment of inference for ‘nonparametric’ fits,
through
— the least squares estimate B\E Bz (XTAX)XTAy of the parameter 3, and
— the BLUP b = Q,Z"A(y — X3) of the random effect b.
[0 Both conditional and unconditional analysis of these are possible, with the unconditional analysis
giving wider confidence limits that allow for estimation of the bias.
O Conditional analysis seems to be better for simultaneous (overall) confidence bands.
[0 The same framework enables tests of the fit of parametric models, and estimation of derivatives
(exercise).
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Additive Models slide 193

g

Generalisations

We've discussed estimation of a single function p(z), but in applications we may have
— covariates to be treated parametrically,

— several smooth functions,

— non-normal response variable,

— random effects.

[0 To include ordinary covariates, we write
y ~ (BY,0%I,), BO=XpB+ Zb,
where
— X represents the ordinary covariates, plus any polynomial columns for smooth components,
— the ‘fixed effects’ parameter vector 3 is not penalized,
— Z is the basis representation for the smooth function,
— the ‘random effects’ vector b is penalized,
and everything ‘goes through as before’.
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Additive model

[0 We suppose
ind 2 .
yj ~ (M1($J)+M2(Zj),0 )a .]:1)”')”’
where 1, po belong to suitable classes of ‘smooth’ functions; for example if
r =time, 2z = space,
then s is defined on X} C R and o is defined on X, C R2.
[J This is an additive model, which might also include ordinary covariates.
[0 There is an identifiability problem, since we could map
pr(x) = pr(x) +a,  po(z) = p2(z) —a, a€R,
and the fitted values would not change, so we must constrain pq and ps.
[0 As before, we use bases for 1 and ps, writing
— _ 61 b1
y=DBO+e= (X1 Xo) )t (Z1(z) Za(2)) by ) TS
where we shall penalise the ¢; elements of b; and the ¢y elements of bs.
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Estimation
[0 We minimise the penalised sum of squares
(y — BO)"(y — BO) + 0" D>,

where
Dy = D1+ ADo, Dr:diag(O,...,O,l,...,1,0,...,0), r=1,2,

and the 1s on the diagonals of D, correspond to the coefficients to be penalised.

O The solution for fixed A1, Ay is the same as before, i.e.,
0= (B"B+ D)) "'B"y,

where 0 = 5)\, and we've now absorbed the smoothing parameters into Dy, giving fitted values in
terms of the smoothing matrix,

J= B0 =B(B"B+ D)) 'B"y = Syy.

0 Now we must decide
— how many degrees of freedom for each smooth?

— how to select the smoothing parameters?
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Effective degrees of freedom
[0 Denote the usual (unpenalized) least squares estimate of 0, 4)x1 by
0= (B"B)"'B"y,
and note that we can write
0\ = S\y = (B"B+ D) 'B"y = (B"B+ D,) 'B"Bf = P\0,

say, where Py shows how penalisation shrinks 0 towards 500 = (BT, 0m)".

O If A=0, then Py = I,;, and the degrees of freedom of the two fits are both ~ p + ¢, but as
A — 00, P, tends to the projection matrix onto the column space of X,,,.

O On slide 175 with just one smooth term we defined

p+q
dfy = tr(Sy) = tr(P) = Y Pasr € (0 + ),
r=1
which gives the usual definition for a linear model.
O With several smooth terms, 6" = (07],...,0},), say, we define the effective degrees of freedom

df),, associated to the mth smooth as being the sum of those P, ,, that correspond to the
elements of 6,, in 6.
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Selection of \

[J Line up the usual suspects:
— cross-validation sum of squares, CV (),
— generalized cross-validation sum of squares, GCV()), and
— REML, £(c2, ).
O The first two involve a grid search over values of (log-)\, and can be expensive.
[0  We discuss implementation of the third, which in principle could be cheaper, later.

O Our previous ideas on uncertainty estimation for the parametric and smooth terms go through ...
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Identifiability

[0 The identifiability problem is solved by centering the fitted smooth, i.e., enforcing
1} Znxgbgx1 =0

for each smooth term.

O In general we can use a QR decomposition. If Cp,xqbgx1 = Opx1, with m < g, write

C,;Fxm = Qququm = (Ql QQ) (%1) )

where @) is orthogonal,

— (@1 has dimension ¢ x m,

— 2 has dimension ¢ x (¢ —m), and

— R; has dimension m x m and is upper triangular.
Then if we set byx1 = QQb/(qu)xl’ we have

Cb=R'Q"b = (R} 0) <g£> Qab = (BT 0) ( 0 >b’ _ 0.
2

Iym

[0 Thus the constraint is satisfied if we replace Z,,xq by (ZQ2),,x(4—1); this reduces b to dimension
(¢ — 1) x 1. This is efficiently implemented using Householder operations.
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Numerical aspects

O We need to minimise
(y — BO)"(y — BO) + 0" D0,

where n and ¢ may be large. Let Ay be a square root matrix of D), i.e., AYAy = D,, and note

that
Do (2,
- gx1
'(0 a1 N g

has the form of an augmented least squares probem.

2
= |ly — BI||> + 67 Dx0

O A, can be found using Choleski decomposition with O(g?) operations.

[0 The least squares problem can be solved stably and efficiently using standard orthogonal matrix
methods, even for very large n + q.

[0 To estimate A\ by generalized cross-validation: set k = 1, A = 1078, kpax = 60, then while
k < kmax;

— compute GCV(\;) using the methods above,
— set A\ < 1.5\,
- setk<+ k+1,

[0 stop and output fit for best value of A
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Numerical aspects: REML
O  With the linear model
y|b ~ No(XB+ Zbo%1,), b ~ Ni(0,0°Dy),
we get restricted log likelihood

n—q
2

U(o* \) = —Llog|Uy| — Llog | XU X — log 2,

5 TP)\y_

2527

where Uy = ZD\Z" + I, and Py, = U; ' — U ' X (XTU X)) LXTU L
[0 Given ), there is an explicit formula for 52, so we finally seek

~

A\ = argmax {—%10g|UA| —Llog | X"U ' X| -

—dq
5 108 yTP)\?/} ,
which involves some unpleasant matrix differentials, e.g.,

0Q! 10Q 1 Olog|Q| —10Q
A S D)) _U"(Q 5)

but is just a function of A\. Reasonably efficient computational methods are available . ..
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Example: Spring barley data
Plot yield at harvest for 75 varieties of spring barley sown in 3 blocks each of 75 plots:
Location ¢ Block 1 Block 2 Block 3

Variety Yield y Variety Yield y Variety Yield y

1 57 9.29 49 7.99 63 11.77

2 39 8.16 18 9.56 38 12.05

3 3 8.97 8 9.02 14 12.25

4 48 8.33 69 8.91 71 10.96

5 75 8.66 29 9.17 22 9.94

6 21 9.05 59 9.49 46 9.27

7 66 9.01 19 9.73 6 11.05

38 12 9.40 39 9.38 30 11.40

9 30 10.16 67 8.80 16 10.78

10 32 10.30 57 9.72 24 10.30

11 59 10.73 37 10.24 40 11.27

12 50 9.69 26 10.85 64 11.13

13 5 11.49 16 9.67 8 10.55

14 23 10.73 6 10.17 56 12.82

15 14 10.71 47 11.46 32 10.95

16 68 10.21 36 10.05 48 10.92

17 41 10.52 64 11.47 54 10.77

18 1 11.09 63 10.63 37 11.08
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Example: Spring barley data

pobrtat g T,

22

20
1

18
1

Yield y
12 14 16
I I I

Location x

Yield as a function of location for the three blocks, with yields for blocks 2 and 3 offset by the
addition of 4 and of 8 respectively. Value 37 in block 3 (corresponding to variety 27) is missing.
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Example: Spring barley data

[0 We fit a model with parametric variety effects and smooth effects for the fertility patterns in the
blocks,
Ynx1 ~ (Xnx75B75x1 + Z101 + Za0o + Z303,0°1,),
where
— n =224, as one of the responses is missing,
— X is a matrix of indicators (0/1) of which variety is in which plot in each block,
— [ are the variety effects, with the model parametrized without an overall mean,

- Zy, of dimension n X (py, + ¢m) corresponds to the basis functions for the smooth in block m,
and

- 0,, are of dimensions (p,, + ¢m) X 1, for m = 1,2, 3, corresponding to the smooth effects, and
- Pm + @m = 9 by default (after centering) when using gam in R package mgcv.

O Taking p,, = 2 would correspond to null smooth fy + 512 for each block (i.e., linear fertility
pattern), but the identifiability constraints impose 5y = 0. Hence in fact p,, = 1 for a linear
baseline smooth and the degrees of freedom for the smooth terms lie in [1,9] (see slide 206).
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Example: Spring barley data

library(SMPracticals)
data(barley)

library(mgcv)

# ML fit of variety as fixed effect, with GCV estimation of lambdas,
# with splines for fertility gradients within each block

fit.gcv <- gam(y~Variety-1+s(Location,by=Block) ,data=barley)

# fit of variety as fixed effect, with REML estimation of lambdas,
# with splines for fertility gradients within each block

fit <- gam(y~Variety-1+s(Location,by=Block) ,method="REML",data=barley)
# REML fit with variety as a random effect and splines for fertilities

fit.re <- gam(y~s(Variety,bs="re")+s(Location,by=Block) ,method="REML",
data=barley)
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Example: Spring barley data

O Using GCV the smooths have dfy = 8.3, 6.8, 6.3, with & = 0.65 and AIC = 513.1, the residual
degrees of freedom is 224 — 75 — 8.3 — 6.8 — 6.3 =~ 130.6, with SEs around 0.4 for the estimated
variety effects (0.54 for variety 27).

0 Using REML the smooths have dfy = 7.2, 3, 6.1, with & = 0.66 and AIC = 518.3, the residual
degrees of freedom is 132.7, with SEs around 0.4 for the estimated variety effects (0.53 for variety
27).

[0 The estimated smoothing parameters are Xl = 0.0029, /):2 = 0.18 and /)\\3 = 0.0078.

[0 The effective degrees of freedom for the smooth terms, with the totals:

Block Py .y Total
1 1.00 1.07 0.90 0.7 0.65 0.17 038 131 1 718
2 061 021 012 —-0.2 003 —-0.26 0.01 149 1 3.00
3 0.99 1.04 0.76 04 041 -0.18 0.18 147 1 6.07

0 The P, ,, need not be positive, though their total for each smooth is positive.

0 In applications it would be wise to check whether increasing ¢,,, would lead to very different fits.
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Example: Spring barley data

o o |

Yieldy
Yieldy

Left: data (offset by adding 4 and 8 to blocks 2 and 3).
Right: estimated fertility patterns (with estimated df 7.2, 3, 6.1) and 95% unconditional pointwise
confidence intervals, fitted using REML. The intervals are wider for blocks 1 and 3.
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Example: Spring barley data

22
22
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20
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14
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18
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16
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Yieldy
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12
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10
10

10
L

T T T
0 20 40 60 0 20 40 60 0 20 40 60

Location x Location x Location x

Left: data (offset by adding 4 and 8 to blocks 2 and 3).
Center: Estimated variety effects (also offset)
Right: residuals (also offset, and showing serial autocorrelation?)
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Example: Spring barley data
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Yieldy
Yieldy

Yieldy
14
L

T
0 20 40 60 0 20 40 60 0 20 40 60

Location x Location x Location x

Left: data (offset by adding 4 and 8 to blocks 2 and 3).
Center: estimated fertility patterns (REML), also offset.
Right: residuals.
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Example: Spring barley data

[0 Should the varieties be treated as randomly selected from a population of varieties?
0 If so, we use the same basis matrix X as in the previous model, but add a penalty matrix AgDg
and minimise the penalised sum of squares
(y — BY)"(y — BY) + 0" D0,
where
D, = )\5D5 4+ A D1+ AaDy + A3Ds,
where Dg = diag(I75,0).
[0 The effective degrees of freedom for this model are 44.8 for 5 and 7.5, 3.9 and 6.4 for the splines.
[0 The optimal smoothing parameters are Ag = 1.76, A; = 0.0027, Ay = 0.073 and A3 = 0.0070.
[0 The fixed-effects model has 75 degrees of freedom for (3, so this is substantial shrinkage; the
estimated standard deviation drops from 0.65 to 0.39.
[0 The estimates under the random-effects model have standard errors around 0.31 (0.36 for variety
27), compared to 0.41 (0.54 for variety 27) for the fixed-effects model.
[0 The next slide compares the estimates.
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Example: Spring barley data

Comparison of estimated variety effects under fixed-effects and random-effects models:

115 12.0
1

11.0
.

