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1 The Linear Model slide 2

1.1 Introduction slide 3

Dictionary

0

Regression: (statistics) a measure of the relation between the mean value of
— one variable (e.g., output), denoted y (the response variable) and

— corresponding values of other variables (e.g., time and cost), denoted = (explanatory

variables).
O The explanatory variables are also called covariates or features (ML).
0 We avoid the terms dependent variable (Y') and independent variable (x) used in older books.
O Questions we try and answer:
— (description/explanation) how does y depend on 7 How much of the variation of y is due
to 2?7 Do | need all of = to explain the variation in y?
— (prediction) what will y be if z = 2,7
— (causation) if | change x, what will happen to y?
O The causation question presupposes that we can change (some of) x, which is not always true.
Regression Methods Autumn 2024 — slide 4

Linear model

[0 Simplest explanation of y in terms of x is linear model:
y= g(x) =161+ +1'pﬂp = $T57
where
y € R, xT:(xl,...,xp)GRp, ﬁT:(ﬁl,...,ﬁp)GRP.
00 The data consist of n instances/examples/cases (z;,y;) for j =1,...,n, so
1 11 . Tip B1
Ynx1 = ; Xn><p = ) /8p><1 =
Yn s R ) ﬂp
and we write
y=Xp.
O Key point: linearity refers to linearity in 3, not in terms of elements of X, which might be
polynomials, or basis functions, or ...
[0 Sometimes we can transform to a linear model. For example, the multiplicative expression
y = fyacflxéb becomes
logy = logv + f1logz1 + B2 log xs.
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Notation

0 Vectors are column vectors

O  We write Xy, to give the dimensions of a matrix or vector

O a"™ (row vector) is the transpose of a (column vector)

O je{l,...,n} (or sometimes i) indexes the rows of y (cases/examples)

0 zj is the jth row of X

O rs,t,... €{1,...,p} indexes the columns of X (covariates/features)

00 Roman letters (y, X, z, ...) denote observed quantities, and may be the realisations of random
variables

O Greek letters (8,7,0,0,...) denote unknown (often vector) parameters of models

O B denotes an estimate of 3

[0 « denotes the level of significance tests and confidence intervals

O If Q is scalar (or a row vector) and j3 is a vector, then Q) /03 denotes the vector (or matrix) the
same shape as  with elements 9Q /90, .

O If Q is scalar and 3, are vectors, then 92Q/9B0~™ denotes the matrix with (r, s) element

02Q/08,07s.
O w L v means that the vectors u and v are orthogonal (i.e., u™v = 0); ditto for matrices.
[0 Y 1L Z means that the random variables Y and Z are independent.
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Useful matrix decompositions

O Singular value decomposition (SVD): any real matrix X can be written in the form

T
Xn><p = Uananp‘/pxp

where

- U= (uy,...,uy) and V = (v1,...,vp) are orthogonal (i.e., U"U =UU" = I,,,
VTV =VVT =1,) and D is n x p rectangular diagonal with real diagonal entries (singular
values) dy > -+ > d,, > 0, where m = min(n, p),

— if one or more d; = 0, then X is singular, and

— the u; and v, respectively span the column and row spaces of X.
O The SVD implies that the ranks of X, X*X and X X™ are equal and at most m.
[0 Spectral theorem: any real symmetric matrix H can be written as

ann = UanDanUT

nxn?

where

- D =diag(dy,...,d,) contains the eigenvalues of H;

— U is an orthogonal matrix whose columns are the corresponding eigenvectors; and
— if H is positive semi-definite then d; > --- > d,, > 0.
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Least squares fit

0

g
g

0

Lemma 1 When X has rank p and n > p then iy = Xﬁ = Hy, where

The ‘hat matrix’ H has rank p, is symmetric and idempotent, and satisfies HX = X: it gives the
orthogonal projection of R™ onto span(X).

Assume that
y=Xp

and find the ‘best fit' by choosing 3 to minimise the (squared) Euclidean distance between y and
X(, i.e., the sum of squares

n
ly — XBI* = (y— XB)"(y— XB) = > (y; — 2] B)*.
j=1
In vector space terms, y € R™ and X € span(X) C R™.

The ‘best fit' vector ¥ is the vector in span(X) closest to y; Pythagoras' theorem (sketch) gives
¥ L (y—7) (but see below).

We call ¥ € R" the fitted value(s) and e = y — y € R” the residual (vector).

B=(X"X)'X"y, H=X(X"X)'X".
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Note to Lemma 1

g
g

If X has rank p, so too does the p x p matrix XTX, which is therefore invertible.

The sum of squares
Q=(y—XB)'(y—XB)=y'y— ' X"y —y' Xp+ ' X" XB=y"y - 20" XB+ B X"XS
has first and second derivatives (respectively a p x 1 vector and p X p matrix)

0Q 0%Q
— = _2X"T 2XTX
with respect to 3. Setting 0Q /9 = 0 implies that (X*X)5 = X"y, and as X" X is invertible
we can write

=2X"X

B=(X"X)"'XTy, §=X3=X(X"X)"'X"y=Hy,
say. The matrix XTX is positive definite, so (y — X3)T(y — X3) is minimised at B
The n x n ‘hat matrix'’ H (which ‘puts a hat' on y) satisfies H™ = H, H?> = H, so it is
symmetric and idempotent, i.e., its eigenvalues equal 0 or 1, and their multiplicities must be n — p

and p, as its rank is p. H is the matrix that projects R™ orthogonally onto the span of the
columns of X, span(X).

The inner product between y and y — ¥y equals zero, because y = Hy, y —y = (I — H)y, and
V" (y—y)=y"H"(I - H)y=y"(H — H)y = 0. Hence y and y — ¥ are orthogonal.

Clearly HX = X (X" X)"'1XTX = X, so H(XB) = X3 for any B € R?, i.e., a vector in
span(X) is left unchanged by multiplication by H.
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Analysis of variance |

Lemma 2 Let X,,xp = (X0, X1,...,XRr) have rank p, where p < n, and let H, denote the projection
matrices formed using (Xo,...,X;), forr =0,...,R; hence Hr = H. Define P, = H, — H,_; for
r=1,...,Rand Pgpy1 =1 — H. Then (i) H.Hs = H, whenever r < s, (ii) HyP, = 0 for any r, and
(iii) the matrices P, are symmetric and idempotent, with P, Ps =0 when r # s.

0 In the setup of Lemma 2 suppose we fit the models with projection matrices Hy,...,Hr = H
and corresponding fitted values ¥, = H,y. Then
y = Yo+t @ —Y)+ -+ HUr—Yr-1)+(y—Yr)
= Hoy+ (Hi—Ho)y+ -+ (Hr— Hp-1)y+ (I — H)y
= Hoy+Piy+---+ Pry + Priay,
and Lemma 2 implies that the terms on the RHS are orthogonal, i.e.,
(Hoy)"(Pry) =0, (Psy)"(Pry) =0, r#s.
O Hence Pythagoras’ theorem gives the analysis of variance (ANOVA) decomposition
R
lyll® = 17oll® + D 18- = Gr—al” + lly — 711>
r=1
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Note to Lemma 2

O (i) Let Vo C -+ C Vg denote the linear spaces onto which R™ is projected by Hy,...,Hr = H,
and suppose that » < s. Now H,y € V, for any y € R", so as V,, C V,, H,y € V,. Hence
H,H,y = H,y for any y € R", so HiH, = H,. This implies that

HH.=H,=H' =(HH,)"' =H 'H =H.Hgs, s>r.

] (II) For r = 1, ces ,R, (I) yields H()PT = H()HT - H()HT,1 = HO - HO =0, and
HoPri1 = Hyo(I — Hg) = 0.

O (iii) The matrices Pi,..., Pr are symmetric because

PrT:(Hr_Hr—l)T:Hq:F_ g—ler_Hr—lzljrv
and idempotent because (i) gives
P} = (H,—H,1)(H,— H, 1)
= H?>-H,H, | —H, H,+H?
= H—H1—H 1+ H-
= Hr_Hrflzpr-
Moreover if r < s < R, then
P.P; = (Hr - Hrfl)(Hs - Hsfl)
= H.Hi—H.,Hy —HH, 1+ H, 1Hs
= H.—H—H, 1+ H,
= 0.
The corresponding results for Pr41 are equally easy to check.
Regression Methods Autumn 2024 — note 1 of slide 9



Analysis of variance Il

O Usually Xg = 1,,; then o = 1,,(1%1,,) " *1%y = 71,, and

n n n
Iyl =15l =) " vf =D 7 =D (y; —9)%
=1 =1

j=1
equals n times the empirical variance of y1,...,y,. Hence
n R
> i =97 =yl = 5ol = >_ G — Gral* + lly — 317
j=1 r=1

decomposes (‘analyses’) the variability of y around its average 7 into
— the contributions |7, — 7»_1]|? due to adding the columns of X, to Xo,..., X, 1,
— the residual sum of squares |y — 7||? left after fitting X = (Xo,..., XRr).
O Large || — §r—1]|? implies that X,. explains a lot of the variation of y even after allowing for that
explained by Xo,..., X, _1.
[0 The
— degrees of freedom of a fit is the rank v, of the corresponding H,., and the

— residual degrees of freedom is n — vg = n — p.
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Terms

[0 A constant column Xy = 1,, is almost always present in the design matrix, so

Bo
B
XB=1n X1 - Xg)| . | =Lbo+X1f1+ -+ XrBr,
Br
where the matrices Xq,..., X, the terms, are successively included.

[0 The baseline model with only 1,, has fitted value and residual vector
Yo="ln, Y=Y =y Yln

[0 Starting from the baseline we ask which terms lead to large reductions in the residual sum of
squares, i.e., best explain the variation of y.

[0 The successive residual degrees of freedom, i.e., the ranks of the matrices I — H,., are
n—l=n—y>n—v;>--->n—UR.

O When the columns of X, depend linearly on those of 1,,, Xy,..., X,, we have v,41 = v,, so
inclusion of X1 does not change the fitted value or improve the fit.
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0

Model formulae

A mean vector such as 1,8y + X161 + X252 is often written as the right-hand side of
y ~ X1+ X2

where

— the columns of 1s is (silently) included first by default,

— X1 and X2 represent the vector subspaces of R™ generated by the corresponding terms, and
— + represents addition of vector subspaces.

Software generally drops any column of a design matrix that is linearly dependent on previous
columns, and this affects which elements of 5 can be estimated and the meaning of estimates
corresponding to later columns.

Carefully choosing the order of terms in a model can give easily interpreted estimates of the
parameters of interest — for example, if X5 is full-rank and a column of 1s lies in
span(X7) + span(Xs) then

y~X1+X2, y~X2+X1-1,

span the same linear space but the second estimates the parameters of 5 (unadjusted for the
mean) and the parameters of /31, adjusted for the presence of Xs.