3
o
o
£
@
8
=
3
£
)
g &
a4 o5 0
S - .f"
2
S -
g o ”0‘
2 3
T 2
£ P
= L]
3 P
g

o |

o

T T T T T T T
90 95 100 105 110 115 120

Variety estimates under fixed—effects model
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Discussion

[0 The basic ideas of spline smoothing extend to the additive model:

use of basis functions to represent smooth curves;

penalization of parameters/random effects to impose smoothness;
REML/GCV estimation of smoothing parameters X;

linear estimation using shrinkage matrix S);

effective degrees of freedom defined using eigenvalues of S},

with

[0 Penalization corresponds to Bayesian model, with smoothing parameters estimated from the data

inclusion of (unpenalized) parameters for covariate effects;

different smoothers for different variables, penalised individually.

(empirical Bayes estimation).

Regression Methods
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General Models slide 213

Smoking data

Table 2: Lung cancer deaths in British male physicians (Doll and Hill, 1952). The table gives man-years
at risk T'/number of cases y of lung cancer, cross-classified by years of smoking ¢, taken to be age minus
20 years, and number of cigarettes smoked per day, d.

Years of Daily cigarette consumption d
smoking ¢
Nonsmokers 1-9 10-14  15-19 20-24 25-34 35+
15-19 10366/1 3121 3577 4317 5683 3042 670
20-24 8162 2037 3286/1 4214 6385/1  4050/1 1166
25-29 5969 2288 2546/1 3185 5483/1  4290/4 1482
30-34 4496 2015 2219/2 2560/4 4687/6  4268/9 1580/4
35-39 3512 1648/1 1826 1893  3646/5 3529/9 1336/6
40-44 2201 1310/2 1386/1 1334/2 2411/12 2424/11 924/10
45-49 1421 927 988/2 849/2  1567/9 1409/10 556/7
50-54 1121 710/3 684/4  470/2 857/7 663/5 255/4
55-59 826/2 606 449/3  280/5 416/7 284/3  104/1
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Smoking data

Lung cancer deaths in British male physicians. The figure shows the rate of deaths per 1000
man-years at risk, for each of three levels of daily cigarette consumption.

o cigarettes
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Smoking data
OO0 Suppose number of deaths y has Poisson distribution, mean T'A(d, t), where T' is man-years at

risk, d is number of cigarettes smoked daily and ¢ is time smoking (years).
[ Take

Ad, 1) = Bot® (1 n 52d53) :

— background rate of lung cancer is Byt?' for non-smoker,

— additional risk due to smoking d cigarettes/day is Sod™.
O With x; = (T},d;,t;), can write this as

y; ~ Poiss{u(B;z;)},
w(Bix) = THt™ <1 +52d53) , j=1,...,n:

a nonlinear model with Poisson-distributed response.
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Challenger data
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Challenger data

Table 3: O-ring thermal distress data. 7 is the number of field-joint O-rings showing thermal distress
out of 6, for a launch at the given temperature (°F) and pressure (pounds per square inch)

Flight Date Number of O-rings with  Temperature (°F) Pressure (psi)
thermal distress, r T T9
1 21/4/81 0 66 50
2 12/11/81 1 70 50
51-F  29/7/85 0 81 200
511 27/8/85 0 76 200
51-J  3/10/85 0 79 200
61-A  30/10/85 2 75 200
61-B  26/11/86 0 76 200
61-C  21/1/86 1 58 200
611  28/1/86 — 31 200

Regression Methods
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Challenger data

Proportion
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Figure 1: O-ring thermal distress data. The left panel shows the proportion of incidents as a function
of joint temperature, and the right panel shows the corresponding plot against pressure. The z-values
have been jittered to avoid overplotting multiple points. The solid lines show the fitted proportions of
failures under a logistic regression model.
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Comments

O Linear model y ~ (X3,0%1,)
— applicable for continuous response y € R
— assumes linear dependence of mean response E(y) on covariates X
— sometimes assumes y normal
[0 Lots of data not like this
0 Need extensions for
— nonlinear dependence on covariates
— arbitrary response distribution (binomial, Poisson, exponential, ...)
— dependent responses
— variance non-constant (and related to mean?)

— censoring, truncation, ...
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Simple fixes

[0 Just fit a linear model anyway
— Might work as an approximation, but usually extrapolates really badly.

[0 Fit a linear model to transformed responses
— E.g., take variance-stabilising transformation for y, such as 2,/y when y is Poisson
— Can be helpful, but usually the obvious transformation can’t give linearity.

[0 Instead we attempt to fit the model using likelihood estimation.
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Revision: Likelihood inference slide 222

Likelihood

Definition 29 Let y be a data set, assumed to be the realisation of a random variable Y ~ f(y;0),
where the unknown parameter 0 lies in the parameter space 29 C RP. Then the likelihood (for 0
based on y) and the corresponding log likelihood are

L(0) = L(6;y) = fy(y:0), €(0) =logL(0), 6 € Qy.

The maximum likelihood estimate (MLE) 0 satisfies ((6) > ((0), for all 6 € Q.
Often 0 is unique and in many cases it satisfies the score (or likelihood) equation

() _
00 0,

which is interpreted as a vector equation of dimension p x 1 if 0 is a p x 1 vector.
The observed information and expected (Fisher) information are defined as

820(0)

J(0) =~ oot 10) =E{J0)};

these are p X p matrices if 6 has dimension p.
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Maximum likelihood estimator

O In large samples from a regular model in which the true parameter is 92 the maximum

x1r

likelihood estimator @ has an approximate normal distribution,
é\ ~ Np {007 J(é\)il} 9
so we can compute an approximate (1 — 2a) confidence interval for the rth parameter 69 as

§r + zavl/Q

T

where vy, is the rth diagonal element of the matrix J(§)_1.
O This is easily implemented:
— we code the negative log likelihood —¢(#) (and check the code carefully!);
— we minimise —¢(6) numerically, ensuring that the minimisation routine returns 6 and the

Hessian matrix J(g) = —626(0)/8960T]9:§

— we compute J(g)_l, and use the square roots of its diagonal elements, vi{z, e ,vclk/f, as
standard errors for the corresponding elements of 6.
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Aside: Regular model

We say that a statistical model f(y;0) is regular (for likelihood inference) if
1. the true value 6° of 6 is interior to the parameter space Qy C R?;
2. the densities defined by any two different values of 6 are distinct;

3. there is an open set Z C €y containing #° within which the first three derivatives of the log
likelihood with respect to elements of # exist almost surely, and

0% log f(Y;;60)/00,00500, < g(Y;)

uniformly for § € Z, where 0 < Eo{g(Y;)} = K < oo; and

4. for § € T we can interchange differentation with respect to 6 and integration, that is,

of (w:9) 1 (y;0)
aa/f vi0 _/ a0 aeaaT/f yi0) dy = | —5g0er ¢

The results are also true under weaker conditions, for non-identically distributed and dependent data.
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Aside: Comments on regular models

Condition

1. is needed so that § can lie ‘on both sides’ of 8° and hence can have a limiting normal distribution,
once standardized—fails, for example, if 6 has a discrete component (e.g. changepoint

ve{l,...,n});
is needed to be able to identify the model on the basis of the data;
ensures the validity of Taylor series expansions of ¢(6)—not usually a problem;

ensures that the score statistic has a limiting normal distribution—can fail in some models —
sometimes good news, leading to faster convergence than n=%/2.

All the above assumes the postulated model is correct! — there is a literature on what happens
when we fit the wrong model, or if the parameter dimension increases with n, or ... usually there are
no generic results for such cases.
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Likelihood ratio statistic

O Model fg(y) is nested within model f4(y) if A reduces to B on restricting some parameters:
— for example, the model Y1, ..., Y, "0 A(0,02) is nested within the model
Yi,....Y, g N (u,0?), because the first is obtained from the second by setting p = 0;
— the maximised log likelihoods satisfy ZA > ZB, because the more comprehensive model A
contains the simpler model B.
[0 The likelihood ratio statistic for comparing them is
W =2(ly —lp).
O If the model is regular, the simpler model is true, and A has ¢ more parameters than B, then
2
W~ xg-
0 This implicitly assumes that ML inference for model A is OK, so that the approximation
Oa ~ N{04,Ja(04)" 1} is adequate.
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Profile log likelihood

O Consider a regular log likelihood ¢(1), \), where the parameter of interest 1) is variation L
independent of the nuisance parameter ), i.e., (¢, \) € Qy x Q), and the overall MLE is (¢, \).

[0 For a confidence set for v, without reference to A, we use the profile log likelihood
say, and, based on the limiting distribution of the likelihood ratio statistic, take as (1 — 2«)
confidence region the set

[0 When 9 is scalar, this yields

{v e (w3} 2 003 - Hd( - 20)},
and $x}(0.95) = 1.92.

O Such intervals are generally better than the standard interval 1Z:|: zoSE, particularly when the
distribution of v is asymmetric, but require more computation, since they involve many
maximisations of /.
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Iterative Weighted Least Squares slide 229

Model setup

[0 Independent random variables Yi,...,Y,,, with observed values y1,...,y,, and covariates
LlyeoosLp.

O Suppose that probability density of Y; is f(y;j;n;,¢), where n; = n(5,x;), and ¢ is common to all
models.

O Log likelihood is

n

(B, ) =D (B, 6) = log f{y;in(B,z5), ¢}

j=1 J=1
O More generally, just let £;(3, ¢) denote the log likelihood contribution from the jth observation.

O Suppose ¢ known (for now), suppress it, and estimate f.

Example 30 (Normal regression model) Express the normal regression model in the terms above.
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Note to Example 30
Here Y; e N (pj,02) with p; = n; = n(x;; 8), so obviously

nj=n(z;B), ¢=0° ;=—-3{(y; —n;)*/¢+logo}.
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Iterative weighted least squares (IWLS)

[0 General approach for estimation in regression models, based on Newton—Raphson iteration
[0 Assume that ¢ is fixed, and write

0By = Li{n; (B)}.
j=1

0 MLEs 3 usually satisfy

2(B)
= =1,.
aﬁr 07 M 7p7
or equivalently
ouB) oot ot
DS ) =0, (13)

98 98 oy 98

where u(3) is n x 1 vector with jth element 9¢/0n;.
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IWLS I

[0 Newton—Raphson update step: R
B=(X"TWX) ' X"Wz,
where
Xnxp = 0On/oB", (design matrix)
Wpxn = diag{E(—@QEj/8nJ2)}, (weights)
Zox1 = XB+Wlu, (adjusted dependent variable)
[J Thus to obtain MLEs ﬁ we use the IWLS algorithm:
(1 take an initial B\ Repeat
— compute X, W, u, z;
— compute new B and replace the preceding value;
until changes in f(ﬁ) (or, sometimes, B, or both) are lower than some tolerance.
O Sometimes a line search is added, if f(ﬁnew) < f(ﬁold): i.e., we half the step length and try again.
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Derivation of IWLS algorithm

[0 To find the maximum likelihood estimate E starting from a trial value 3, we make a Taylor series
expansion in (13), to obtain

on™ (8) —~ On; () 9*;(B) om; (B 0 (B 58
o0+ Z 25 an§ 36T +28535T B-g)=0. (14

If we denote the p X p matrix in braces on the left by the p x p matrix —J(/3), assumed invertible,
we can rearrange (14) to obtain

191" (B)
op

This suggests that maximum likelihood estimates may be obtained by starting from a particular

B, using (15) to obtain 3, then setting 5 equal to 3, and iterating (15) until convergence. This is

the Newton—Raphson algorithm applied to our particular setting. In practice it can be more
convenient to replace J(3) by its expected value

_ - ni(8) 0%¢; '\ 9n;(B) .

Jj=1

B=p+J(B)" u(B). (15)

the other term vanishes because E{u;(3)} = 0. We write
I(B) = X (B)"W(B)X(B), (16)

where X () is the n x p matrix On(5)/05" and W () is the n x n diagonal matrix whose jth
diagonal element is E(—9%(;/0n?).
O If we replace J(3) by X(8)"W(B)X (/) and reorganize (15), we obtain

B=X"WX) ' X"W(XB+W lu) = (X"WX) ' X" Wz, (17)

say, where the dependence of the terms on the right on (3 has been suppressed. That is, starting
from (3, the updated estimate 3 is obtained by weighted linear regression of the n x 1 vector
adjusted dependent variable

2= X(B)B+W(B) " u(B)

on the columns of X (/3), using weight matrix W (3). The maximum likelihood estimates are
obtained by repeating this step until the log likelihood, the estimates, or more often both are
essentially unchanged. The variable z plays the role of the response or dependent variable in the
weighted least squares step.

[0 Often the structure of a model simplifies the estimation of an unknown value of ¢. It may be

estimated by a separate step between iterations of E by including it in the step (15), or from the
profile log likelihood £, ().
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Examples

Example 31 (Normal nonlinear model) Give the components of the IWLS algorithm for the
normal nonlinear model.
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Note to Example 31

O Here the mean of the jth observation is n; = n(x;; 5). The log likelihood contribution £;(n;) is
2y 1 2 1 2
li(ny,0%) = =5 {log o™ + —5(y; — 1) ¢,
> ot 0%l
j 1 ; 1
— J . J _
uj(n;) = oy —2 (5 —m), = ot
the jth element on the diagonal of W is the constant o2,
The jth row of the matrix X = 0n/0B3" is (On;/0p0,-..,0n;/0Bp—1), and as 7; is nonlinear as a
function of 5, X depends on f. R
After some simplification, we see that the new value for 3 given by (17) is
B=(X"X) X" (XB+y—n), (18)
where X and 7 are evaluated at the current 3. Here n # X3 and (18) must be iterated.

[0 The log likelihood is a function of 8 only through the sum of squares,

SS(8) =35 1{yj — n;(B)}2. The profile log likelihood for o2 is

(o) = max (8, 0%) = — {nlog o2 + SS(B)/(;?} ,
so the maximum likelihood estimator of o2 is 52 = SS(B)/n Although S? = SS(B)/(n —p)is
not unbiased when the model is nonlinear, it turns out to have smaller bias than 2, and is
preferable in applications.

[0 In some cases the error variance depends on covariates, and we write the variance of the jth
response as JJQ. = 0'2($j,’)/). Such models may be fitted by alternating iterative weighted least
squares updates for 5 treating - as fixed at a current value with those for ~ with S fixed,
convergence being attained when neither estimates nor log likelihood change materially.
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Deviance

O Let 7 = 1;(B,x;), where 3 is MLE of 3, giving maximised log likelihood £(3) and
nt =, 7n)-

O Let 7; be the value of 1); that maximises log f(y;;7;), and let 7° = (71,...,7,). This
corresponds to the saturated model, with

#parameters in 1) = #observations in y,
which will give the largest likelihood possible.

O Define the scaled deviance:

n
D =2 {log f(y;; ;) — log f(y;; )} > 0.
7=1

(0 Small D implies 7 = 7, so model fits well.

0 Large D implies poor fit — like SS(B) in linear model.
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0

Differences of deviances

Example 32 (Normal linear model) Find the difference of deviances in the normal linear model.

Consider two models:

— Model A: 87 = (B4,...,8,) € RP vary freely — MLEs 7 = n(34);

- Model B: (B1,...,084) € R? vary freely, but 5,11, ..., [, are fixed — hence ¢ free parameters,
MLEs 7% = 5(5%).

Model B is nested within model A: B can be obtained by restricting A.

Likelihood ratio statistic for comparing the models is
. N n
2(0a — L) =2 {log f(y;;7}') —log f(y;;7)')} = D — Da,
j=1

and this ~ x2_, if the models are regular.

If ¢ unknown, replace it by an estimate: same distributional approximations will apply.
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Note to Example 32

[J  Suppose that the y; are normal with means 7; and known variance ¢. Then
log f(yjinj, ¢) = —5 {log(2m¢) + (y; — 1;)* )¢}
is maximized with respect to 7); when 7); = y;, giving log f(y;;7;, ¢) = —% log(2m¢). Therefore
the scaled deviance for a model with fitted means 7; is
n
D =g (y; — )
j=1

which is just the residual sum of squares for the model, divided by ¢. If n; = x}rﬁ is the correct
normal linear model, the distribution of the residual sum of squares is gbx%_p, so values of D
extreme relative to the X%,p distribution call the model into question.

[0 The difference between deviances for nested models A and B in which § has dimensions p and
q<p .

Dp—Da=¢"> {07 — (i -0’} ~ xpy
j=1

when model B is correct. This distribution is exact for linear models.

O If ¢ is unknown, it is replaced by an estimate. The large-sample properties of deviance differences
outlined above still apply, though in small samples it may be better to replace the approximating
x? distribution by an F distribution with numerator degrees of freedom equal to the degrees of
freedom for estimation of ¢.
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Model Checking slide 236

Model checking

[0 Need to assess whether a given model fits adequately, or needs to be modified.
[0 Two basic approaches:

— overall tests either using generic statistic (e.g., chi-squared) or by model expansion (e.g.,
adding a term and testing for significance);

— regression diagnostics for detecting a few possibly dodgy observations.

00 Most widely used diagnostics in the linear model y = X,,»,3 + € are residuals e; = y; — ¥; and
(much better) standardized residuals

Yi — Yj

SR N
s —h) 2

j

where the leverage hj; is the jth diagonal element of the hat matrix H = X (X" X)"1 X7, and

the Cook statistic )

L 5 hj
U=—9-j) Y —Y—j) =,
G5 G T = 55

which measures the effect of deleting the jth case (z;,y;) on the fitted model.

C. = —
I7 ps?
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Diagnostics in general case

O Linear model ideas work as approximations (2nd order Taylor series, painful expansions).

0 Leverage hj; defined as jth diagonal element of
H=WY"2X(X"WX) ' X"W'/2,

depends in general on 3, unlike in linear model.

[0 Cook statistic is change in deviance

~ ~ R
C; =2 {t(5) ~ 65-0)} = S

where B,j is MLE when jth case (x;,y;) is dropped, and 7p; is standardized Pearson residual
(see below).

OO There are several types of residual (see next page).
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Residuals in general case

OO Deviance residual:
d; = sign(ij; — 1) [2{¢; (7j: ¢) — £33 &) N2,
for which Zd? = D is deviance.

O Pearson residual: uj(ﬁ)/\/wj(ﬁ).

O Standardized versions

oy e (B)
=R 2T Ly (B)(L — hyy) Y2

and (even better)
* j—

ri =rpj+ TB} log(rpj/rpj) ~ N(0,1)

for many models.

O These all reduce to usual standardized residual for normal linear model.
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Example

Example 33 (Gumbel linear model) Give the components of the IWLS algorithm for fitting the
linear model

yj=Po+bi(z; —T) +71e5, j=1,...,n,
with Gumbel errors having density function

. Yj =1 Y =1
flyjsmm) =7 leXp{— — —eXp(— ! J>}

T

where T > 0 and n; = By + B1(x; — T); this distribution is natural for maxima, note that 7% is not the
variance.
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Note to Example 33

[ As the data are annual maxima, it is more appropriate to suppose that y; has the Gumbel density

flyjinj,m) =7""exp {—L ; L exp <—L — m) } , (19)

T

where 7 is a scale parameter and 1; = By + fi(x; — T); here we have replaced the s with s for
continuity with the general discussion above.

O In this case
Y —n; yi —n;
£(ny.m) = o7~ 1o (——) | (20)

and it is straightforward to establish that

0ti(njm) _ 1, Cexp (YT E (g, 7) _ 2
onj T ’ 877]2- ’

that 9n/0B" = X is the n x 2 matrix whose jth row is (1,z; — ), and W = 7721,,. Hence (17)
becomes 8 = (X" X)~}(X 3 + 7%u), where the jth element of u is 77 [1 — exp{—(y; — n;)/7}.

[ Here it is simplest to fix 7, to obtain /3 by iterating (17) for each fixed value of 7, and then to
repeat this over a range of values of 7, giving the profile log likelihood #,(7) and hence confidence
intervals for 7. Confidence intervals for 8y and (1 are obtained from the information matrix.

[0 With starting value chosen to be the least squares estimates of 3, and with 7 = 5, 19 iterations of
(17) were required to give estimates and a maximized log likelihood whose relative change was
less than 1070 between successive iterations. We then took 7 = 5.5, ..., 40, using 3 from the
preceding iteration as starting-value for the next; in most cases just three iterations were needed.
The left panel of Figure 2 shows a close-up of £,,(7); its maximum is at 7 = 14.5, and the 95%
confidence interval for 7 is (11.9,18.1). The maximum likelihood estimates of 3y and f3; are
111.4 and 0.563, with standard errors 2.14 and 0.137; these compare with standard errors 2.61
and 0.177 for the least squares estimates. There is some gain in precision in using the more
appropriate model.
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Venice data

Sea level (cm)

140 160 180

120

100

80

Example 34 (Venice sea level data) The figure below shows annual maximum sea levels in Venice,
from 1931-1981. The very large value in 1966 is not an outlier. The fit of a Gumbel model to the
data using IWLS gives MLEs (SEs) 5o = 111.4 (2.14) (cm) and 1 = 0.563 (0.137) (cm/year). The
standard errors for LSEs are 2.61, 0.177, larger than for MLEs with Gumbel model — gain in precision
through using appropriate model.

1930 1940 1950 1960 1970 1980

Year
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Venice data

*
/r‘j.

Profile log likelihood

Figure 2:  Gumbel analysis of Venice data. Left panel: profile log likelihood ¢,(7) = maxg¢(3,7),
with 95% confidence interval (11.9,18.1) (cm) for 7. Right panel: normal probability plot of residuals
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Summary

[0 For regression problems with independent responses y; dependent on parameters 3 through
parameter 1; = n(x;; ), generalise least squares estimation to maximum likelihood estimation,
using iterative weighted least squares algorithm: iterate to convergence

B=(X"WX)'X"Wz, z=XB+W lu,

where

Xpwp = X(B) = a—;T, tnx1 = uli) = 500 Wan = Wn) = _E{am‘?nT } ’

with ¢ the log likelihood for the data.
O Standard likelihood theory is used for confidence intervals and model comparison.
O Linear model diagnostics (residuals, leverage, Cook statistics, ...) generalise to this setting.

O Next: generalized linear models (GLMs), wide class of models with exponential family-like
response distributions.
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Generalized Linear Models slide 244

Motivation

y€{0,1,...}, ory > 0.

elegant unifying theory, and encompass many possibilities (in addition to the normal)
[J Basic idea is to build models such that

E(y) =p, g(p)=n=2"8,
where g is a suitable function, and y ~ exponential family (almost).

O  Warnings:

books, the latter is y = X3 + ¢, with cov(e) = oV not diagonal);
— Don’t write y = p + ¢, since in a GLM the distribution of ¢ usually depends on p.

O Need to generalise linear model beyond normal responses, e.g. to data with y € {0,1,...,m}, or

O Consider exponential family response distributions (binomial, Poisson, ...), which have an

— Don't confuse Generalized Linear Model (GLM) with General Linear Model (GLM, in older
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Generalized linear model (GLM)

[0 Normal linear model has three key aspects:
— structure for covariates: linear predictor, n = "3,
— response distribution: y ~ N(u,0?);
— linear relation n = p between = E(y) and 7.
O GLM extends last two to
— Y has density/mass function

y0 —b(0)

f(y;9,¢)=exp{ 5 +C(y;¢)}, yeV,0€Q,¢>0, (21)
where
> ) is the support of Y,
> Qg is the parameter space of valid values for § = 0(n), and
> the dispersion parameter ¢ is often known;
— n=g(u), where g is monotone link function
> the canonical link function giving 7 = 6 = b'~!(1) has nice statistical properties;
> but a range of link functions are possible for each distribution of Y.
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Examples

Example 35 (GLM density) Show that the moment-generating function of f(y;0,¢) is
My (t) = exp[{b(0 + tp) — b(0)} /], and deduce that

E(Y)=V(0) =p, var(Y)=b"(0) = ¢b"{t'" (1)} = ¢V ();
the function p— V (p) is known as the variance function.