Regression Methods
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0

is the average reduction in SS,. per degree of freedom when X,. is added to the model.
Usually show only the RHS of the table and the bottom line of its LHS (next slide).

ANOVA
Terms Residual df Residual SS | Term added Reduction in  Reduction in SS  Mefpn square
residual df
ln n—rvy=mn— 1 SSO
ln,Xl n—ur SSl X1 Vn— 1 SS(] — SSl f%
ln, Xl, X2 n—=uvy 882 X2 Vo) — 11 SSl — SSQ fi;%s%&
. . SSR,l.—SSR
ln,Xl,...,XR n—rvp=n-—p SSR XR VR —VR-1 SSR_l—SSR Ar—vr_1
[0 The sum of squares when including terms 1,,, X1,..., X, is
88, = ly — 51>
[0 The ‘mean square’ for term X,
SS,—1 — SS
MST _ r—1 T
Vp = Vr—1

Regression Methods
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ANOVA table

Term added df Reduction in SS Mean square
X1 12 B 41 SSO — SSl MSl = (SSQ — SSl)/(ul — I/Q)
X2 Vo — 11 881 — SSQ MSQ = (881 — SSQ)/(VQ — I/1)
XR VR — VR 1 SSR_1 —SSR MSRZ (SSR_l —SSR)/(VR—VR_l)
Residual n — VR SSR MSRes = SSR/(TL — I/R)

[0 Used to screen which terms give the largest reductions, comparing MS,. with the residual mean
square MSRes.

O Judge 'significance’ of reductions relative to residual using F-tests (later).

[0 Problem: the order of adding terms matters, so there is no unique reduction in general.
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Coefficient of determination

[0 Coefficient of determination R? measures reduction in variance of y as

R? |7 —71al* _ {(H — Ho)y)}"(H — Ho)y _ y"(H — Ho)y
ly =71all>  {( = Ho)y)}*( = Ho)y  y"(I - Ho)y’

where Hy and H are the hat matrices for regression on 1,, and X, and 1,, € span(X).

O R? e [0,1] is the squared empirical correlation between y and 7, so R? ~ 1 implies that most of
the variation in y is explained by 7.

O There is a geometric interpretation, as the terms on the right of
(In - HO)y = (In - H)y + (H - HO)y

are orthogonal (check this).

0 Adding columns to X must increase R?, unlike the adjusted 122,

—1
R2=R*+(1-R)"—.
PR (R
O If 1, ¢ span(X), use
y'y 2 2 2y 1
RE==>, Rj,=R}+(1-R
0= Ty 0,a 0+ ( o)n —
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Comments

[J We have supposed that X, has rank p:

— if X is rank-deficient, then a least squares algorithm usually drops columns that lie in the span
of preceding ones, but care is needed to construct X so that the resulting 3 is easy to
interpret;

— if X is nearly rank-deficient, then regularisation may be needed. More later ...

[0 Everything so far as purely numerical:

— least squares estimation is a numerical technique for using X to approximate y;

- y= XB is the resulting approximation, which lies in span(X);

- B gives the coefficients of the columns of X for the best approximation;

— the coefficient of determination R? measures how much of the overall variation of y was
explained by X; and

— the ANOVA decomposition summarises how much of the variation in y is explained by
different subsets of columns of X (terms).

O For statistics we need to add some distributional assumptions .. .shortly ...

0 First some reminders ...
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1.2 Inference slide 17

Reminder: Moment-generating function

Definition 3 The moment-generating function (MGF) of a random vector Y, 1 is
My (t) =BE(e"Y) = B(e=i=14Y9), teT ={teR": My(t) < oo},
and the cumulant-generating function of Y is Ky (t) = log My (t), t € T.

Then
O 0e€7T,so My(0)=1and Ky(0) =0;

OO if T contains an open set, then

w=BY) = Ky0) = YO gy = 280

o o ototT |,

O if A, B are disjoint subsets of {1,...,n} and Y4 denotes the sub-vector of ¥ containing
{Y; : j € A}, etc,, then Y4 1L Yj if and only if

My (t) = E(ePAYAT5Y8) = My (t4) My, (tg), t€T;

O the MGF of Y4 equals My (t) evaluated with ¢z = 0;
[0 if we recognise an MGF, then we know the probability distribution that gave it.
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Reminder: Multivariate normal distribution
A random variable Y,, 1 with real components has the multivariate normal distribution,
Y ~ Ny, Q) if @Y ~ N (a®p, a™Qa) for every constant vector a,x1, and then

(a) © is symmetric semi-positive definite with real components and
E(Y) = piax1, var(Y) = Quxn, My (t) = exp(t'p+ %tTQt), t € R,

where we call 11 the mean vector and () the (co)variance matrix of X

(b) for any constants a,,x1 and By,xn, a + BY ~ N, (a + Bu, BQB™T);

() if YT = (Y{",Y5"), where Y7 is m x 1, and p and € are partitioned correspondingly, then the
marginal and conditional distributions of Y7 are also multivariate normal:

Vi~ N, 1), Y1 | Ya = yo ~ Ny {1 + Q12955 (Y2 — p12), Q1 — Q12055 Qo1 } 5

(d) Y1 AL Y2 iff ng =0, and a + BY 1l ¢+ DY iff BQDT = 0;

(&) if Y1,..., Y, " N (1, 02), then Yipx1 ~ Niy(pln, 021,,); and finally,
(f) Y has a density on R™ iff 2 is positive definite (i.e., has rank n), and then

Wexp{—%@—#)Tgl@—ﬂ)}, y € R"™ (1)

f(ys 1, Q) = on

Regression Methods Autumn 2024 - slide 19
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Note: Multivariate normal distribution

(a) Let e; denote the n-vector with 1 in the jth place and zeros everywhere else.
O ThenYj=¢jY ~ N (4, wj;), giving the mean and variance of Y.
O Now var(Y; + Yy) = var(Yj) + var(Yy) + 2cov(Y},Y}), and

Y+ Y= (ej +ex)'Y ~ N(uj + p, wjj + wir + 2wjk),

which implies that cov(Y},Y}) = wjr = wy;. This gives the mean and covariance matrix of Y.
O Since u™Y ~ N (u"p, u™Qu), its MGF is M,y (t) = E(e™"Y) = exp(tu”p + 1t2u™Qu). The
MGF of Y is My (u) = E(e*"Y) = M,y (1) = exp(u®p + $u™Qu), for any u € RP, as stated.
(b) The MGF of a + BY equals
Elexp{t'(a+ BY)} = Elexp{t'a+ (B"t)"Y)}]
= ¢ My (B™t)
= exp{t’a+ (B"t)"u+ 3(B"t)"Q(B"t)}
= exp{t"(a+ Bp)+ 5t"(BQB")t},
which is the MGF of the N;,(a + Bu, BQB™) distribution. Hence linear combinations of normal
variables are themselves normal.

(c) Write YT = (Y{",Y,") and partition p and € conformally. Then
My (t) = exp {t]p1 + t3p2 + T (T Quits + 2T Quots + 13 Qooto) }
and by setting t5 = 0 and then ¢t; = 0 we have
My, (t1) = exp (t{p1 + 3t1Qut1), My, (ta) = exp (32 + 315 Q00ts) -

Hence the marginal distribution of Y7 is NV, (11, Q11).
For the conditional distribution, note that W = Y; — 91292_211/2 is a linear combination of Y and

E(W) = U1 — 91292_21111,2, VaI‘(W) = QH — 91292_21921, COV(W, YQ) = ng — 91292_21922 =0.

Hence W 1L Y5. As Y, =W + 91292_213/2 and conditioning on Y5 does not change the distribution of
Wv

E(Y] | Yo = y2) = E(W) 4+ Q12055 y2, var(Yy | Yo = y2) = var(W + Q12055 y2) = var(W).

Putting the pieces together gives the stated conditional distribution.
(d) The joint MGF My (t) given in (c) factorises iff the variables are independent, and

My (t) = My, (t1)My, (t2) for all t e R" <= Q49 =0.

(6= (o)

BQBT BQD"
DQBT™ DQDT )’

The variance matrix of

so a+ BY 1L ¢+ DY iff BQD" = 0.
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Note: Multivariate normal distribution 1l

(e) Each Y; has mean p and variance 02, and since they are independent, cov(Y;,Y;) = 0 for
j# k. If ueR" then u™Y is a linear combination of normal variables, with mean
> i1 ujp = u'pul, and variance > T 1u]202 = uTo?I,u, s0 Y ~ Ny (uly,0?1,), as required.
(f) Since € is symmetric and positive semi-definite, the spectral theorem tells us that we may write
Q= ADA", where D = diag(d,...,dy) contains the (real) eigenvalues of €2, with
dy >--->dy >0, and Ais an x n orthogonal matrix, i.e., ATA= AAT =1, and |A| = 1. The

columns Aq,..., A, of A are the eigenvectors corresponding to the respective eigenvalues,
n
Q= ADAT == Z djaja]T»,

with |Q = |[ADAT| = |A| x |D| x |AT| = |D| and Q~! = AD~' A" if the inverse exists.

O Now let Z = (Z1,...,Z,)" be a vector of independent standard normal variables, set u € R",
and consider

n
1/2
u (4 ADY?Z) = u"p + Z ZjuTajdj/ .
Jj=1
This is a linear combination of normal variables, so it has a normal distribution, with mean u™u
and variance

n
var uTu+ZZjuTa] d'/? Zd u"aj)*var(Z Zd aja; | u=u"Qu,
j=1

so X 2 i+ ADY2Z ~ N, (11, Q).
O If Q has rank n, then d,, > 0. The change of variables z — x = + AD'/2?z has Jacobian

ox

52| = [ADY?| = |A[[D]Y? =1 x D]V = |QI'/2 > 0.
z

Moreover z = D~'/2 A" (x — 1), and therefore 27z = (x — ;)™ Q' (2 — p). Hence using the joint
density of Z, fz(z) = (27) /2 exp(— > i1 23/2),

T

o
which reduces to (1). If d,, = 0, then the Jacobian is zero, so the transformation z — x is
singular and X does not have a density on R".

=2,

fx(@) = f2(2)|,.2p-1247 ()
2=D~1/2AT (z—p)

O Now suppose that d,, > d,,+1 = 0, so just m eigenvalues of €2 are positive. Then

X = ,LL+ZZa]d/2ES:p+span(a1,...,am),
j=1

where S is a hyperplane of dimension m passing through 1 and generated by the vectors
ai,...,0m. In this case the previous argument shows that X has an m-dimensional Gaussian
density on S, but places no probability elsewhere.
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Reminder: y? distribution
Definition 4 /Y £S5 N (uj, %), then W =Y + - + Y2 has the non-central chi-square
distribution with v degrees of freedom (df) and non-centrality parameter

6% = (2 + -+ p2) /% we write W ~ o%x2%(6%). Then

to262

My (t) = exp <71 — o1

> (1-20%)7""% t<1/(20%).