Example 36 (Poisson distribution) Write the Poisson mass function as a GLM density, and find its
canonical link function.

Example 37 (Normal distribution) Write the normal density function as a GLM density, and find
its canonical link function.

Example 38 (Binomial distribution) Write the binomial mass function as a GLM density, and find
its canonical link function.
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Note to Example 35

[0 Suppose that Y has a continuous density; if not the argument below is the same, except that
integrals are replaced by summations.
O Let Qg ={6:b(0) < oco}. Then
My(t) = Efexp(tY)}

= /etyeXp{ye_TM+C(y;¢)} dy

= /eXp {yw i ti) mLG ¢)} dy.
If 0+ té € Q. then

/exp {y(@ +t9) ; b(o + t9)

+ c(y; ¢)} dy =1,

SO
My (t) = E{exp(tY)} = exp [{b(0 + t6) — b(0)} /9]
[0 Hence the cumulant-generating function of Y is
Ky (t) = log My (t) = {b(0 + t¢) — b(0)} /¢,
and differentiating twice with respect to ¢t and setting ¢t = 0 yields

E(Y) = Ky(t)|,_, =V (0), var(Y)=Ky(t)|,_, = ¢b"(0).

00  One can show that b(f) is strictly convex on . Thus ¥/() is a monotonic increasing function of
0, so b'~1(-) exists and is itself monotonic, so V(i) = b"{t'"1 (1)} is well-defined.
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Note to Example 36
The Poisson density may be written as
fly;p) =exp(ylogp —p—logy!), y=0,1,..., pu>0,

which has GLM form (21) with # = log i1, b(8) = €’, ¢ = 1, and c(y; ¢) = —logy!. The mean of y is
p="0(0) = e’ = p, and its variance is b”(0) = ¢’ = p, so the variance function is linear: V(1) = p.
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Note to Example 37

2

The normal density with mean p and variance o° may be written

(y* — 2yp + p?)
f(yip, o) = exp {— 902 — 3log(2m0?) b,

SO
0=p, ¢=0° 0b0)=3560% cly;¢)=—559"— 3log(2m9).

As the first and second derivatives of b(6) are 6 and 1, we have V' (u) = 1; the variance function is
constant.
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Note to Example 38

We write the binomial density

in the form

exp [m {% log (ﬁ) +log(1 — w)} +log (:’f)} :

1
y= o= o= tog () b0) = tog(1+ ¢, olyio) —tox (")

m

SO

The mean and variance of y are

6 6

e e
= b/ 0 = —— b,/ 0 = -2
H () 1+ ef’ 0°(0) m(1 + e?)2’

the variance function is V() = p(1 — p).
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Estimation of

Example 39 (IWLS algorithm) Find the components of the IWLS algorithm for a GLM.

O If canonical link is used then 0; = x}fﬁ, so if ¢ is known, then
"yt B — b(xt
() - 3 (z;6) elusio) |
j=1
= {y'XB-K(B)}/o+C(y;9),

say, which in terms of [ is a linear exponential family with

— canonical parameter (3,1
— canonical statistic (X"y)px1,
and many nice properties then hold.

O If X is full rank, then £(3) is (almost always) strictly concave and has a unique maximum in
terms of f.

O Problem: the maximum may be at infinity in certain (rare) cases—this can arise with binomial
responses: beware of 0, ~ £36.
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Note to Example 39
[0 To compute the quantities needed for the IWLS step 3 = (XTW X)L XTW (X3 + Wu), we

need
on .
Xn><p = 6—IBT, ann = dlag{E(—E?ij/@n?)}, Unpx]1l — {c%j/ﬁnj},
where (with ¢; instead of ¢ for generality, see the next slide),
¢(8) = {y”T(j) + c(y;; ¢j)} , V(05) = ny, my=gly) =258
j

O  First note that dn; /063, = xj,, so X = 0n/0B" is just a matrix of constants.
[0 We need the first and second derivatives of /; with respect to 7;, so we write

6€j o 8uj 89j 6@

onj — On; Ou; 00;°

with
o ouj oy ot y; = (9;)
2 Y, =L =0 =V(u;), —2L= 7
3Mj g (ﬂj) 5(9j ( ]) (MJ) 8(9j ¢j
which yields
oty —b0y) oy A(Gy)

Uj = — = = = ,
oo g (u)eV () g (ni)eiV (k) B(6))
say, where E(A) = 0. For the second derivative, we note that

0%; 0 04 _ (3uj 96; 9 )% _ Ou; 06 {A'(Qj) A(Hj)B/(Hj)}

o on;om; on; — On; oy | B(O;)  B(6;)?

On; O 90;

and on noting that B(¢;) is non-random and A’(0;) = —b"(6;) = —V(p;), we obtain

o — E AT 1 Vi) 1
T o | g () Vi) 9 (0)dV(kg) 9" (13)205V (1)
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Note to Example 39, part Il

[0 From above we see that the components of the score statistic u(/3) and the weight matrix W ([3)

may be expressed in terms of components 1; of the mean vector 1 as

W 00;0605) _  yi—m
’ onj 905 g () V (1y)’
aej>2 02¢;(0;) 1
w — (2% _ , 22
’ (% 903 9 ()% 05V (1)) 22)

where ¢'(p1;) = dg(pj)/dp;. Thus 3 is obtained by iterative weighted least squares regression of
response

2=XB+g(Wy—w=n+dgWy-mn
on the columns of X using weights (22).

O By using y as an initial value for 1 and g(y) as an initial value for n = X3, we avoid needing an
initial value for S.
[0 It may be necessary to modify y slightly for this initial step. For example if we use the log link for
Poisson data, and some y; equal zero, then we may need to replace them with some small
positive value to avoid taking log 0 for some components of the initial n = logy.
Regression Methods Autumn 2022 — note 2 of slide 248

Estimation of ¢

[0 When ¢ unknown, it is often replaced by ¢; = ¢a;, with known a; and aj_l treated as a weight.
Then we replace the scaled deviance by the deviance ¢D.
0 If the model is correct and ¢ is known, then Pearson’s statistic
1~ (y —1y)*
P=—% L xh
¢; a;V(pg) 7P
analogously to the sum of squares in a linear model, with E(P) =n — p.
[0 The MLE of ¢ can be badly behaved, so usually we prefer the method of moments estimator
~ 1 <&
6= e D = ) gV (),
j=1
which is obtained by solving the equation P = n — p, based on noting that E(X%_p) =n-—p.
O If the data are sparse (e.g., many small binomial or Poisson counts), then standard asymptotic
results are suspect.
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Example: Jacamar data

Table 4: Response (N=not sampled, S = sampled and rejected, E = eaten) of a rufous-tailed jacamar
to individuals of seven species of palatable butterflies with artifically coloured wing undersides. Data
from Peng Chai, University of Texas.

Aphrissa  Phoebis Dryas Pierella Consul Siproeta
boisduvalli  argante  iulia luna fabius  stelenest
N/S/E N/S/E N/S/E N/S/E N/S/E N/S/E
Unpainted  0/0/14 6/1/0 1/0/2 4/1/5 0/0/0  0/0/1

Brown 7/1/2  2/1/0  1/0/1 2/2/4 0/0/3 0/0/1
Yellow 7/2/1  4/0/2 5/0/1 2/0/5 0/0/1 0/0/3
Blue 6/0/0  0/0/0 0/0/1 4/0/3 0/0/1 0/1/1
Green 3/0/1  1/1/0 5/0/0 6/0/2 0/0/1 0/0/3
Red 4/0/0  0/0/0 6/0/0 4/0/2 0/0/1  3/0/1
Orange 4/2/0  6/0/0 4/1/1 7/0/1 0/0/2 1/1/1
Black 4/0/0  0/0/0 1/0/1 4/2/2 7/1/0  0/1/0

T includes Philaethria dido also.
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Jacamar data

Figure 3: Proportion of butterflies eaten (£2SFE) for different species and wing colour.
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Jacamar data

[0 How does a bird respond to the species s and wing colour ¢ of its prey?

[0 Response has 3 (ordered) categories: not attacked (N), attacked but then rejected (S), attacked
and eaten (E)

[0 The data form an 8 x 6 layout, with a 3-category response in each cell, total m.;
0 Assume that the number in category E (response) is binomial:

Res ~ B(mes,mes), c¢=1,...,8,s=1,...,6,
where ¢ is colour and s is species, with probability that bird attacks and eats butterfly is

__exp(ac+7s)
1+ exp(ae+7s)’

Tes c=1,....8,s=1,...,0,

S0
— large a corresponds to colours that the jacamar likes to eat,
— large =5 corresponds to species that it likes.

O This is a GLM with response y.s = 7'cs/Mes, E(Yes) = Tes, and canonical (logit) link function

n=log{rn/(1 =m)}, Nes=c+7s.
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Jacamar data: Analysis of deviance

Table 5: Deviances and analysis of deviance for models fitted to jacamar data. The lower part shows
results for the reduced data, without two outliers.

Full data Without outliers

Terms df Deviance df  Deviance

1 43  134.24 35 73.68

14-Species 38 11459 31 46.04

1+Colour 36 108.46 28 63.20

1+Species+Colour 31 67.28 24 28.02
Terms df Deviance | Terms df Deviance

reduction reduction
Species (unadj. for Colour) 5 19.64 Species (adj. for Colour) 5 41.18
Colour (adj. for Species) 7 47.31 | Colour (unadj. for Species) 7 25.78
Species (unadj. for Colour) 4 27.63 | Species (adj. for Colour) 4 35.18
Colour (adj. for Species) 7 18.03 | Colour (unadj. for Species) 7 10.48
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Jacamar data: Residuals

Figure 4: Standardized deviance residuals rp for binomial two-way layout fitted to jacamar data.
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Jacamar data: Parameter estimates

Table 6: Estimated parameters and standard errors for the jacamar data, without 2 outliers.

Aphrissa Phoebis Dryas Pierella Consul  Siproeta
boisduvalli argante iulia luna fabius stelenes
-1.99 (0.79) -2.22 (0.85) -0.56 (0.67) 0.16 (0.54) — 1.50 (0.78)
Brown Yellow Blue Green Red Orange Black

0.16 (0.73) 0.33 (0.68) —0.53 (0.81) -0.83 (0.75) —-1.93 (0.88) —-1.94 (0.85) —1.26 (0.86)

Interpretation

Residual deviance: 28.02, with 24 df

Pearson statistic: 25.58, with 24 df

[0 Standardized residuals in range —2.03 to 1.96: OK.

O 0o
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Example: Chimpanzee data

Table 7: Times in minutes taken by four chimpanzees to learn ten words.

Chimpanzee Word
1 2 3 4 5 6 7 8 9 10
178 60 177 36 225 345 40 2 287 14
78 14 80 15 10 115 10 12 129 80
99 18 20 25 15 54 25 10 476 55
297 20 195 18 24 420 40 15 372 190

A WON =

0 A two-way layout.

O Times vary from 2 to 476 minutes — need transformation (e.g., logarithm) if use linear model.
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Chimpanzee data

[0 How does learning time depend on word w and chimp ¢?

[0 Response is continuous and positive, so we try fitting the gamma distribution with mean p and
shape parameter v, i.e.,

1 v\”
flysp,v) = ——y" ! (—) exp(—vy/u), y>0, v,u>0,
i) = ™ (2) el

so dispersion parameter is ¢ = 1/v (¢ = v = 1 for exponential).

[0 Possible link functions:
n =log p, (log, most common), 1 = 1/u, (reciprocal, canonical)
0 Linear model structure:
New = Ce + Yy, c¢=1,...,4,w=1,...,10,

but the interpretation of the a. and ~,, will depend on the link function.

OO  With the log link, the deviances for models 1, 1+Chimp, 1+Word, and 1+Chimp+Word are
60.38, 53.43, 21.19, and 14.97. How many df are there for each model?

Regression Methods Autumn 2022 - slide 257

152



Chimpanzee data: Analysis of deviance

Table 8: Analysis of deviance for models fitted to chimpanzee data.

Term df Deviance | Term df  Deviance
reduction reduction

Chimp (unadj. for Word) 3 6.95 Chimp (adj. for Word) 3 6.22

Word (adj. for Chimp) 9 38.46 | Word (unadj. for Chimp) 9 39.19

0 Method of moments estimate is ;5 =0.432,so v = 1/;5 = 2.31.
[0 Use F' tests to assess effects of Word and Chimp, for example obtaining
6.22/3 .
0.42/3 =4.78 ~ F3 97
if there is no difference between the chimps. What is the corresponding statistic for testing
differences between words?
0 Residuals suggest that this model, or one with the inverse link, are both adequate, and both are

better than fitting a normal linear model to the log times.
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Summary

range of possible link functions.

Oo0oo0oaono

the classical linear model.

U
etc.)

0 Standard diagnostics (residuals, . .

[0 Generalized linear models extend the classical linear model in two ways:

— the response distribution is (almost) exponential family, so includes binomial, Poisson, gamma
and other distributions in addition to the normal;

— the relation between the linear predictor n = 23 and the mean p is determined by a wide

Canonical link functions give particularly simple models and are widely used.
Estimates of 3 are obtained by IWLS, which has a simple form, with no need for initial values.
A simple estimate of the dispersion parameter ¢ is available using the method of moments.

Models are compared using the analysis of deviance, which generalises the analysis of variance in
Standard likelihood theory results are used for inference (standard errors, confidence intervals,

.) extend in a natural way to this setting.
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Proportion Data

Binary response
[0 Response Y has Bernoulli distribution with
PY=1)=xn, PY=0=1-7, 0<m<l.

and EY)=p=m, var(Y) =7n(1 — ).
O Linear link function m = n = 2" can give m ¢ [0, 1], so not usually a good idea.

O Y can be interpreted in terms of a hidden variable/tolerance distribution: let Z = 2™y + o¢,
where e ~ F. Set Y = I(Z > 0), and note that

7=PY =1)=Pa"y+0e>0)=Pe>—-a"v/o)=1—- F(—z" ),

say. Note that 5 = /o is estimable, but v and o are not.
[0 The corresponding link function is given by

n=a"8=-F'(1-m)=g(n),

so different choices of F' yield different possible link functions.

Regression Methods

Link functions

Tolerance distributions and corresponding link functions for binary data.

Distribution F’ Link function
Logistic e"/(1+e") Logit n =log{r/(1—m)}
Normal ®(u) Probit n=o1(n)
Log Weibull 1 — exp(—exp(u)} Log-log n = —log{—log(m)}
Gumbel exp{—exp(—u)}  Complementary log-log 7 = log{—log(l —m)}

[0 The logit and probit links are symmetric.

O Logit (canonical link) is usual choice, good for medical studies (later), with nice interpretation,
but the probit is very similar to it and may be preferred in some cases, for its relation to the
normal distribution.

[0 The log-log and complementary log-log links are asymmetric.
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Logistic regression

O Commonest choice of link function for proportion data is the logit, which gives

exp(z' ) 1

P(Y:1):7T:]_+exp(xTﬁ)’ P(Y:O):l—TF:HTp(‘TTB),

leading to a linear model for the log odds of success,
PY=1) ™
logd ——— b —og (—— ) =27 RP.
e e e R

[0 The likelihood for 3 based on independent responses ¥1, ..., Y, with covariate vectors z1,..., Ty,
and corresponding probabilities 71, ..., m, is

e o (Siwes)
L(/B) jl;[lﬂj (1 7T]) 2 H?:1{1+exp <$;Fﬂ)}7

which is a regular exponential family with s(y) = X"y and log likelihood

() = (X"y)"B— log{1+exp(z]B)}, BeRP,

j=1

known as the logistic regression model.
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Nodal involvement data

Data on nodal involvement: 53 patients with prostate cancer have nodal involvement (r), with five
binary covariates age, stage, etc.

m r age stage grade xray acid
6 5 0 1 1 1 1
6 1 0 0 0 0 1
4 0 1 1 1 0 0
4 2 1 1 0 0 1
4 0 O 0 0 0 0
3 2 0 1 1 0 1
3 1 1 1 0 0 0
3 0 1 0 0 0 1
3 0 1 0 0 0 0
2 0 1 0 0 1 0
2 1 0 1 0 0 1
1 0 0 1 0
1 1 1 1 1 1 1
1 1 0 0 1 0 1
1 0 0 1 1
1 0 0 0 0 1 0
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Deviances for nodal involvement models

Scaled deviances D for 32 logistic regression models for nodal involvement data. 4 denotes a term
included in the model.

age st gr xr ac df D age st gr xr ac df D
52 4071 + + + 49 29.76
+ 51 3932 + + + 49 23.67
+ 51 33.01 + + + 49 2554
+ 51 35.13 + + + 49 27.50
+ 51 3139 + + + 49 26.70
+ 51 3317 + + + 49 2492
+  + 50 30.90 + + + 49 2398
+ + 50 34.54 + + + 49 23.62
+ + 50 30.48 + + + 49 19.64
+ + 50 3267 + + + 49 21.28
+ + 50 3100 + + + + 48 23.12
+ + 50 2492 + + + + 48 2338
+ + 50 2637 + + + + 48 19.22
+ + 50 2791 + + + + 48 21.27
+ + 50 26.72 + + + + 48 1822
+ + 50 252 + + + + + 47 18.07
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Model selection

[0 We have 32 competing models, and would like to select the ‘best’, or a few ‘near-best’.
O In general we have 2P models, so automatic selection of some sort is helpful.

O Could use likelihood ratio tests (differences of deviances) to compare competing models, but this
involves many correlated tests, so may lead to spurious results.

0 Usually minimise an information criterion, which accounts for the number of parameters in each
model, such as
AIC=D+2p, BIC=D+plogn,
where D is the deviance.
[0 Recall their properties, with p fixed and as n — oo:
— AIC tends to overfit, i.e., it has a positive probability of choosing a model that is too complex,;

— BIC applies a stronger penalty, so if the true model is among those fitted, it will choose it with
probability one;

— BIC usually yields less complex models than AIC, but they may predict less well.

[0 There are many other information criteria, but these are most used in practice.
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Example: Nodal involvement

[0 Model with lowest AIC has stage, xray, acid:

o B = —3.05 + 1.65gtage + 1.91Txray + 1.641, g,

where Istage = 1 indicates that stage takes its higher level, etc.
[0 Interpretation of this model:

— for an individual with stage, xray and acid at their lowest levels, the fitted probability of nodal
involvement is e =395 /(1 4 ¢73:9%) = 0.045 (though there are no such people in the data, so
this involves extrapolation);

— for someone with only Istage =1, the odds of nodal involvement are
e~305+1.65 — o=14 = () 95 3 probability of 0.2;

— for someone with Istage = Ixray = I5¢jg = 1, the odds of nodal involvement are
e~ 305+ L65+191+1.64 = g 6 3 probability of 0.9;

[0 Problems with interpretation of residual deviance of 19.64: how many df? — can amalgamate
independent binary responses with same covariates.

[0 Likewise problems with residuals ...
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Nodal involvement residuals

Figure 5: Standardized deviance residuals for nodal involvement data, for ungrouped responses (left)
and grouped responses (right).

Standardized deviance residual
]
Standardized deviance residual

00 02 04 06 08 02 04 06 08

Linear predictor Linear predictor
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Summary

OO Proportion data are often modelled using the Bernoulli/binomial response distributions.

O Link functions (logit, probit, ...) have interpretations in terms of underlying continuous variables
that have been dichotomized.

[0 The canonical and most commonly-used link is the logit, and fitting using this yields logistic
regression, in which
— the canonical parameter is the log odds;
— classical data structures (e.g., the 2 x 2 table) have nice interpretations.

O The deviance can be used to compare models (so can AIC, BIC, ...), but using its absolute value
to assess fit can be dangerous (exercise).

[0 Residuals for binary data are not very informative.
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Count Data slide 270

Types of count data

O ye{0,1,2,...}, perhaps with upper bound m, depending on sampling scheme:
— counts, with no fixed total;
— m individuals, subdivided into various categories:
> nominal response—unordered categories (gender, nationality, ... )
> ordinal response—ordered categories (pain level, spiciness of curry, ...)
O Simplest models:
— single unbounded response, or Poisson approximation to binomial, takes Y ~ Pois(u);

— group of responses (Y7,...,Yy) with fixed total ) Y; = m has multinomial distribution,
probabilities (m1,...,m4) and denominator m.

[0 Previous examples:
— Doll and Hill data on smoking had response y Poisson with © = T'A\(z; f);
— Jacamar data had ordinal (?) response N/S/E with total N+-S+E fixed—multinomial with
d=3
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Poisson and multinomial distributions

O Y ~ Pois(p) implies that

W
f(y;u)zae Booy=0,1,2,..., u>0.

O Exponential family with natural parameter § = log 11, GLM with canonical logarithmic link,
"B =mn=logp.

OO If Y is number of events in Poisson process of rate A\ observed for period of length T', then
= AT and we set n = 23 + log T

— offset logT is fixed part of linear predictor 7

O IfY, nd Pois(p,),  =1,...,d, then the joint distribution of Y7,..., Y given Y1 +---+Y;=m
is multinomial, with denominator m, and probabilities

_ M mg= —rd
P s e, = P .
ZT:lluT Zrzllur

O If (Yi,...,Yy) ~ Mult(m;m,...,74), then marginal and conditional distributions, e.g., of

™ =

(}/1+Y2,}/3+H+Y5,}/6,...,Yd), (H)Y2a}/4) | (§/3)Y55"')Yd)a

are also multinomial.
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Log-linear and logistic regressions

[0 Special case: if d = 2, then

B Vi+Yeo=m ~ B(m,w

O If p1 = exp(y + 27B), p2 = exp(y + 23), then

which corresponds to a logistic regression model for Y5 with denominator m and probability .

[0 Can estimate 3 using log linear model or logistic model—but can't estimate v from logistic model.

exp(y + 23 3)

M2

exp{(z2 — 1) B}

_-Hlﬁ-ﬂz

)

exp(y + 21 8) + exp(y + 258) 1+ exp{(xz2 — 21)" B}’
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slide 274

Premier League data

month day year

> soccer

1 Aug
2 Aug
3 Aug
4 Aug
5 Aug
6 Aug
7 Aug
8 Aug
9 Aug
10 Aug
11 Aug
12 Aug
13 Aug
14 Aug
15 Aug
16 Aug
17 Aug
18 Aug
19 Aug
20 Aug

19
19
19
19
19
19
19
19
19
20
21
22
22
22
23
23
23
23
23
26

2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000

teaml
Charlton
Chelsea
Coventry
Derby

Leeds
Leicester
Liverpool
Sunderland
Tottenham
ManchesterU
Arsenal
Bradford
Ipswich
Middlesbr
Everton
ManchesterC
Newcastle
Southampton
WestHam
Arsenal

team2 scorel score?2

ManchesterC
WestHam
Middlesbr
Southampton
Everton
AstonVilla
Bradford
Arsenal
Ipswich
Newcastle
Liverpool
Chelsea
ManchesterU
Tottenham
Charlton
Sunderland
Derby
Coventry
Leicester
Charlton

4
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Premier League data

[0 380 soccer matches in English Premier League in 2000-2001 season.
[0 Data: home score ylhj and away score Yi; when team ¢ is at home to team j, for i, j,=1,...,20,
1]

O Treat these as Poisson counts with means
iy =exp(A+a; — B;), ;= expla; — B)

where

— A represents the home advantagg;

— «; and [3; represent the offensive and defensive strengths of team 1.
O Two possibilities for fitting:

— Poisson GLM, with 39 parameters;

— binomial GLM, with 20 parameters.
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Premier League data: Analysis of deviance

Poisson model

Binomial model

Terms df  Deviance Terms df  Deviance
reduction reduction

Home 1 33.58 Home 1 33.58

Defence 19 39.21 Team 19 79.63

Offence 19 58.85

Residual 720  801.08 Residual 332  410.65

[0 There's a strong effect of playing at home, and lots of evidence of differences among the
teams—more in offence than defence.