If 62 = 0 and 0> = 1 then W has the (central) chi-square distribution with v df, we write W ~ 2,
its MGF is Myy (t) = (1 — 2t)"%/2, and its p-quantile is c,(p).

Chi-square variables satisfy

O E(W) =0o%(v+6%), var(W) = 20*(v + 262);

O if Wi~ X2, 1L Wo ~ x2,, then Wy + Wy ~ X2 | .;
O W ~ x2 implies that W has the gamma density

fluw) = Z o

0 0
F(a) ) w > ) C‘{7/8 > )

with « = v/2 and 8 = 1/2.

Regression Methods Autumn 2024 - slide 20

Reminder: 2 densities

Left: central densities with v = 1,2, 4,6 (solid, large dashes, small dashes, dot-dash).

Right: non-central densities with ¥ =4 and § = 0, 2,4, 10 (solid, large dashes, small dashes,
dot-dash).

0 | &
° S
S o
S
@ |
o
=z 22
— o - O
o
Yo} N
o ..
. o =
[}
o | ‘ 8 | -
° T T T T S T T T T T T T
0 5 10 15 20 0 5 10 15 20 25 30
w w
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Reminder: Student ¢ distribution

Definition 5 If Z ~ N'(0,1) 1L W ~ x2, then T = Z/(W/v)'/? has the Student ¢ distribution
with v df, T'~ t,, and we write t, (p) for the corresponding p-quantile. The density function of T' is

o M +1)/2) 1
1) == o) (14 £2/v)+D/2°

—oco<t<oo, v=12,....

Properties:
[0 the mean and variance exist only for v > 2 and v > 3 respectively, and then

v
E(T)=0 T) = ;
(1) =0, var(T) =
0 with v =1 we have the Cauchy density,
1 <t <
— - 00
(1 +t2)’ ’

and then T has no moments;

O as v — oo, the limiting distribution of T is A/(0,1); usually the approximation is ‘good enough'’
for v > 25 (say).
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Reminder: Student ¢ densities

Student ¢ density functions with v = 1,5,10,20 (black, ¥ = 20), and the standard normal density

(red):
Student t density, nu=20

0.4

Density
0.3

0.2

0.1

0.0
I

-4 -2 0 2 4
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Reminder: F' distribution
Definition 6 /f W1, W, nd XEI,XEQ, then

. Wl/ljl

F =
WQ/I/Q

has the I distribution with v and v df: we write F' ~ I, ,,.
The density function is

1
1 1 v1/2 v2/2 -1
[ (501 + 5v2) 1y / Vy / u2”!

T (501) T (5v2) (vg + vyu) 1 T2)/2

fr(u) =

u>0, r,rn=12...,

and the p-quantile is written F,, ,,(p).
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Reminder: Computation

O Quantiles of the N'(u,0%), X2, t,, F}, .., distributions can be found in tables, or in environments
such as R (see http://www.r-project.org/), where they can also be simulated.

0 Examples:

R : Copyright 2005, The R Foundation for Statistical Computing
Version 2.2.1 (2005-12-20 r36812)

> gnorm(0.025) # this is a comment; access normal quantiles

[1] -1.959964 # the [1] means this is the first element of a vector
> 7qnorm # help on use of function gnorm()

> qchisq(0.025,df=3) # chi-squared quantiles, nu=3
[1] 0.2157953

> qt(0.025,df=3) # t quantiles, nu=3

[1] -3.182446

> qf(0.025,df1=3,df2=4) # F quantiles, nul=3, nu2=4
[1] 0.06622087

Regression Methods Autumn 2024 — slide 25

Statistical models
[0 Least squares fitting gives a deterministic description of the variation in some numbers y in terms
of other numbers X.

[0 A statistical model is a description of data y in terms of a collection of probability distributions
on the sample space for y.

0 We distinguish
— primary aspects of a model, which specify what questions we aim to answer, from

— secondary aspects, which complete the model, indicate what analysis might be suitable, and
determine the precision of conclusions.

[0 Often the primary aspects are embodied in one or more parameters of the model.

O (Almost) all models are tentative, and we must check that they are reasonable.

16
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Second-order and normal assumptions
[0 Two distributional assumptions are in general use for the linear model:
— second-order assumptions,
y~ (XB,0°V), e, E(y)=Xp, var(y) = o Vixs;
— normal assumptions,
Yy~ Nn(X/Ba UQV)a
i.e., y has a multivariate normal distribution with mean vector X /3 and positive definite
(co)variance matrix o2V'.
[0 X is called the design matrix: more later.
0 V is assumed known. Unless stated otherwise we set V' = I,,, so the y; are uncorrelated; if
normal they are therefore independent.
O If V # I, then we can perform weighted least squares (WLS) estimation, minimising
ly = XBIE = (y — XB) W (y — XB),
where W = V1 is the weight matrix.
OO Above the linearity is (usually) primary, whereas the distributional assumption, use of weights,
.., are (usually) secondary.
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Consequences of second-order assumptions

Lemma 7 Under the second-order assumptions, (3 is an unbiased estimator of 3,

and S? = (n —p)~ Y|y — yl|? is an unbiased estimator of o2.

Theorem 8 (Gauss—Markov) The least squares estimator B has the smallest variance among all
estimators 3 = A,xny; it is the best linear unbiased estimator (BLUE) of .

~

E(B) =8, var(B) =o*(X"X)7L

[0 Obviously these results hold under the (stronger) normal assumptions.
[0 The Gauss—Markov theorem only concerns linear estimators. Nonlinear estimators of 3 might
have smaller variance than o?(X*X)~! (and in fact the optimal maximum likelihood estimators
of (3 for non-normal models will be nonlinear in y).
Regression Methods Autumn 2024 — slide 28
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Note to Lemma 7

00 Recall that expectation is linear, and that var(A,x,y) = Avar(y)A™.
O Set Ayyy = (XTX)71XT and note that

E() = E(Ay)=AE(y) = (X"X)'X"X5 =5,

var(f) = Avar(y)AT = (X"X) X Lo {(X"X)1XT)}T = o2(XT X)L,
O Recall that E(yy*) = var(y) + E(y)E(y)* = oI, + X38" X", and note that

ly =9I1P = (=9 =9) =y (In — H)"(In — H)y = y" (I, — H)y = tr{(L, — H)yy"}.
Hence E(|ly — 7l|*) equals
Eltr{(L, — H)yy"}] = tr{(L, — H)E(yy")} = tr{(I, — H)(0’I, + XBB"X")} = o*tx(I, — H),
because (I, — H)X = 0. Moreover tr(I,,) = n and
tr(H) = tr{ X (X" X)X} = o {(X"X) T XX = te(1y) = p,
so E(S2) = 02, because

E(ly = 9lI*) = o*te(ln — H) = o*(n — p).

Regression Methods Autumn 2024 — note 1 of slide 28

Note to Theorem 8

O Let B~denote any unbiased estimator of 3 that is linear in y. Then a p x n matrix A exists such
that 8 = Ay, and unbiasedness implies that E(3) = AX 3 = (3 for any parameter vector [3; this
entails AX = I,. Now

var(B) — var(B) = Ac*I,AT —o2(XTX)!
= o {AAT - AX(X"X)'XTA"}
= o?A(I, — H)A"
= o?A(l, — H)(I, — H)TA"
and this p X p matrix is positive semidefinite. Thus B has smallest variance in finite samples
among all linear unbiased estimators of 5.

O This is a finite-sample result that holds for all n and X (of rank p, with n > p).

Regression Methods Autumn 2024 — note 2 of slide 28

18



Second-order assumptions and large samples

0 We can write y; = z; 8 + o¢j, where ¢; ‘nd (0,1), so

n n
B=(XTX)1XxTy = Z(XTX)flmjyj =B+ont Zajaj,
j=1 j=1

say, where aq,...,a, are p x 1 vectors. We have E(B) = 3 and var(g) = (XTX)™!, butis 3
approximately normal for large n?

0 The aj, or equivalently X, must be such that no single 1; can dominate in n~t > aje;.

Theorem 9 (no proof) Let {X,,} be a sequence of n X p design matrices each of rank p, let
R%Y,...,h". be the diagonal elements of the hat matrices X, (X} X,) ' X and let
Yn ~ (XnB,0%1,) for each n. If

lim max hj; =0,

n—oo j=1,...,n

then the corresponding sequence of least squares estimators ﬁn satisfies

(XEX) 2(Bn — B) 2 Np(0,0%L,), n — oo,

i.e., if H has a ‘well-behaved’ diagonal, then B ~ Np{B,0%(XTX)™1} in large samples.
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Normal-theory linear model

The following results allow exact inferences for 3 and o2, and in analysis of variance.

Theorem 10 Under the normal-theory linear model,

~ _ 2
BNyl DS e

Lemma 11 /fy ~ N, (u,0%1,) and H is symmetric and idempotent with rank p, then
yTHy ~ UQXIQJ(cSQ), where 0262 = " Hyp.

Theorem 12 [fy ~ N, (u, 021,,) and a linear model is fitted whose design matrix X is structured as
in Lemma 2, then the sums of squares in the ANOVA decomposition

n R R+1
S w5 -9° =S 0 -Gl + =12 = 3 [Pyl
j=1 r=1 r=1

are independent and || Py||* ~ o?x?% _,  (62/0?), where 0%62 = u* Pyp. If X, does not explain any
variation in . after allowing for Xq, ..., X, 1, then P,y =0, so 62 = 0.

Theorem 12 implies that the sums of squares for terms that explain variation in y will tend to be

larger than sums of squares for other terms, which can be used to estimate 2.

Regression Methods Autumn 2024 — slide 30
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Note to Theorem 10

O The first part is easy, because 3 is a linear combination of normal variables so it is normal, and its
mean and variance matrix were given by Lemma 7.

O Likewise the residual e =y — 4y = (I — H)y is a linear combination of y with mean 0,, and
variance (I — H)o?, so e ~ Ny, {0,, (I — H)o?}.

O As cov(ﬁ, e) equals
cov{(XTX) ' X Ty, (I — H)y} = (X" X) ' X cov(y)(I — H)" = c*(X"X)"H{ (I - H)X}" =0,
we see that B is independent of (any function of) e, and therefore in particular of
(n—p)S?/o? = |ly — §I2/0? = e"e/o™.

[0 The eigenvalues of H are p 1'sand n — p Q’s, so those of I — H are n — p 1's and p 0's. The
spectral decomposition implies that there exists an n x n orthogonal matrix U such that
I — H=UDUT", where D =diag(1,...,1,0,...,0) and UUT =U"U =1,,. Thus Z =U"¢/o
has mean vector 0,, and variance matrix

var(Z) = Uvar(e)U/o? = U™ (I — H)o*U/o? = U"UDU™U = D,

i.e. the Z1,...,Z, are independent normal variables, n — p of them have variance 1 and p of
them have variance 0 and therefore equal 0 with probability one. Hence, as required,

n—p
2/ 2 _ 2 _ _ _ 2 2
(n—p)S?/o® = eTe/o® = (UZ)"(UZ) = Z"UVZ = Z: ~X>2,
j=1
Regression Methods Autumn 2024 — note 1 of slide 30

Note to Lemma 11

The spectral decomposition of H is UDU™, where D is diagonal with p 1's and n — p 0's, and
Z =U%y ~ Ny (U, 0%1,); note that the Z; are independent. Now

Y Hy = (U™y)" DU ) =Y d;22= Y 72,
j=1 jidj=1

which has a (possibly non-central) x? distribution with p = tr(H) degrees of freedom, scale parameter
2
o and

0*8* = Y E(Z)? =) djE(Z)* = (U"w)" DU n) = u"Hp.
Jidj=1 Jj=1

Regression Methods Autumn 2024 — note 2 of slide 30

20



Note to Theorem 12

O As P.P; =0 for r # s, we have cov(P,y, Psy) = P.var(y)PY = 0?P, P, =0, i.e., Py and Py
are independent. Hence the terms in the ANOVA decomposition are independent.

[0 P, is a symmetric idempotent matrix, so Lemma 11 gives
IPyl” ~ o*X5 (67 /0%), 67 = p* Props,

where v = rank(P,). These ranks are v, — v,y forr=1,..., R, and n — p for Py = I, — H.

O If X, does not explain any variation in p after allowing for Xg,..., X,_1, then
H.p=H, 1y €V,_q, ie., P.p=0, and thus 53 =0.

Regression Methods Autumn 2024 — note 3 of slide 30

Inference on [

[0 Theorem 10 implies that for any constant c,x1, "B ~ N{c"B, 02" (XTX) 1}, so

2208 N0 L -pSet= Wi,
o/ cT(XTX) e P
and thus R
c'Br —c'py Z

S/ECX) e Winp T
O Let v, denote the (r,s) element of (X"X)™!, so v,, denotes its rth diagonal element.
[0 Different choices of ¢ allow inferences on the elements of 3.
O For example, if ¢" = (¢1,...,¢p), ¢ =1 and ¢; = 0 for s # r, then "3 = f3,, and we
— test the hypothesis that 3, = 3° by comparing (3, — B}?)/(Sv%z) to the t,,_, distribution, and

— a (1 — «) confidence interval for /3, has limits

By £ SvH2t, (1 —a/2), 0<a<l.

[0 Likewise we can compare 3, and [, by setting ¢, =1, ¢, = —1 and all other ¢; = 0.
Regression Methods Autumn 2024 — slide 31
Prediction

[0 Inference for the value of a further random variable Y with known p x 1 covariate vector z and
satisfying the linear model, so Y, ~ J\/(xiﬁ,az) independent of the other variables, is performed

by noting that Y, 1L B, S? and
Yy — a8~ N[0, 02 {1 4+ 2 (XTX) Ly )]
SO

Y+ — fEiB
S{1 4 2 (XTX) 1w }1/2

~ ZL'n—jm

which leads to prediction intervals for Y once 3 and S have been observed.

[0 Although we expect inferences for 3 and o2 to hold as approximations under second-order
assumptions, this is not the case for inference on Y. (Why not?)

Regression Methods Autumn 2024 - slide 32
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1.3 Analysis of Variance slide 33

Analysis of variance
0 We previously saw that

n

R
> w9 =yl = 1Goll”> =D _ NG — Geal® + lly — 71I°
jil r=1

decomposes (‘analyses’) the variability of y around its average y into
— the contributions |7, — 7»_1]|? due to adding the columns of X, to Xo,..., X, 1,
— the residual sum of squares |y — 7||? left after fitting X = (Xo,..., XRr).

O Large || — §r—1]|? implies that X,. explains a lot of the variation of y even after allowing for that
explained by Xo,..., X, _1.

OO Theorem 12 implies that under the normal assumptions, and if E(y) = u lies in the column space
of X, the sums of squares on the RHS above are independent and satisfy

15 = =1l = 1Pryll* ~ 02x5, 0, (07/0%) AL ly = FI* ~ o?x5
Hence if 02 = 0, i.e., 1 € span(Xo, ..., X,_1), then

||/y\r - /y\r71||2/(7/r - Vrfl)
ly = ylI*/(n — p)

~ Fl/r*l’w—lyn*p’

Regression Methods Autumn 2024 - slide 34
ANOVA table
Term added df Reduction in SS Mean square
X1 vy — 1 SSO — SSl M81 = (SSQ — SSl)/(Vl — Vo)
X2 Vo — 11 SSl — SSQ MSQ = (881 — SSQ)/(VQ — V1)
XR VR — VR 1 SSR_1 —SSR MSR = (SSR_1 —SSR)/(VR—VR_l)
Residual n—VR=nN—0p SSkr MSRges = SSr/(n — p)

O If u € span(X) then the residual mean square MSges gives an estimate of o2.
[0 We test for an effect of term X, by noting that
— if X, explains no more than (X, ..., X,_ 1), then
MS,

- ~ Ly —v._1,n—VR>
MSRes r (s s R

Fy

— if X, does have additional explanatory power, then the distribution of MS,. is shifted to the
right, and we expect F} to be large relative to its null distribution.

Regression Methods Autumn 2024 — slide 35
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Example: Cement data

calories, in n = 13 samples.

Heat evolved y
80 9 100 110
80 9 100 110

Heat evolved y

5 10 15 20 30 40 50 60 70

Percentage weight in clinkers, x1 Percentage weight in clinkers, x2

Heat evolved y
80 90 100 110

Heat evolved y
80 90 100 110

5 10 15 20 10 20 30 40 50 60

Percentage weight in clinkers, x3 Percentage weight in clinkers, x4

Percentage weights in clinkers of 4 four constitutents of cement (z1,...

,x4) and heat evolved y in

Regression Methods
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Example: Cement data

> cement
x1 x2 x3 x4
7 26 6 60 78.
1 29 15 52 74.
11 56 8 20 104.
11 31 8 47 87.
7 52 6 33 95.
11 55 9 22 109.
37117 6 102.
1 31 22 44 72.
2 54 18 22 93.
21 47 4 26 115.
1 40 23 34 83.
11 66 9 12 113.
13 10 68 8 12 109.

© 00 NO O WN -

= e
= O

[E
N
W0 O 0NN OOwwOoY
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Example: Cement data

O Reductions in overall sum of squares when terms entered in the order given.
[0 Clearly 1 and x2 should be included, maybe not the others.

Term df  Reduction in  Mean square F
sum of squares

1 1 1450.1 1450.1 2425
T 1 1207.8 1207.8 202.0
x3 1 9.79 9.79 1.64
x4 1 0.25 0.25 0.04
Residual 8 47.86 5.98
Regression Methods Autumn 2024 - slide 38

Example: Cement data

0 What if we change the order of the terms?

Term df  Reduction in  Mean square F
sum of squares

Ty 1 1831.9 1831.9 306.2
T3 1 708.1 708.1 118.4
To 1 101.9 101.9 17.04
T 1 26.0 26.0 4.34
Residual 8 47.86 5.98
O Should z7 and x5 be included or not?
Regression Methods Autumn 2024 — slide 39
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Orthogonality
O In general, the ANOVA and ANOVA table depend on the order of inclusion of terms.

[0 Its interpretation is unclear if X, is significant when included early, but not when it is included
late. Is the term important or not?

[0 In a model with orthogonal terms,

XB =100+ X161+ X2f2, X X;=X,1,=0, r#s.

we obtain N
Bo 11 0 0\ '
Bil=0o XxI'x; o (1 X1 Xo)'y
Bs 0 0  X3Xy

S0 since 7§ = Xg, we have
Yy — 55 =y y — ng — BIXT X151 — B3 X3 Xof,
and the residual sums of squares for the sub-models 1,8y, 1,80 + X181, 1,80 + X282 are
vy —ngt, Yy — g — BIXTX 1B yTy —ng? — By X3 XoP,

so the reductions do not depend on the order of inclusion. Hooray!

Regression Methods Autumn 2024 - slide 40

Balance

0 Balanced design matrices induce orthogonality after fitting 1,, (or a more complex design Xj).

0 Gram—Schmidt orthogonalisation with respect to early terms makes later terms mutually
orthogonal, leading to a clear interpretation of the ANOVA for the later terms.

O If we write Hy = Xo(XFXo) 1 X and let
Zr :POXT‘ = (In—HO)XT> r= 1a2>

denote the versions of X; and X5 after adjusting for X, then
XoBo + X1p1 + Xofa = (Xofo + HoX1581 + HoXof2) + Py X151 + Py Xofo
= Zovo + Z1P1 + 222,
say, and Z{ Zy = Z3 Zy = 0, because PyXo = PyHy = 0.
O If the design satisfies Z| Zy = 0, then the order of inclusion of X7, X is irrelevant, provided X
is already present in the fit.

Example 13 (3 x 2 layout) Observations and their means written as

Y11 Y12 Ao 401 p+ oo+ 01
Y21 Y22, pw+og+02 p+ o+ oo
Y31 Y32 p+ar+903 p+az+o3
Regression Methods Autumn 2024 — slide 41
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Note to Example 13

O In terms of the parameter vector (u, a1, a9, d1,02,93)", the design matrix is

110100 U1
1 01100 Y12
« _ |1 1.0 010 _ | yn
Xewe = Lo101o0l with responses y = o |
110001 Y31
1 01001 Y32

with Xy = 1¢ the first column of X*, columns 2-3 the term X} for columns, and columns 4-6
the term X for rows.

[0 This model has six parameters, but they cannot all be estimated, because X lies in the column
spaces of X and X, and it is easy to check that X* has rank 4. The usual way to deal with this
is to set a; = &1 = 0, corresponding to dropping columns 2 and 4 of X*, giving the so-called
corner-point parametrization in which the means are

Y11 Y12 v Vs e %)
Y21 Y22, p+ 02 p+ ag + o,
Y31 Y32 403 p+ag+ 03

— the ‘grand mean’ p corresponds to the mean of observations with the first level of every factor,
— a9 corresponds to the mean difference between column 2 and column 1,

— o corresponds to the mean difference between row 2 and row 1, and

— 03 corresponds to the mean difference between row 3 and row 1.

This is the default in R. More rarely we might set > a. =) 4, =0.

[0 Even after these columns are dropped to give

1 000
1 100
1 010
X_1110’
1 001
1101

the terms X, for columns and X5 for rows are not orthogonal, and they are not orthogonal to 1,,.
On the other hand Z; and Z5 in the corresponding centred matrix,

O NI NI | 0 | =0 | =L =

B[00 0 [ [ = —

UG G W TG ST G
QO =00 =00 DO | N [ =L | =

are orthogonal to the constant by construction and to each other because the design is balanced:
09 and 03 each occur equally often with ais and without ais. This balance implies that if u is fitted
first, the reductions in sums of squares due to X; and X5, or equivalently Z; and Z5, are unique.