[0 Both residual deviances are a little large, but since the counts are small, we don’t expect the
large-sample x? distribution to apply well to the residual deviance.

[0 Simulations from the fitted model suggest that the residual deviances are not unusually large, so
there's no evidence of a lack of fit.
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Premier League data: Null deviance for defence effect
Defence effect deviance (in red) for the Poisson model is large(ish) relative to x3, distribution, but the
asymptotics seem OK, based on simulations from a model without this effect (i.e., Home + Offence).
It seems we can trust asymptotic distributions for differences of deviances, even though the counts are
small.
Simulated likelihood ratio statistics
oo} o _|
o - ©
o
- OO
g I & o
<] HIN - %o |
. \ 5 ¥ yd
£ = 8
[a] o
2o |
8 g
S| ©o |
8 o
© T T T T T 1 \ \ \ \ \ \ \
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Likelihood ratio statistic Quantiles of chi-squared distribution, 19 df
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Premier League data: Residual deviance

Residual deviance of 801 (in red) for the Poisson model seems large(ish) relative to x2,, distribution,
but the asymptotics are suspect because most of the counts are small. Comparison of observed
deviance with x2,, distribution shows that 801 is in fact somewhat smaller than average for datasets
simulated from the fitted model.

Simulated likelihood ratio statistics

N
S —
o O
o
S
— | (=)
(2]
8 <
S N 2o
>° I 7 <
g 5
o« T o
S - sl °
o e
o
— o
S
o ©
o
g
o T T T l T T T T
600 700 800 900 600 700 800 900
Likelihood ratio statistic Quantiles of chi-squared distribution, 720 df
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Premier League data: Estimates

Overall (§) Offensive (o) Defensive (3)

Manchester United 0.39 0.22 0.15
Liverpool 0.13 0.12 —0.08
Arsenal — 0.04 —

Chelsea —0.09 0.08 —0.22
Leeds —0.10 0.02 —-0.17
Ipswich —0.16 —0.10 —0.13
Sunderland —0.33 —0.31 —0.10
Aston Villa —0.48 —0.31 —0.15
West Ham —0.53 —0.33 —0.30
Middlesborough —0.53 —0.35 —-0.17
Charlton —0.55 —-0.21 —0.43
Tottenham —0.58 —0.28 —0.38
Newcastle —0.59 —0.35 —0.30
Southampton —0.60 —0.45 —0.25
Everton —0.75 —0.32 —0.46
Leicester —0.77 —0.47 —0.31
Manchester City —0.90 —0.40 —0.56
Coventry —0.93 —0.53 —0.52
Derby —0.93 —0.51 —0.45
Bradford —1.29 —-0.71 —0.62
SEs 0.29 0.20 0.20

Home advantage: A = 0.37 (0.07), exp(A) = 1.45.
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Premier League data: Assessment of fit

Diagnostic plots for fitted model: residuals against 77 (top left); normal QQ-plot of residuals (top
right); Cook statistic C; against leverage ratio h;/(1 — h;) (lower left); Cook statistic C; against case
number (lower right).
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Contingency Tables slide 282

Sampling schemes
O A contingency table contains individuals (sampling units) cross-classified by various categorical
variables.

— Example: the jacamar data cross-classify butterflies by
6 species x 8 colours x 3 fates

for a total of 144 categories, each with its number of butterflies 0,1,...,14.

O The sampling scheme underlying a table may fix certain totals. Suppose a pollster wants to find
out how people will vote. She might

— wait in the street for a morning, and get opinions from those people willing to talk to her;
— wait until she has the views of a fixed number, say m, of people;

— wait until she has the views of fixed numbers of men and women.

Example 40 Find the likelihoods for each of these sampling schemes, under (unrealistic!)
assumptions of independence of voters.
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Note to Example 40
0 An R x C table arises by randomly sampling a population over a fixed period and then classifying
the resulting individuals.

[0 In the first scheme there are no constraints on the row and column totals, and a simple model is
that the count in the (7, ¢) cell, y,., has a Poisson distribution with mean .. The resulting

likelihood is v
| | {’urgc /—ch} .
€ )

Yre!

r,c

this is simply the Poisson likelihood for the counts in the RC' groups.

[0 The pollster may set out with the intention of interviewing a fixed number m of individuals,
stopping only when > ,. = m. In this case the data are multinomially distributed, with
likelihood

m!
. Wyrca Tre = 1,
Hr,c yrc! r,c " ;
with T = fire/ 287)& st the probability of falling into the (r,¢) cell.

[0 A third scheme is to interview fixed numbers of men and of women, thus fixing the row totals
My = Y. Yre in advance. In effect this treats the row categories as subpopulations, and the
column categories as the response. This yields independent multinomial distributions for each
row, and product multinomial likelihood

H{Hmrllnﬂ_ggc}’ Zﬂ-lc:"':Zﬂ-RC:la
T cYre c c c

in which m.c = pire/ > firt-
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Contingency tables and Poisson response models

[0 Multinomial models can be fitted using Poisson errors, provided the appropriate baseline terms are
always included in the linear predictor.
0 Write the data as two-way layout, with C' columns and R rows with fixed totals (e.g., 6 x 8 = 48
rows each with 3 columns for the jacamar data).
O Consider Poisson model with means i, = exp(y, + z,.0):
— the row parameters 71,...7 g are nuisance parameters, not of interest;
— we want inference for the parameter of interest, (.
O Corresponding multinomial model has fixed row totals m, and probabilities
S U Cexp(% taB) CeXp(wfcﬁ) ’
it Hrd  Dog1 exP(Yr +aB) g exp(zy,B)
forr=1,...,R, c=1,...,C, i.e., one multinomial variable for each row.
[0 The resulting multinomial log likelihood is
R C
Ora(Bsy [ m) = D0 yrelogm
r=1c=1
R (C c
= S S o (L)
r=1 (c=1 d=1
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Contingency tables and Poisson response models, Il

Lemma 41 Show that if parameters 7, for the row margins are included in the above setup, then we
can write

g

[0 General conclusion: inferences on (3 are the same for multinomial and Poisson models,

Cpoiss(B, T) = Lpoiss (T m) + Iyiuie (B y | m).

Implications:

— the MLEs of 8 and 7 based on the LHS are the same as those from separate maximisations of
the terms on the right:

> B\ equals the MLE for the multinomial model,
> T =my
— the observed and expected information matrices for 3, 7 are block diagonal.

— SEs based on the multinomial and Poisson models are equal (exercise).

provided the parameters associated to the margins fixed under the multinomial
model, i.e., the ,, are included in the Poisson fit.
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Note to Lemma 41

[J The Poisson model has no conditioning, so the log likelihood is

C C
T
EPoiss(ﬁ’ ’Y) = Z (yrc log Hre — Hrc) = Z <mT’Yr + Z yrciﬂfcﬁ —er Z 6xrcﬁ> s
r=1

r,c

where we use the fact that log pi,c = v + z.0.

O Now we reparametrise in terms of the row totals 7, = ) _ iy, noting that

C

C
=€ Z ngcﬁ, v = log 7 — log {Z eXp(:CECﬁ)} )

R { C
r=1 \(c=1

c=1

SO

R
EPOiSS(Ba 7_) = Z (mr‘ log Tr —

r=1

Tr)+z

= fPoiss(T;m) + EMult(ﬁ; Yy | m),
which is the log likelihood corresponding to

— independent Poisson row totals m, with means 7., and, independent of this,

c=1

c=1

— the multinomial log likelihood for the contingency table.

Z yrcxgcﬁ —m, log

c=1

)
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Jacamar data

Response (N=not sampled, S = sampled and rejected, E = eaten) of a rufous-tailed jacamar to
individuals of seven species of palatable butterflies with artifically coloured wing undersides. Data

from Peng Chai, University of Texas.

Aphrissa  Phoebis Dryas Pierella Consul Siproeta

boisduvalli  argante  iulia luna fabius  stelenest

N/S/E N/S/E N/S/E N/S/E N/S/E N/S/E

Unpainted  0/0/14 6/1/0 1/0/2 4/1/5 0/0/0 0/0/1
Brown 7/1/2 2/1/0  1/0/1 2/2/4 0/0/3 0/0/1
Yellow 7/2/1 4/0/2 5/0/1 2/0/5 0/0/1 0/0/3
Blue 6/0/0 0/0/0  0/0/1 4/0/3 0/0/1 0/1/1
Green 3/0/1 1/1/0 5/0/0 6/0/2 0/0/1 0/0/3
Red 4/0/0 0/0/0  6/0/0 4/0/2 0/0/1 3/0/1
Orange 4/2/0 6/0/0 4/1/1 7/0/1 0/0/2 1/1/1
Black 4/0/0 0/0/0 1/0/1 4/2/2 7/1/0 0/1/0

T includes Philaethria dido also.
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Jacamar data: Models

[0 Let factors F', S, C represent the 3 fates, the 6 species, and the 8 colours.
0 Themodels CxS,CxS+F,and C x5+ C x F mean we set

log Hesf = Qes, log Hesf = Qes T Vf, 1Og,ucsf = Qcs + Yef-

[0 The vector of probabilities corresponding to the model with terms C % S is

(7r 1, Tes2, T 3) _ ( Hesl Hes2 Hes3 ) —(l 1 l)
csly tcszy 'tes - 3 ) 3 ) 3 —\37373/)»
Zf:l Hesf Zf:l Hesf Zf:l Hesf
and that corresponding to the model with terms C' xS 4 F' is
(7‘(‘ 1y Moo, T 3) _ < Hesl Hes2 Hes3 >
csly tcszy 'tes - 3 9 3 Y 3
Zf:l Hesf Zf:l Hesf Zf:l Hesf
— 1 (e, €7, eM).
eNn + er2 + e T
[0 Exercise: similar computations for C« S+ Cx F and Cx S+ Cx F + Sx F.
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Jacamar data: Analysis of deviance

Deviances for log-linear models fitted to jacamar data.

Terms df Deviance
Cx*S8 88  259.42
CxS+F 86 173.86
CxS+CxF 72  139.62
CxS+S*xF 76 148.23
CxS+CxF+S*F 62 90.66
CxS«F 0 0

0 The null model C * .S is not of interest.
O The first model it is sensible to fit is C'x S + F.

[0 The best model seems to be C' xS+ C x F'+ S * F, corresponding to independent effects of
species and colour, though its deviance is high (but remember the two outlying cells!)
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Ordinal Responses slide 289

Pneumoconiosis data

Period of exposure x and prevalence of pneumoconiosis amongst coalminers.

Period of exposure (years)
58 15 215 275 335 395 46 515
Normal 98 51 34 35 32 23 12 4
Present 0 2 6 5 10 7 6 2
Severe 0 1 3 8 9 8 10 5

[0 Here
Normal < Present <  Severe,

so these are ordinal responses with d = 3 categories and the total in each group (corresponding to
each period of exposure) fixed.

[0 It probably is reasonable to imagine that the choice of category stems from an underlying
continuous variable, even if this cannot be quantified very well.
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Models
O Assume we have n independent individuals whose responses I, ..., I, fall into the set {1,...,d},

corresponding to d ordered categories, and that
’)QZP(IjSl)ZWl—I—---—i-Wl, l=1,...,d, ’dela

[0 The corresponding likelihood is H?Zl 71, where usually the contribution 7, = 7y, (n;) for
individual 7 will depend on covariates x; through a linear predictor 7; = x}ﬁ.

[0 We often want the interpretation of the parameters not to change if we merge adjacent
categories, and we can do this using an underlying tolerance distribution, with

L=l & z;8+6€(G-1,4], Go=-00<q < <(a1<{g=00,

where the tolerance distribution I’ of ¢; is often taken to be logistic, giving the proportional
odds model, and

m(zjB) =P((1<a;B+e<Q)=F(G—2;08) = F(G1—;8), l=1,...,d;

here (y,...,(q_1 are aliased with an intercept By and are not usually of interest.
O  Another standard choice is F'(u) = 1 — exp{—exp(u)}.
0 To fit, we just apply IWLS to the multinomial likelihood H?Zl ;-
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Pneumoconiosis data

Pneumoconiosis data analysis, showing how the implied fitted logistic distributions depend on x. Left:
plots of empirical logistic transforms for comparing categories 1 with 2 + 3 and 1 + 2 with 3; the
nonlinearity suggests using log x as covariate. Right: fitted model, showing probabilities for the three
groups with an underlying logistic distribution.