Regression Methods Autumn 2024 — note 1 of slide 41
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1.4 Diagnostics slide 42

Assumptions and model checking

[0 How heavily do our conclusions depend on our assumptions?
0 In any given context,
— primary aspects relate to the questions our analysis will address,
— secondary aspects relate to how we go about finding answers to them.
[0 Concerns about primary aspects suggest that we should start again.
[0 Concerns about secondary aspects suggest that we modify the analysis.
O Regression diagnostics check that a fitted model is adequate:
— Does y depend linearly on the columns of X7?
— Does y depend systematically on variables omitted from X7
— Are the variances constant?
— Are the responses uncorrelated /independent?
— Avre there outliers or otherwise unusual data?
— Are the responses normally distributed?
[0 Usually these involve plots, sometimes tests — beware over-interpretation!

O Key question: ‘how would the failure | see/suspect change my conclusions?’
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Residuals
O The raw residuals R
e=y—y=y—-XB=(L,—H)y
have E(e) = 0, var(e) = 0?(I,, — H) if model correct, so
var(e;) = 0*(1 — hj;) cov(ej,ex) = —0>hjp, j # k.

O To (roughly) equalise the variances we define standardized residuals

€; yj—ﬂUTﬂ .
J = J j=1,....n,

T s(L— )2 (L= )

]

with s replacing 0. Then E(r;) = 0 and var(r;) = 1.
O  Although €™y = cov(e,y) = 0 (check!), this only implies no linear relation between e and ¥.
0  We check

— linearity by plotting r; against the covariates (those in X and those not in X);

— constant variance by plotting r; (or |r;|) against fitted values y;;

— independence by ACF of residuals (if data time-ordered);

— for outliers, which are visible as unusual residuals; and

- normality using a normal QQ-plot of r;.

Regression Methods Autumn 2024 - slide 44
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Checking linearity

10 1 2
T

std.residual

std.residual
-1 0
L

-1 0

std.residual

std.residual
-1 0

O Plot r against each covariate, included or not in the model, and against ¥, which is uncorrelated
with e (as y"e = 0):

2 4
fitted(fit)

Regression Methods
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g
g

abs(std.residual)
0.0 05 1.0 15 20 25

Checking the variance

Plot r or |r| against ¥:

Does var(y) depend on E(y)?

[ ]
[ ]
)
[ ] "
[ ] [ ]

fitted(fit)

abs(std.residuall)
0.0 05 1.0 15 2.0 25

Variance function shows how var(y) depends on p = E(y). For normal linear model should have
var(y) = 02, so variance is constant function of

T T
0 2

4 6 8

fitted(fit1)

Regression Methods
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Checking independence

corr (75, 7j4+¢),

suggesting use of a time series model.

0 Dependence can greatly increase uncertainty of final conclusions.
[0 Substantive knowledge is helpful in suggesting whether it might be present:
— were the data gathered in temporal/spatial/. .. order?
— were the data sampled/gathered in groups (e.g., spatial, several observations on different
individuals, ...)?
— was randomisation used? If so, how?
O

If observations are time-ordered, try using correlogram (ACF) and partial correlogram (PACF) to
estimate serial correlations and partial correlations

COTT (T4, Tjqt | Tjq1s -+ Tjgt—1),5

[0 On next page, top panels show uncorrelated residuals, lower ones show evidence of correlation,

t=1,...

Regression Methods
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Checking independence

Series std.residual

1.0

0.5

S5 I [
I © ‘ T ‘ T I ‘ T
o [
2
[
=
T T T T
0 5 10 15
Lag
Series std.residual2
e
o
=
5o ‘ [1]
<©° TTTTTT

-1.0 -05
]

Partial ACF

-1.0 -05

Partial ACF

-1.0 -05

05 1.0

0.0

1.0

0.5

Series std.residual

Regression Methods
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O

0

Checking for outliers and normality

Normal Q-Q plot for Y7,...,Y, ig

(p, 02) graphs ordered values
Yoy =¥p < =Yy

against (approximate) expected normal order statistics

> H1/(n+ 1)}, e H2/(n+1)},..., & Hn/(n+ 1)}

Normality — roughly straight line, slope o, intercept p.

Outliers, skewness, heavy tails (easily) seen.

Beware over-interpretation of such plots when n is small — often useful to add simulation

envelope.

Apply to standardized residuals r; from regression model.

Regression Methods
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Checking normality, n = 50

Normal Q-Q Plot Normal Q-Q Plot
©
9 -
2 @
Q Q © —
E £
8w - 3
el el
o <
Q [}
2 <4
O o o
o~
T T T T T
-2 -1 0 1 2 -2 -1 0 1 2
Theoretical Quantiles Theoretical Quantiles
Normal Q-Q Plot Normal Q-Q Plot
2]
e ©
2 2
o — o
g Euw
3 ER
° © °
o o
B« Sw
o o
o .
wn
S e
T T T T T
-2 - 0 1 2 -2 - 0 1 2
Theoretical Quantiles Theoretical Quantiles
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Checking normality, n = 200
Normal Q-Q Plot Normal Q-Q Plot
24 B
g 24 -
E £
8w 8
3 3
Co- g S° A
w _|
. 1
T T T T — T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Theoretical Quantiles Theoretical Quantiles
Normal Q-Q Plot Normal Q-Q Plot
v(\_l -
o |
o~ k)
o o
5] 8
B 3
() (o3
he hel
oY [¢]
o -
T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Theoretical Quantiles Theoretical Quantiles
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Leverage and influence

00 Does case (z;,y;) strongly influence the fitted model (picture)?
O As
var(y; — ;) = var(y; — x}rﬁ) = 02(1 — hjj)s

having leverage h;; = 1 implies that ; = y; — need one parameter to fit this case.
O Astr(H) = > %_; hj; = p, the average hy; is p/n. If hj; > 2p/n, then jth case should be

checked (rule of thumb), e.g. by refitting without (x;,y;).
O Let y_; be fitted values for (all) data when (x;,y;) is dropped and use Cook’s distance

2
Gy = =G5 =+ =

to measure the difference between i and 7/_;.
O Large C; implies large r; and/or large h;;.
00 Cases with C; > 8/(n — 2p) worth a closer look (rule of thumb).
O High leverage and/or influence need not be bad, just need to be aware of it.
[0 These ideas are not very useful in large samples, since the plots become uninformative.

Regression Methods Autumn 2024 — slide 52
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Response transformation
O Linear model for y may be better applied for some transformation g(y), especially if some y are
much larger than others, or the variance is non-constant.

00 Survival times y,,:; in 10-hour units of animals in a 3 x 4 factorial experiment with four replicates,
with (below) average (standard deviation) for the poison x treatment combinations:

— generally see higher SD and mean together,

— times must be positive, so linear model inappropriate?

Treatment Poison 1 Poison 2 Poison 3
A 0.31, 0.45, 0.46, 0.43 0.36, 0.29, 0.40, 0.23 0.22, 0.21, 0.18, 0.23
B 0.82, 1.10, 0.88, 0.72 0.92, 0.61, 0.49, 1.24 0.30, 0.37, 0.38, 0.29
C 0.43, 0.45, 0.63, 0.76 0.44, 0.35, 0.31, 0.40 0.23, 0.25, 0.24, 0.22
D 0.45, 0.71, 0.66, 0.62 0.56, 1.02, 0.71, 0.38 0.30, 0.36, 0.31, 0.33
Treatment Poison 1 Poison 2 Poison 3 Average
A 0.41 (0.07) 0.32(0.08) 0.21 (0.02) 0.31
B 0.88 (0.16) 0.82 (0.34) 0.34 (0.05) 0.68
C 0.57 (0.16) 0.38 (0.06) 0.24 (0.01) 0.39
D 0.61 (0.11) 0.67 (0.27) 0.33 (0.03) 0.53
Average  0.62 0.55 0.28 0.48
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Example: Poison data

Upper panels: dependence of responses on the factor levels. Lower left: X% probability plots of the
3s%,, where s2; is the sample variance of y,;;. Lower right: same for y ..

time

i
02 04 06 08 1.0 12
02 04 06 08 10 12
!
-] |
.

Variance

00 01 02 03 04 05
0.0 05 1.0 15 2.0

Quantiles of chi-squared Quantiles of chi-squared
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Box—Cox transformation

O For y > 0, the Box—Cox transformation

A
y()\) — y)\ 17 )\7&07
logy, A=0,

includes the inverse (A = —1), log (A = 0), cube and square roots (A = 1, 1), original scale
(A =1) and square (A = 2); sometimes map y — y + ¢ > 0.

0 Suppose normal linear model
yN ~ N (XB,0° 1)
applies for some 3, o and \ to be determined. Here X contains 1,, so use of ¥y just changes
intercept and rescales 8 and o.

O Use profile log likelihood for A to choose ‘best’ transformation (usually from list above to aid
interpretation).

(] Interpretation of 5 depends on A, so usually we ignore the fact that A was estimated, unless we
are not interested in 3 (e.g., when performing ‘automatic’ prediction).
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Example: Poison data

[0 Fits of two-way layout model, with interaction:
o)~ N+ an+ By + py0?), t=1,2,3,4, p=1,2,3, j=1,2,3,4.

[0 Analyses of variance with responses y and y~!'. For MS and F read ‘Mean square’ and 'F
statistic’.
[0 The terms explain appreciably more of the variation of y~*

choice of response.

, suggesting that this is a preferable

Term df Response y Response 3!
SS MS F SS MS F
Poisons 2 1.033 0.517 2322 3488 17.44 72.63
Treatments 3 0921 0.307 13.81 20.41 6.80 28.34
Treatments x Poisons 6 0.250 0.042 1.87 1.57 0.26 1.09
Residual 36 0.801 0.022 8.64 024
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Example: Poison data

Top: residuals for model without interactions 74,; clearly problematic.
Lower right: profile log likelihood for Box—Cox A, showing 95% confidence interval.
Lower left: residuals for the two-way layout model (no interactions) for 1/y .

-

o /

Residual
0
Ordered residual
0

0.2 0.4 0.6 0.8 -2 -1 0 1 2

Fitted value Quantiles of Standard Normal

Residual
0
Profile log likelihood

-30 20 -10 0 10 20

Fitted value lambda
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Summary on model-checking

[0 Recall the distinction between primary and secondary assumptions. Use of the standard linear
model when the secondary assumptions fail leads to inefficient estimation and over-confident
uncertainty assessment, but is not usually disastrous per se.

O When they fail ...
— Linearity (primary): add terms (e.g., 2%) to the model, transform the covariate (e.g., to
log ), or question the basic setup;

— Constant variance (secondary): use a response transformation (below), weighted least
squares, or question primary aspects. Non-constant variance affects uncertainty assessment,
but not estimation;

— Lack of correlation (independence) (secondary): use a correlated error model (e.g., time
series or random effects). Dependence affects uncertainty assessment, but not estimation;

— normality (secondary): often does not matter, because the CLT applies to the estimators. It
does matter for prediction, which is affected by the distribution of individual responses;

[0 Checking leverage and influence may be useful in small and moderate samples, but rarely in large
samples. In any case, automatic dropping of outlying and/or influential cases is dangerous!
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1.5 Model Building slide 59

Goals
[0 What to do faced with a set of data?
L) Two main aims:
— understand (science) — maybe have prior idea/hypotheses on how response depends on
explanatory variables. Interpretation is key.
— predict/control (technology) — don't really care how y depends on X. Interpretation not
critical (though this describes only prediction in the narrowest of senses).
[0 There is no reason that a single model will do both, or even that there must be a single ‘best’
model:
— maybe two models with different interpretations both fit about equally well, and then future
work might aim to choose between them;
— prediction with a mixture of models might be better than using a single model.
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O

O 0Oo

O

0

Meta-algorithm

Collect data intended to answer question of interest;
examine data (graphs, look for outliers, problems with sampling scheme);
choose/construct response variable (transformations? independence?);

consider what models are coherent with context of problem (limiting properties, units, similar
problems/datasets, covariates that must be included, ...);

iterate:

— fit models, compare quality of fits;
— check interpretations of E, 52 and

— check fit (diagnostics, outliers, .. .)
until satisfied; finally

give conclusions—careful interpretation of best model(s) in terms of original problem, consider
deficiencies, and explain what extra data might overcome them.
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Initial examination of data

O Plot y against covariates, look for outliers, non-constant variance, nonlinearity, etc.
[0 Plot covariates against each other, look for dependence.
O Try to understand covariates (e.g., dimensions), are transformations needed?
0 May need to reduce dimension of X by regularisation — many ways to do this (later).
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1.6 Variable Selection slide 63

Albert Einstein (1879-1955)

‘Everything should be made as simple as possible, but no simpler.’
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William of Occam (71285-1347/9)

Occam'’s razor: Pluralitas non est ponenda sine necessitate: entities should not be multiplied beyond
necessity.
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Automatic variable selection

00 Assume linear model E(y) = X8

[0 2P possible subsets of columns of X, plus transformations, ...
[0 Example: p = 17 gives 131072 possible subsets of variables
O

Fast algorithms (e.g., branch and bound, leaps in R) exist visit them all or just subsets (e.g.,
stepwise), but we need criteria for comparing models.

O

Many proposals for model comparison

cross-validation,
information criteria (AIC, AIC,, BIC, NIC, TIC, ...)
Mallow's Cp,

[0 Most involve minimising estimated prediction error for future data like those observed!
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Prediction error

O True model y ~ (u,021,), we assume (perhaps incorrectly) that u = X2, fit X,,x, and obtain
fitted value

X3 =Hy~ (Hu,o’H).
[0 Terminology
— the true model has y = X and all 3, # 0;
— a correct model has = X but some 5, = 0;
— a wrong model has p & span(X);
so (I, — H)p = 0 if the model is true or correct, and (I, — H)u # 0 if it is wrong.

O The prediction error for an independent dataset y, with mean vector y is

n~ (I — H)p + (1+p/n)o?,  wrong,
A=nB{ (s — XB) gy - XB)} = { (14 a/n)o?, true,
(14 p/n)o?, correct,

where E(-) is over both y; and y and p > ¢ = #{f, : 5, # 0} when p € span(X).
O In principle we should write A = A(X).
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Note: Computation of A
Let y ~ (u,0%I) and fit X3, obtaining fitted value

XB=Hy ~ (Hu,o’H),

where Hyy = p, ie., (I — H)pu =0 if p € span(X), but otherwise (I — H)u # 0. R
We have a new data set y, ~ (u,02I), and we compute the average error in predicting 3, using X33,
ie.,

A=nE{(ys - XB)" (s - XB)}.
Let e =y — XB and note that as the trace of a scalar is the scalar and trace is a linear operator,
Beles) = B{tr(eles)} = Bltr(esel)} = tr{Blesel)} = trfvar(es) + Bles)E(es)™)}.
Now as y and y are independent and var(XB) = 02H, we have
yr — XB ~ (u— Hp, oI + 0*H),

so the computation above gives

E{(ys = XB)" (g4 — XB)} = tr{o® (I + H) + (I = H)u" (I = H)} = 0*(n +p) + " (1 — H)p,
because tr(/ + H) = n+ p and I — H is symmetric and idempotent, giving

n~ (I — H)u+ (1 +p/n)a?, wrong model,

A=< (1+q/n)o?, true model,
(14 p/n)o?, correct model.
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Bias/variance trade-off

O Minimising A involves balancing the
— bias n= '™ (I — H)u, which is reduced by including useful terms in X, and
— variance (1 + p/n)c?, which is increased by including useless terms in X.
[0 We would like to minimise A, but it depends on the unknown p and o.
[0 The cross-validation estimator of A splits the data into X', %’ and X*, y*, then
— for each possible subset S of columns of X™*:
> compute Bj; by regressing y* on Xg;
> use ng to estimate the prediction error for S by

As = ()Y — X5B5)" (v — X585);
— finally choose the set of columns S for which As is minimised.

[0 This estimator depends on the split, and since X’ # X* in general, 33 does not estimate Ag, so
it would be preferable to use the entire dataset ...
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Leave-one-out cross-validation

OO Simplest way to use entire dataset is leave-one-out cross-validation (CV), minimising

nAcy = CV = Z(yj - %T‘ij)a
j=1

where B_j is estimate computed without (z;, ;).

[0 This seems to require n fits, but the lemma below implies that with one fit we have

n L xT,A 2
= (1= hy)
Lemma 14 For a fit y = Hy where H has jth diagonal element hj; and i, _; is the fitted value for

y; obtained when (x;,y;) is dropped,

~ Yi —Uj
Yj —Yj—j = )
U A gy
and therefore
S -~ S (y_] - @\])2
Z(y] y]7*])2 = Z 2
~— (1 — hjj)
7j=1 7=1
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Note to Lemma 14
O Consider any linear fit y = Hy, and note that 7; = > """ | hj;y;.
0 Now suppose we leave out (z;,y;) and compute the corresponding (penalized) estimate
B_j =argming > (yi —x7B)* + \p(B),
i#]
and fitted value y;‘ =Yj—j = acJT-g,j corresponding to ;.

[0 Inserting (acj,y;f) back into the dataset used to compute B,j changes nothing, because
(y* — :UJT»B,]»)Q = 0 and p(53) does not depend on the data. For this new dataset,

n
vi =D i+ hygys = hgiys + h(y; — ) = U5+ hyi(y) — )

i#] i=1
o)
Yi —Y; = Y5 — Ui + hyi(y; — vj),
leading to
~ Yji — Yy
Yi — Y] =Y — Yj—j = ;
’ 1 — hjj
and thus to the given formula.
Regression Methods Autumn 2024 — note 1 of slide 69

39



Generalized cross-validation

[0 Leave-one-out CV can be unstable if some of the h;; are large.
00 Generalised cross-validation (GCV) replaces all the h; by their average tr(H)/n = p/n, giving

GCV = Z 1_p/n2,

and hence
B(GCV) = u™(I - H)p/(1 - p/n)* + no?/(1 — p/n) ~ nA.

[0 Often choose the model that minimises GCV or CV.
[J Note that these only require the second-order assumptions.

Regression Methods Autumn 2024 — slide 70

Note: Properties of GCV
We have (1 — p/n)2GCV = eTe where e =y — X3 = (I — H)y ~ (I — H)p, (I — H)o?), and
E(e"e) = E {tr (ee”)} = tr {E(e)E(e)* + var(e)} = p*(I — H)pu + o*tr(I — H).

Now note that tr(I — H) = n — p and divide by (1 — p/n)? to give (almost) the required result, for
which we need also (1 — p/n)~t ~ 1+ p/n, for p < n.
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Akaike information criterion

[0 The above arguments apply only to least squares estimators. More generally, we could aim to
minimise the Kullback—Leibler discrepancy

D(fo,9) = / og{fi(f)e) } 9(y)dy > 0,
iid

between candidate model fy = f(y;0) and true model g, based on Y1,....,Y, ~ g.
0O Suppose that 6, minimises D(f.g, g) within the family of candidate models, and is estimated by
the MLE 6, with log likelihood ‘.

[0 We suppose there is an independent sample Y1+7 I S g g and aim to estimate
n +
g9(Y;")
£, (5 [ { A5 ) = om, (005 @
I j=1 f(YjJr3 9)

the outer expectation is over the distribution of 9, which is independent of Y.

O After tedious expansions we end up trying to minimise the Akaike information criterion

AIC = —20 4 2p (= nlogRSS + 2p in linear model).
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Note: Derivation of AIC

~

[0  Taylor series expansion shows that log f(y; #) approximately equals

~ dlog f(y;0,) ~ 9?1og f(y;0y) »
log f(y;04) + (0 — ag)TTg +5(0 — Hg)TWTg(Q —0y),

N[

and as 6, minimizes D(fy, g),

/Log géy; %) () dy = 0.

Hence taking expectation over Y1+, Y we get

nD(f5.9) = n/log {% } 9(y)dy = nD(fo,, 9) + 3t {(5— 6,)(6 — 9g)TIg(99)} ;
Y3
where we have used the fact that the trace of a scalar is itself.

[ Expectation over the distribution of § gives its variance matrix, I,(0,) 71K (0,)1,(0,)~", and hence

nkg {D(f§7 g)} = nD(fgg,g) + %tr {Ig(ag)_lK(eg)} ) (3)

where the second term penalizes the dimension p of #. The first term here is O(n) but the second
is O(p). When fgg =g, I,(0y) = K(b,) so tr {Ig(ﬁg)_lK(Hg)} = p.

O To build an estimator, note that [log g(y) g(y) dy is constant and can be ignored. Now
(@) = £(6,) + {£B) — €(6,)}, 50

E {0} = —By{t(0,)+3iw(0,)}

= nD(fo,.g) — btr {1(8,) " K(6,)} —n / log g(y) g(y) dy,

where we have used the fact that under the wrong model, the likelihood ratio statistic W (6,) has
mean approximately tr {1(6,) 'K (6,)}. Hence —((f) tends to underestimate

-~

nD(fo,,9) —n [log g(y) g(y) dy. On reflection this is obvious, because £(f) > £(6,) by definition
of 0. As p increases, so will the extent of overestimation.
O An estimator is —6(5) + ¢, where ¢ estimates tr {(6,) " K (6,)}. Two possible choices of c are p

and tr(I'K), and these lead to

~

AIC = 2{—£(8) +p}, NIC = 2{—(8) + tr(J ' K)}; (4)

~

another possibility is BIC = —2/4(0) + plog n.
[0 The model is chosen to minimize AIC, say, with the factor 2 putting differences of AIC on the

same scale as likelihood ratio statistics. Such criteria are used far beyond random samples, and
even in cases where the theory above doesn’t work.