£ 3 3 =515
S ° 2 x=46
@ 3 3 2 L
S 3 x=39.5
= 3 2 2 2 L
2o x=335
(2} [
E’ 3 2 =275
8 < 2 [x=215
= | x=15
& 3 [ =58
‘.'0 [
10 20 30 40 50 0 5 10 15
Exposure x Linear predictor
Regression Methods Autumn 2022 — slide 292

Comments on count data

[0 Log-linear models are mathematically elegant and useful defaults for count data, with close links
to logistic regression, based on the relation between the Poisson and multinomial distributions.

[0 Interpretation of log-linear models can be difficult, especially for contingency tables, because
marginal and conditional parameters cannot be disentangled.

[0 Other models exist that are less elegant mathematically, but have better interpretations in
practice.

[0 Also possible to fit models for ordinal data, using multinomial models and tolerance distribution
interpretation used for binomial data.
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Overdispersion

slide 294

Overdispersion

[0 Often find that discrete response data are more variable than might be expected from a simple
Poisson or binomial model, so we see

— residual deviances larger than expected

— residuals more variable than expected under the model

but otherwise no evidence of systematic lack of fit

[0 This is overdispersion, perhaps due to effect of unmeasured explanatory variables on the

responses.
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UK monthly AIDS reports 1983-1992

Diagnosis Reporting-delay interval (quarters): Total
period reports

to end

Year Quarter Of 1 2 3 4 5 6 >14  of 1992
1988 1 31. 80 16 9 3 2 8 6 174
2 26 99 27 9 8 11 3 3 211

3 31 9 35 13 18 4 6 3 224

4 36 77 20 26 11 3 8 2 205

1989 1 32 92 32 10 12 19 12 2 224
2 15 92 14 27 22 21 12 1 219

3 34 104 29 31 18 8 6 253

4 38 101 34 18 9 15 6 233

1990 1 31 124 47 24 11 15 8 281
2 32 132 36 10 9 7 6 245

3 49 107 51 17 15 8 9 260

4 44 153 41 16 11 6 5 285

1991 1 41 137 29 33 7 11 6 271
2 56 124 39 14 12 7 10 263

3 53 175 35 17 13 11 2 306

4 63 135 24 23 12 1 258

1992 1 71 161 48 25 5 310
2 9% 178 39 6 318

3 76 181 16 273

4 67 66 133
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AIDS data
0 UK monthly reports of AIDS diagnoses 1983-1992, with reporting delay up to several years!
O Example of incomplete contingency table (very common in insurance)
O Simple (chain-ladder) model: number of reports in row j and column k is Poisson, with mean
tjk = exp(ay + By).
O Analysis of Deviance:
Model df Deviance reduction df  Deviance
464 141843
Time (rows) 37 6114.8 427 8069.5
Delay (cols) 14 7353.0 413 7165
[0 Residual deviance is obviously far too large for a Poisson model to be OK, but the model is also
too complex, since we expect smooth variation in the a;.
[0 Next page shows residual analysis: no obvious problems, just generic overdispersion.
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AIDS data: Assessment of fit

Diagnostic plots for fitted model: residuals against 77 (top left); normal QQ-plot of residuals (top
right); Cook statistic C; against leverage ratio h;/(1 — h;) (lower left); Cook statistic C; against case
number (lower right).

Residuals
0
I
Quantiles of standard normal

Cook statistic

Cook statistic
000 005 010 015

0.00 0.05 0.10 0.15
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AIDS data

O Data (+) and predicted true numbers based on simple Poisson model (solid) and GAM (dots).

[0 The Poisson model and data agree up to where data start to be missing.

Diagnoses
300 400 500

200

100

1984 1986 1988 1990 1992

Time
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Dealing with overdispersion

[0 Two basic approaches:
— parametric modelling

— quasi-likelihood estimation, based only on the variance function

Example 42 (Linear and quadratic variance functions) Suppose that, conditional on ¢ > 0,
Y ~ Pois(ue), where E(¢) =1 and var(e) = . Show that this can lead to either linear or quadratic
variance functions, but a lot of data may be needed to distinguish them.

Comparison of variance functions for overdispersed count data. The linear and quadratic variance
functions are V(1) = (1 +&p)p and Vg (p) = p(1 + &ou), with &, = 0.5 and &g chosen so that
Vi(15) = V(15).

“ 1 2 5 10 15 20 30 40 60
Linear 15 30 75 150 225 30 45 60 90
Quadratic 1.0 21 58 133 225 33 60 93 180
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Note to Example 42

Let € have unit mean and variance £ > 0, and to be concrete suppose that conditional on ¢, Y has
the Poisson distribution with mean pe. Then

E(Y) =EAE(Y |e)}, var(Y)=var. {E(Y |e)} + Ec{var(Y | ¢)},
so the response has mean and variance
E(Y) = Ec(ue) = p,  var(Y) = vare(ue) + Ec(ue) = p(1 +&p).

If on the other hand the variance of ¢ is £/, then var(Y') = (1 + &)u. In both cases the variance of
Y is greater than its value under the standard Poisson model, for which £ = 0. In the first case the
variance function is quadratic, and in the second it is linear.
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Negative binomial model

Example 43 (Negative binomial) In Example 42, if ¢ is gamma with shape parameter 1/v, show

that
Ly+v) vy

Tyl (v+p)rty’
and that quadratic and linear variance functions are obtained on setting v = 1/ and v = p/§
respectively.

The log link function log 1 = x 3 is most natural.

¢ is estimated by maximum likelihood or through Pearson’s statistic.

flysp,v) = y=0,1,..., puv>0,

Example 44 (AIDS data)
O MLE &g = 22.7 (5.5)
O Analysis of Deviance (with £ fixed):

Model df Deviance reduction df  Deviance
464  7998.3

Time (rows) 37 3582.5 427  4415.8

Delay (cols) 14 3892.2 413 523.6

[0 Still somewhat overdispersed?
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AIDS data: Deviance residuals for NB model

Clear improvement over previous plots, even if not perfect.

Normal Q-Q Plot
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Quasi-likelihood

f is consistent (but maybe not efficient) as n — oc.

[0 Recall two basic assumptions for the linear model:
— the responses are uncorrelated with means p; = acJTﬂ and equal variances o*;
— in addition to this, the responses are normally distributed.
[0 To avoid parametric modelling, we generalise the second-order assumptions, to
E(Y)) = py,  var(Yy) = &3V (ug),  9(uy) = nj = 58,
where the variance function V(-) and the link function are taken as known.
[0 We obtain estimates 3 by solving the estimating equation
BBY) = Xul(B) = 3 auy(8) = D T eV
= = MJ ¢J (1 )
O If the mean structure is correct, then E(Y;) = p;, so E{h(5;Y)} = 0, and under mild conditions

2.
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Quasi-likelihood 11
Recall that the general variance of an estimator 3 defined by an estimating equation h(3;Y) = 0 has
sandwich form . .

Oh(B;Y)) ™ Oh(B;Y)" ™
Lemma 45 [f V(1) is correctly specified, then var{3} = (X"W X)~', where W is diagonal with
(4,7) element {g'(11;)*¢;V (1)} "

O If ¢; = ¢a;, with known a; > 0 and unknown ¢ > 0, then we obtain
— [ by fitting the GLM with variance function V(1) and link g(u);
— standard errors by multiplying the standard errors for this fit by $1/2, where

n

-1 (yj — 1)
¢ n—p;ajg’(uj)gv(ﬁj)'
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Note to Lemma 45

O Note first that we can write

A1)

Bij(ps)’

where A;(p;) =Y; — py and B;(p;) = ¢'(pj)¢;V (1) and only A; is random, and
E{A;(1;)} = 0. Hence if we let prime denote derivative with respect to p;,

ui(B) = uj(py) =

Ouj(py)  Aj(ng)  Aj(ey)Bj(ky)

O, B (5) B (uy)
has expectation E{A}(1;)}/Bj(1;) = —1/Bj(1;).
O  We require E{—0h(3;Y)/0B"} and var{h(B;Y)}. Now

Ouj(B)  Onj Oujou;(B) . 1
BT BT In; Oy, 79 (1) 3(13)

which gives

E{ ahégTY)}__z”:ij{agjﬂT } Z %:XTWX

Jj=1 =1

where W is the n x n diagonal matrix with jth element {g’(1;)%¢;V (11;)}~*. Moreover if in

addition the variance function has been correctly specified, then var(Y;) = ¢;V (;), and hence

var{h(3;Y)} = X var{u(B Z T VE;;;?/)( BE =X"WX.

Thus the sandwich equals (X*W X)~!

[0 Had the variance function been wrongly specified, the variance matrix of 3 would have been of
form (XTWX)"L(X™W'X)(XTW X)~!, where W' is a diagonal matrix involving the true and
assumed variance functions. Only if the variance function has been chosen very badly will this
sandwich matrix differ greatly from (X™W X)~!, which therefore provides useful standard errors
unless a plot of absolute residuals against fitted means is markedly non-random. In that case the
choice of variance function should be reconsidered.
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Quasi-likelihood 111

0 Under an exponential family model, h(3;Y") is the score statistic, so 3 is the MLE and is efficient
(i.e., it has the smallest possible variance in large samples).

[0 If not, inference is valid provided g and V are correctly chosen, and 3 is optimal among
estimators based on linear combinations of the Y; — ju;, by extending the Gauss—Markov theorem.

0 In fact we can define a quasi-likelihood ) and its score through

QB:Y) = Z/ S (B = Q).

and a (quasi-)deviance as D = —2¢Q(5;Y).
[0 To compare models A, B with numbers of parameters pg < pa and deviances D > D 4, we use
the fact that
(Dp — Da)/(pa — pB)
bA
if the simpler model B is adequate. This is easy in R.

FpApr,npr’
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AIDS example

> aids.ql <- glm(y~factor(time)+factor(delay) ,family=quasipoisson,data=aids.in)
> anova(aids.ql,test="F")

Analysis of Deviance Table

Model: quasipoisson, link: log

Response: y

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev F Pr (>F)
NULL 464 14184.3
factor(time) 37 6114.8 427 8069.5 92.638 < 2.2e-16 **x*
factor(delay) 14 7353.0 413 716.5 294.402 < 2.2e-16 **x*
Signif. codes: O ’*xx’ 0.001 ’**x’ 0.01 ’x> 0.056 ’.” 0.1 > ’> 1
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Summary

[0 Overdispersion is widespread in count and proportion data.
0 We deal with it either by
— parametric modelling, or

— quasi-likelihood (QL) estimation, which involves assumptions only on the mean-variance
relationship.

[0 QL estimators equal the ML ones, but SEs are inflated by ¢/2.

O (Quasi-)deviance can also be defined, and used for model comparison, with F tests replacing x>
tests.
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Generalized Additive Models slide 308

Generalized additive model

[0 Now we write
E(y) =p, g(p) =n=DBy= X3+ Zb,
where
— g follows a GLM (or more general) distribution,
— ¢(+) is a link function,
— the rest is as before ...
giving a generalized additive model (GAM).

[0 For a general treatment, suppose we have a penalized log likelihood,

O() = 0(v) = 37" Day = Y _4{ni(M)} = 37" Da,
j=1

where 7,1 (with m = p + ¢) contains both ‘fixed-effects’ 3,x1 and ‘random-effects’ b,x1, the
latter penalized using a symmetric positive semidefinite m x m matrix Dy, and the underlying
observations y1, . .., ¥y, giving likelihood contributions #1, ..., £, are assumed to be independent.