[0 In particular, the maximised log-likelihood for a normal-theory linear model with residual sum of
squares RSS can be shown to be

—g log(27o) — g = —g log RSS + constants,

which leads to the formula given on the slide.
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Other model selection criteria

[0 Bayes' information criterion

O Mallows C):

pick a more complex model;

AIC, =nlogd? +n

0 ‘Corrected’ AIC for (normal-theory) regression problems:

1+p/n

1—(p+2)/n

BIC = —2Z+plog n.

SS
Cp:3—2p+2p—n,

O When the true model is a candidate and n — oo,

where S, is RSS for fitted model and s2 estimates o2.

— AIC, is also inconsistent but gives better results in finite samples;

— AIC is inconsistent — it will not choose the true model with probability one, but tends to

— BIC is consistent — it chooses the true model with probability — 1.

These results suppose that the models are fixed, but in practice we also have p — oo when
n — 00, because we fit ever more complex models when we have more data.
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Simulation experiment

Number of times models were selected using various model selection criteria in 50 repetitions using
simulated normal data for each of 20 design matrices. The true model has p = 3.

n Number of covariates
1 2 3 4 5 6 7
10 G, 131 504 91 63 83 128
BIC 72 373 97 83 109 266
AIC 52 329 97 91 125 306
AIC, 15 398 565 18 4
20 C, 4 673 121 83 61 53
BIC 6 781 104 52 30 27
AIC 2 b77 144 104 76 97
AIC, 8 859 94 30 8 1
40 C, 712 107 73 66 42
BIC 904 56 20 15 5
AIC 673 114 90 69 54
AIC, 786 105 52 41 16
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Stepwise methods

[0 In principle we might wish to fit all 2P possible choices of covariates, but in practice this is
possible only for ‘modest’ p, using leaps or similar methods (or approximations).
[0 When p is too large for exhaustive searches, we instead consider subsets of the models, using the
methods below (or variants).
[0 Forward selection: starting from the model with a constant only,
1. add each remaining term separately to the current model;
2. if none of these terms improves the fit, stop; otherwise
3. update the current model to include the most useful new term; go to 1
[0 Backward elimination: starting from the model with all terms,
1. if all terms are ‘useful’, stop; otherwise
2. update current model by dropping the ‘least useful’ term; go to 1
[0 Stepwise: starting from an arbitrary model,
1. consider three options—add a term, delete a term, swap a term in the model for one not in
the model;
2. if model unchanged, stop; otherwise go to 1
O  ‘Useful” means ‘reduces the AIC' (but in the past meant ‘is significant using an F’ test’).
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Stepwise methods: Comments

O Original formulation of stepwise used F tests (or even arbitrary numbers!) to assess significance,
but this finds spurious models.

0 Systematic search minimising AIC or similar over all possible models is preferable, but is often
infeasible.

0 Compare AlCs for different models at each step—i.e., use AIC (or AIC,) as objective function.

[0 Important not to fixate on a specific model, or assume that there is a single ‘best’ model, but to
consider any models whose AIC is within (say) 2 of the minimum — especially if the
interpretations of competing models differ.
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Example: Nuclear power stations

\4

nuclear

t2
46
73
85

date t1
68.58 14
67.33 10
67.33 10
68.00 11 67
68.00 11 78
67.92 13 51
68.17 12 50
68.42 14 59
68.42 15 55
68.33 12 71

cost
460.05
452.99
443 .22
652.32
642.23
345.39
272.37
317.21
457.12
10 690.19
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792
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Example: Nuclear power stations

Full model Backward Forward

Est (SE) t Est (SE) t Est (SE) t
Constant —14.24 (4.229) —3.37 —13.26 (3.140) —4.22 —7.627 (2.875) —2.66
date 0.209 (0.065) 3.21 0.212 (0.043) 491 0.136 (0.040) 3.38
log(T1) 0.092 (0.244) 0.38
log(T2) 0.290 (0.273) 1.05
log(cap) 0.694 (0.136) 5.10 0.723 (0.119) 6.09 0.671 (0.141) 4.75
PR —0.092 (0.077) —1.20
NE 0.258 (0.077) 3.35 0.249 (0.074) 3.36
CT 0.120 (0.066) 1.82 0.140 (0.060) 2.32
BW 0.033 (0.101) 0.33
log(N) —0.080 (0.046) —1.74 —0.088 (0.042) —2.11
PT —0.224 (0.123) —1.83 —0.226 (0.114) —1.99 —0.490 (0.103) —4.77
s (df) 0.164 (21) 0.159 (25) 0.195 (28)
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1.7 Robustness and Estimating Functions slide 78

M-estimation

[0 The least squares estimates are linear in y and therefore very sensitive to outliers.
O When y; — y; + ¢,

n n
B=Y (X"X) a3 (X)L + (XUX) e = B+ (XTX) e,
j=1 i=1

which could be arbitrarily far from B

O Try and fix this by replacing
n

mﬂinZ(yj —xiB)> by mﬁinZP{(yj —aB)/o},
j=1

for function p(-) that will give a more robust M(aximum likelihood-like)-estimator, or
equivalently solving the p x 1 system of estimating equations

LS, T T
—>_wip {(y —2B) /ot = X" =0
=1

say, where p;,,q has jth element dp(u)/du for u = (y; — 2} 8) /0.
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Choice of p

O Choose p(u) to have desirable properties, e.g., to downweight outliers:

p(u) = u%/2 (normal errors),
p(u) = |u| (Laplace errors),
p(u) = vlog(l+u?/v)/2 (t, errors),
2/2
plu) = w2 ful < C_’ (Huber function).
c(2lu| —¢)/2, otherwise,

[0 The function p'(u) is also called the influence function of the estimator, as its value determines
what influence an observation at « has on the estimator:

— Huber p/(u) is bounded,
— t, function is bounded and redescending, as lim, . p/(u) = 0;
— Tukey's biweight
/ _ 1 _ 2 2[
pl(u) =u{l = (u/c)*}" I(ju| <c),
which gives p/(u) = 0 when |u| > ¢, is also redescending, giving no weight to observations
outside =c.
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p and o

Functions p and p’ for least squares (black), ¢5 (red), Laplace (blue), Huber (green) and biweight
(cyan) estimators.

p(u)
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Estimation

0 We need to solve

where p’ has jth element

{(w; ~ 238/} _

1y T p

say, so we write the estimating equation as
X"W(y—XpB) =0,

with W = diag{w:(8,0),...,w,(8,0)}.
[0 We use iterative weighted least squares: choose some initial 8 and o, then iterate to
convergence the steps

— compute W using the current A,

— compute the weighted least squares estimate,
B=(X"WX)1XTWy.

[ Estimate o using median absolute deviation of residuals y; — xJTB at each iteration, or similar
robust scale estimate.
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M-estimator variance

[0 Estimator B is solution to p x 1 system of equations
9(y; 8) = X"p' =0.
[0 Can show that if the estimating function g is unbiased, i.e.
E{g(Y;B);8} =0, forany s,

then under mild regularity conditions

dg(Y;B)

This is another sandwich variance matrix, with

E{—M} =X"WX, var{g(V;8)} = X"WyX,

op*

so if W1 = A(o)I,,, Wy = 0?B(0)]I,, then

var(B) = o?(X"X)~! x B(o)/A(0)?.

BN, (@E {—W}lvar{gmﬁ)}E {—%}j .

Regression Methods
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Note: Sandwich matrix |

[0 The p x 1 estimating function is
n T
yj — ;B
9(y; B) = ijp’ (%) :

7=1

and unbiasedness implies that if the individual densities are o' f{(y; — z;B)/o}, then
n T T
yi—xiB\ . (vi— ;B
0=E{g(y; 8)} = z;xj/Pl <7j > ’ >U 'f <7j . ’ > dy; = X anx1,
J:

say, where a; is the jth integral above, and setting u = (y; — 2 3)/0 shows that all the a; equal

/p' (u) f(u)du = 0; ()
this is true by symmetry if the error distribution and p’ are symmetric around the origin. Now

9g(y; B) _ l - T yj—xJT'ﬁ
oB7 o LitiP o ’

J=1

whose expectation is (using the same transformation)
ag(%ﬁ) 1 ¢ T " YJ_:C]Tﬁ
E{_@ﬁ_ R S Ul G

1 — 1
- —gi;wﬁ/QWMﬂmduz—;X%&ﬂw,
]:
say.

[0 The components of these sums are independent, so

Y, — a6

3 — o _— = T / [— -
var{g(vi ) = var § Sy (20 ) =S {f (20
j=1 7j=1
where the substitution u = (y; — 23)/0 and (5) show that the variance term can be written as

var {p’ (LW)} - /p'(u)2f(u) du = B(o).

g
0 The sandwich variance formula is therefore

[ Lxae) xmxne [ -Lxxae) = oo 229

The variance of the LSE is var(Y;)(XTX) ™!, so the asymptotic relative efficiency of the
M-estimator based on p and the LSE is
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Note: Sandwich matrix Il

[0 As a check on this, note that for the normal distribution p/(u) = u, f(u) = (27)"te"*/2, so
A(o) = B(o) = 1, which gives ARE of 1. If we take p/(u) = sign(u) with the normal density, we
have B(o) = 1, A(o) = —2/(2m)'/?, so the sandwich variance formula gives o?(X"X)~'7/2. So
using the p-function corresponding to the Laplace distribution when the data are in fact normally
distributed leads to an estimator which is /2 &~ 1.57 times more variable than would be the case
if the appropriate p-function were used.

O If we take the p-function p/(u) = u corresponding to the normal density, and the errors are in fact
Laplace, g(u) = (1/2)e" "I, we have

A(o) = /(—l)f(u)du =1, B(o)= /qu(u) du =2

and the asymptotic relative efficiency is 1/2.
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Efficiency

[0 Efficiency of M-estimators of (3 relative to LSEs of 3 is

var(¥})  Ao)?.
oz B(o)’

for example, the Huber estimator is 95% efficient if ¢ = 1.345.
[0 In practice need to balance robustness and efficiency, increasing the latter by increasing c.
O High numbers of outliers can wreck M-estimators.

[0 Highly robust least trimmed squares estimators obtained by minimising

1

q
Jj=

where ¢ = [n/2] + [(p +1)/2].
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Example: Survival data

Left: log survival proportions for rats given doses of radiation, with lines fitted by least squares with
(solid) and without (dots) the outlier, and a Huber fit for the entire data (dashes). Right: simulated
data with a batch of outliers (circles), and fits by least squares to all data (solid), least squares to
good data only (large dash), Huber (dot-dash), biweight (dashes), and least trimmed squares
(medium dash). The Huber and biweight fits are the same to plotting accuracy.