[0 Now we apply the argument leading to the IWLS algorithm to ¢y, leading to the penalized
iterative weighted least squares (PIWLS) algorithm.
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PIWLS

O For fixed A\, we apply (ridge regression) iterative weighted least squares with update step
Ax = (B*WB + D)) 'B™Wz,

where D) is the penalty matrix, and
Bpxm = 0n/o~y", (design matrix)
Wixn = diag(wy,...,w,), w;= {E(—82€j/877]2-)}, (weights)
Unx1 = OL/On, (score vector),
Znx1 = By+ W lu, (adjusted dependent variable).
It is easier (but less stable) to use the (random) —82€j/8n]2- in place of E(—82€j/8n]2-).
O Thus to obtain (penalized) MLEs 7, we use the PIWLS algorithm:
O fix A and take an initial 7. Repeat
— compute n, B, W, u, z;
— compute new J) = (B*WB + D))" 'B"Wz;
until changes in £5(7x) (or 4, or both) are lower than some tolerance.
O We may add a line search: if £x (s new) < €x(Fx01d). halve the step length and try again.
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Note: Derivation of PIWLS algorithm

O To find the estimate 7, starting from a trial value -y, we make a Taylor series expansion in the
score equation

o0 (A\) . 90(7) n () ~

0= = _
9 0 G0 A=),
where
94x(v) ”0(7) _ N\~ () 9%4;(7) In; (v 0%
— BT - D — J J Z TN D s
Oy uly) = Da, D705 2 O 3?7? 3% Z 3%3% )+ Darns
where B = B(vy) = dn/0~y". If we use the approximation
0%0\(v) . . 2 2
o B'WB+ Dy, W =diag{—E (9°;/0n3)},
where the matrix is replaced by its expectation, then
0 = Blu(y)—Dy\y— (B"WB+ D)W\ —7)
= B"u(y) + B"W By — (B"W B + D))qx.
If BYW B + D), is invertible, this gives
o~ T —1pT _ T —1pT
= (B'"WB+ D))" "B'(u+ WB~)=(B'WB+ D)) "B'Wz,
where z = By 4+ W™ lu, as required.
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Relation with least squares

00  With fixed A, the penalized MLE
Ax = (B*WB+ D))" 'B"Wz

results from fixing -, and then iteratively solving the minimization problem

<W1/2Z> (W1/23>
- Tmx1
0 (n+m)x1 Qx (n+m)xm

where @)y is a matrix square root of Dy, i.e., Q3 Qx = Dj.

2
min
v

)

[0 The corresponding smoothing matrix is taken to be
S\ = B(B"W B + D) 'B™W,

and the effective degrees of freedom for a smooth component are taken as the sum of the relevant
diagonal elements of the matrix

A= (B"WB+ D)) 'B*"WB,

with both Sy and A evaluated at the final step of the iteration.
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see below.

Numerical example from Wood (2011, JRSSB)

The usual methods (AIC, GCV, ...) for choosing A are available, but we focus on likelihood methods;

w0 | w0 e
= oi —
= T
3 21 s Y
o) Q ]
24 <@ £
LB - N
31 3 5
5 0 5 0 5 A5 0 5 0 5 5 0 5 0 5
X log(h) log(A) log(X)
(a) (b) (©) (d)
8
] ] 8]
= jary
— S 3 o s 1
5 g /S g % £
& 5 < 1
oI~ \F g |
ST | T | fg]
—— —— T} e N
15 <10 -5 0 5 -5 -10 -5 0 5 -5 -10 -5 0 5
X log(%) log(%) log(X)
(e) (f) (9) (h)

Fig. 1. Example comparison of GCV, AlCc and REML criteria: (a) some (x,y)-data modelled as y; = f(x;) +
&;, &; independent and identically distributed N(0,02) where smooth function f was represented by using
a rank 20 thin plate regression spline (Wood, 2003); (b)—(d) various smoothness selection criteria plotted
against logarithmic smoothing parameters, for 10 replicates of the data (each generated from the same
‘truth’) (note how shallow the GCV and AICc minima are relative to the sampling variability, resulting in rather
variable optimal A-values (which are shown as a rug plot), and a propensity to undersmooth; in contrast the
REML optima are much better defined, relative to the sampling variability, resulting in a smaller range of
A-estimates); (e)—(h) are equivalent to (a)—(d), but for data with no signal, so that the appropriate smoothing
parameter should tend to co (note GCV’s and AICc’s occasional multiple minima and undersmoothing in
this case, compared with the excellent behaviour of REML; ML (which is not shown) has a similar shape to
REML)

Regression Methods

Autumn 2022 - slide 312

Approaches to iteration

O Once we have an iterative approach to estimating A for fixed -, there are two main algorithms:

— performance iteration — repeat { fix A, update ~ with one step of PIWLS, update A } to
convergence;

— outer iteration — repeat { fix A, iterate PIWLS to convergence, update \ } to convergence.
O Performance iteration
— is computationally efficient,

— but since the objective function for v changes at each step, it may not converge—especially in
the context of concurvity (collinearity for curves ... ), when two or more smooth functions
are (almost) confounded.

O Outer iteration
— is computationally more burdensome,

—  but will converge to a (local) optimum.
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Choice of )\

[0 The choice of A can be based on the marginal density of y,
£i.N) = [ 115600

which has no closed form in general (but is Gaussian if both fs are Gaussian).
[0 Various ways to approximate the integral:

— quadrature (doesn't work well when dim(b) is high);

— simulation (e.g., importance sampling, same problems as quadrature);

— Laplace approximation;

— use the EM algorithm to avoid approximating the integral.

[0 We focus on Laplace approximation.

Regression Methods Autumn 2022 — slide 314

Laplace approximation

Lemma 46 Let h(u) be a smooth convex function defined for uw € R, with a minimum at u = 4,
where b/ (@) = 0 and b (@) > 0, and let

In:/ e W) gy,

— 00

Then if we write hy = h' (1), hs = h"'(@), etc., we have

2 1/2 ~ 5h2 h
A nh(@) o ) 4t (208 M 2L

The Laplace approximation to the integral is

i (2 1/Qefnh<a>
" nhg '
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Note on Lemma 46

[0 Close to @ a Taylor series expansion gives
h(u) = h(a@) + b (@) (u — @) + $h" (@) (u — @)* = h(@D) + $he(u — @)

so if we set z = (nhy)Y?(u — @) then u = @ + (nho)Y/?z, du/dz = (nhy)~'/2, and arguing
heuristically (ignoring the third and higher terms),

[ = el /OO o—h2(u—)%/2 3,

e—nh(ﬂ) / 6—z2/2d_u dz

dz

_ (2 e
nh2 ’

because the normal density has unit integral.
[0 A more detailed accounting is needed to get the error term. We start by writing
nh(u) = nh(@)+ inhy(u— @) + %nhg(u —a) + by (u — a)t 4 -

hs /B ha/h2 -
L

= nh(a)+ %22 + %

= nh(Q)+ 32* + A s LBy O(n=3/?)

nl/2 n
say. Hence
-1 A B A B ,\*
eTh() = mni(@)-32 {1 - 1—/223 — =24 3 (_1—/223 - —z4> + O(ng/z)}
n n n n
1 A B A

—nh(@)—5 22 . 3 24,172 6 —3/2

2 {1 it TR +5—2 +0(n )}

[0 As the odd moments of the normal density are zero, integration with respect to z leaves only the
n~! term and the next remaining term is O(n~2). The fourth and sixth moments of the standard
normal distribution are respectively 3 and 15, and

15h3  ha  Bh hy

154%/2 — 3B = 15(ha /h3/% /6)2 /2 — 3{ha/(24h2)} = 3 — —4 = 203 ~4
/ (s /g™ (62 = 3tha/QAh2)} = Z50s = G0 = 38 ~ i

as required.
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Comments

O The O(1/n) error is relative, so the approximation is often surprisingly accurate;

[0 since the odd moments of the normal density are all zero, the expansion has only terms whose
orders are even powers of n= /2 e, n 7t n"2, .. ;

0 I, involves only h and the second derivative h” at @, so is very easy to obtain, numerically if
necessary;

[0 the series is asymptotic, so the partial sums may not converge, and including more terms than the
leading term may not be useful;

[0 as most of the normal probability lies within +3 standard deviations of the mean, the limits of the

integral are almost irrelevant provided they lie outside the interval @ = 3(nhg)~1/?;
O if
o0 oo
I, = / e "W Qu, g, = / e (W) qy,

—00 —0o0
where h*(u) = h(u) + O(n™1), then

(In)Jn) = (In/Jn) = 1+ O(n™?),
so two Laplace approximations can be better than one.
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Laplace approximation, bis

Lemma 47 Let h(u) be a smooth convex function defined for w € R™, with a minimum at u = 4,
where Oh(@1)/Ou = 0 and the matrix of partial derivatives hy = 0?h(@1)/Oudu” is positive definite,

and let
In:/ e~ W) qy.

. m/2 )
I, =1, {1 + O(nil)} _ <2;7r> |h2|71/267nh(U) {1 + O(nil)},

Then

O To apply this, we impose v = (83,1, bt )" ~ Nm(O,D)Tl), and write

px1>7q
1Dy}
fy ) = /f(y;v)f(v;)\) dy = (@m)m2 /eXp{fA(v)} dv,

where (3 is unpenalised, | D, |+ is the product of the non-negative eigenvalues of D), and

0x(v) = €(v) — 37" D

the assumptions of Lemma 47 should be satisfied by h(u) = —n=1)(7).
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Approximate REML
[0 Laplace approximation gives the approximate restricted log likelihood
lp(A) = $1og | Daly — $log [B"W B™ + Dy 4+ £(3x) — 73 Dada + Op(n ),

1

where O,(n™!) is a (random) term of order n~! and

Ay = (B*WB + D)) 'B™Wz

results from iterating PIWLS to convergence for fixed A and satisfies 9¢)(7y)/0v = 0.

O The expression for 7, contains
B=B@), W=W®@), z=B@E)0W+W 'Gu@r),

which involve the first two derivatives of the log likelihood contributions /;.

O Newton—Raphson maximization of £,(\) requires its first two derivatives, so we need

P 0
N AT

which will involve the third and fourth derivatives of the ¢; ...could be painful.

0 A version of this is implemented in mgcv.
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Example

[0 Central England temperature time series, monthly maxima, 1878-2016, to which we fit the
generalized extreme-value (GEV) distribution,

Fly; p,0,6) = exp |— {1+ &y — ) /o} 14|, yeR,u & €Ro >0,

where a4 = max(a,0). Here

— pis a location parameter,

— 0o is a scale parameter,

— £ is a shape parameter, with & = 0 corresponding to the Gumbel distribution function

exp|—exp{—(y — p)/o}], and £ < 0 giving a distribution with upper maximum p — o/¢.

[J The data show strong seasonality and some trend, but also large annual variation.
[0 We use the ideas from above to fit a model with

- = s(month) + s(year),

— o = s(month),

- ¢ = s(month),

with results shown on the following slides.
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Example: STL decomposition

Seasonal and trend decomposition
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Example: Annual maxima

Yearly maxima

————

A N

— .

—

—_—

[0,] @anyesadwal

1900 1920 1940 1960 1980 2000 2020

1880

Year
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Example: Monthly maxima

Monthly maxima

25
!

2000

1980

15
1

1960

1940

Temperature [°C]

10
1

1920

Are the most recent years the warmest?

1900

1880

Jan Feb Apr Jun  Jul Aug Oct Nov

Month

Regression Methods Autumn 2022 — slide 322

Example: Trend in p

Estimated trend smooth for n

o
¥ ] ---- 95%Cl

125
1

12.0
1

1.5

1878 1912 1947 1982 2016

Year
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Example: Seasonality in y

20
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Estimated seasonal smooth for
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Example: Seasonality in ¢
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Example: Seasonality in ¢
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Example: Residuals

Empirical quantiles

GEV QQ plot of the data on the Gumbel scale

Theoretical quantiles
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Closing
[0 The basic ideas of regression, dependence of a response on covariables, extend far beyond the
Gaussian linear model, to
— general response distributions (Poisson, binomial, GEV, ...);
— random effects models—some parameters treated as random, and others as fixed;
— smooth curve fitting by basis function methods in (generalized) additive models.
O Unifying themes are:
—  (semi-)parametric modelling;
— maximum likelihood estimation, performed by
— variants of (iterative weighted) least squares algorithms;
— residuals and other diagnostics;
— penalized likelihood estimation in presence of random effects;

— best linear unbiased prediction (BLUP).
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