Log survival time

0.2 0.6 1.0 1.4 0 2 4 6 8 10 12 14

Dose X
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Simulation (right-hand panel on slide 85)

Table 1: Bias (standard deviation) of estimators of slope in sample of 25 good data and k outliers,
estimated from 200 replications.

k Least squares M-estimation Least trimmed
No outliers  With outliers Huber Biweight squares

1 0.00 (0.07) 0.17 (0.06) 0.07 (0.07) 0.01 (0.07) —0.01 (0.13)

2 0.00 (0.07) 0.26 (0.06) 0.13 (0.07) 0.02 (0.09) 0.01 (0.14)

5 0.00 (0.07) 0.41 (0.05) 0.38 (0.06) 0.19 (0.19) 0.01 (0.14)

10 0.00 (0.06) 0.48 (0.04) 0.48 (0.04) 0.46 (0.12) 0.05 (0.20)

Good strategy is initial fit using least trimmed squares, then robust fit using this as starting point.
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Quantile regression

[0 The Laplace distribution has
p(u) = |u] =ul(u >0) —ul(u < 0),
and for continuous Y, the solution to E{p'(Y — 6)} = 0 is the median of Y. Hence
n
argmin Y _ p(y; — =} B)
j=1

estimates the median of y as a linear function of X{.

O Quantile regression takes 7 € (0,1) and uses the check function
pr(u) =7ul(u > 0) — (1 = 7)ul(u < 0);
then

n
pr = argmin Z Pr (yj - ZC;Fﬁ)
j=1

estimates the 7 quantile of y as a linear function of X§.
[0 For numerical purposes it may be better to round the cusp of p.
[ Note that p/(u) = 0, so it's better to bootstrap to find var (8, ).
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Expectile regression

O Quantile regression can be used to estimate value-at-risk in finance settings, but it has the
drawback of just counting how many residuals are above/below the quantile.

[0 Expectile regression extends the LSE in the same way, taking

pT(y_e) :Ur(y—e) _nT(y)v "77'(”) = |I(u < 0) _T|u27

so 7 = 1/2 gives the LSE, while taking 7 > 1/2 leads to a more general form of LSE, with good
properties for risk estimation in finance applications (coherent elicitable risk measure).
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2 General Models

slide 89

Smoking data

Table 2: Lung cancer deaths in British male physicians (Doll and Hill, 1952). The table gives man-years
at risk 7' /number of cases y of lung cancer, cross-classified by years of smoking ¢, taken to be age minus
20 years, and number of cigarettes smoked per day, d.

Years of Daily cigarette consumption d
smoking t
Nonsmokers 1-9 10-14 15-19 20-24 25-34 35+
15-19 10366/1 3121 3577 4317 5683 3042 670
20-24 8162 2937 3286/1 4214  6385/1  4050/1 1166
25-29 5969 2288 2546/1 3185 5483/1  4290/4 1482
30-34 4496 2015 2219/2 2560/4  4687/6  4268/9 1580/4
35-39 3512 1648/1 1826 1893  3646/5 3529/9 1336/6
40-44 2201 1310/2 1386/1 1334/2 2411/12 2424/11 924/10
45-49 1421 927 988/2 849/2  1567/9 1409/10  556/7
50-54 1121 710/3 684/4  470/2 857/7 663/5 255/4
55-59 826/2 606  449/3  280/5 416/7 284/3  104/1

Regression Methods
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Smoking data

Death rate

15

10

Lung cancer deaths in British male physicians. The figure shows the rate of deaths per 1000
man-years at risk, for each of three levels of daily cigarette consumption.

cigarettes

— 20+
rrrrrrrrrr 119

15-19 20-24 25-29

0-34 35-39 40-44 45-49 50-54 55-59

Years smoking
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Smoking data
0 Suppose number of deaths y has Poisson distribution, mean T'A(d, t), where T' is man-years at

risk, d is number of cigarettes smoked daily and ¢ is time smoking (years).
[0 Take

A(d, 1) = Bot™ (1 n 52d/33> ;

— background rate of lung cancer is 3t”! for non-smoker,

— additional risk due to smoking d cigarettes/day is Sod™.
O With x; = (T},d;,t;), can write this as

y; ~ Poiss{u(B;z;)},
w(B;x) = THut™ (1 +[32dﬂ3) , j=1,...,n:

a nonlinear model with Poisson-distributed response.
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Comments

O Linear model y ~ (Xf3,021,)
— applicable for continuous response y € R
— assumes linear dependence of mean response E(y) on covariates X
— sometimes assumes y normal

[0 Lots of data not like this

[0 Need extensions for

nonlinear dependence on covariates

— arbitrary response distribution (binomial, Poisson, exponential, .. .)
— dependent responses

— variance non-constant (and related to mean?)

— censoring, truncation, ...
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Simple fixes

[0 Just fit a linear model anyway
— Might work as an approximation, but usually extrapolates really badly.

[0 Fit a linear model to transformed responses
— E.g., take variance-stabilising transformation for y, such as 2,/y when y is Poisson
— Can be helpful, but usually the obvious transformation can't give linearity.

[0 Instead we attempt to fit the model using likelihood estimation.
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2.1 Inference slide 95

Revision: Likelihood

Definition 15 Let y be a data set, assumed to be the realisation of a random variable Y ~ f(y;0),
where the unknown parameter 0 lies in the parameter space 29 C RP. Then the likelihood (for 0
based on y) and the corresponding log likelihood are

L(0) = L(6;y) = fy(y:0), €(0) =log L(0), 6 € Q.

The maximum likelihood estimate (MLE) 9 satisfies ((A) > ((f), for all 6 € Q.
Often 0 is unique and in many cases it satisfies the score (or likelihood) equation

() _
00 0,

which is interpreted as a vector equation of dimension p x 1 if 0 is a p x 1 vector.
The observed information and expected (Fisher) information are defined as

820(0)

J0) = ~Sgagt 16) =E{IO)};

these are p X p matrices if 6 has dimension p.
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Revision: Maximum likelihood estimator

0 In large samples from a regular model in which the true parameter is 92 the maximum

x11
likelihood estimator # has an approximate normal distribution,

0~ N, {90, J(@\)*l} :
so we can compute an approximate (1 — 2a) confidence interval for the rth parameter 69 as

é\r + zavl/Q

L

where vy, is the rth diagonal element of the matrix J(g)_l.
O This is easily implemented:
— we code the negative log likelihood —¢(#) (and check the code carefully!);
— we minimise —¢(6) numerically, ensuring that the minimisation routine returns 9 and the

Hessian matrix J() = —0%0(0) /0000 |,_5

— we compute J(g)_l, and use the square roots of its diagonal elements, vi{z, e ,vcllc/f, as
standard errors for the corresponding elements of 6.
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Revision: Regular model

We say that a statistical model f(y;0) is regular (for likelihood inference) if
1. the true value 8° of  is interior to the parameter space Qy C R?;
2. the densities defined by any two different values of 6 are distinct;

3. there is an open set Z C €y containing #° within which the first three derivatives of the log
likelihood with respect to elements of # exist almost surely, and

0% log f(Y;0)/06,00506;| < g(Y;)

uniformly for § € Z, where 0 < Eo{g(Y;)} = K < oo; and
4. for 6 € T we can interchange differentation with respect to 8 and integration, that is,

of (w:9) >*f(y;0)
aa/f y:0 _/ a0 aeaeT/f yi0) dy = | —5g0er ¢

The results are also true under weaker conditions, for non-identically distributed and dependent data.
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Revision: Comments on regular models

Condition

1. is needed so that # can lie ‘on both sides’ of 80 and hence can have a limiting normal distribution,
once standardized—fails, for example, if  has a discrete component (e.g. changepoint

ve{l,...,n});
is needed to be able to identify the model on the basis of the data;
ensures the validity of Taylor series expansions of ¢(§)—not usually a problem;

ensures that the score statistic has a limiting normal distribution—can fail in some models —
sometimes good news, leading to faster convergence than n=1/2.
All the above assumes the postulated model is correct! — there is a literature on what happens
when we fit the wrong model, or if the parameter dimension increases with n, or ... usually there are
no generic results for such cases.
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Revision: Likelihood ratio statistic
O Model fg(y) is nested within model f4(y) if A reduces to B on restricting some parameters:

—  for example, the model Vi, ....Y, A N(0,0?) is nested within the model
Yi,....Y, g N (u,0?), because the first is obtained from the second by setting p = 0;

— the maximised log likelihoods satisfy ZA > ?B, because the more comprehensive model A
contains the simpler model B.

[0 The likelihood ratio statistic for comparing them is
W =2(l4 — lp).
O If the model is regular, the simpler model is true, and A has ¢ more parameters than B, then
W ~ X?r

0 This implicitly assumes that ML inference for model A is OK, so that the approximation
Oa ~ N{04,Ja(04)" '} is adequate.
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Revision: Profile log likelihood

O Consider a regular log likelihood ¢(1, \), where the parameter of interest 1) is variation L
independent of the nuisance parameter ), i.e., (¢, \) € Qy x Q), and the overall MLE is (¢, \).

[0 For a confidence set for v, without reference to A, we use the profile log likelihood

£p(¥) = max (v, A) = £, Ay),

say, and, based on the limiting distribution of the likelihood ratio statistic, take as (1 — 2«)
confidence region the set

{ ey 2063 66,3} < Gimu(1 —20)}

[0 When 9 is scalar, this yields
{veQy: tw, 3} > (@3 - Hd( -20)},

and $x}(0.95) = 1.92.

[0 Such intervals are generally better than the standard interval J:l: zoSE, particularly when the
distribution of v is asymmetric, but require more computation, since they involve many
maximisations of /.
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Model setup

[0 Independent random variables Y1,...,Y,,, with observed values y1,...,y,, and covariates

Lly-oesLp.

00 Suppose that probability density of Y; is f(y;j;n;,¢), where n; = n(8,x;), and ¢ is common to all

models.
OO0 Log likelihood is

n

(B, ) =D L;(B,6) = log f{y;in(B,z5), ¢}

Jj=1 Jj=1

00 More generally, just let £;(3, ¢) denote the log likelihood contribution from the jth observation.

0 Suppose ¢ known (for now), suppress it, and estimate /3.

Example 16 (Normal regression model) Express the normal regression model in the terms above.

Regression Methods
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Note to Example 16

Here Y; £ N (pj,0?) with p; = n; = n(x;; 8), so obviously

n=n(z;;B), =0 €=—-3{(y;—nj)?*/¢+loge}.

Regression Methods
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Iterative weighted least squares (IWLS)
[0 Assume that ¢ is fixed, and write
0B) = 4{n;(8)}.
=1

0 MLEs 3 usually satisfy

or equivalently

OUB) Ot Ol OnT = 0 (B)}
o5~ agan o5 "X -

where u(3) is n x 1 vector with jth element 0¢/0n;.

[0 General approach for estimation in regression models, based on Newton—Raphson iteration

Regression Methods
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IWLS 11
[0 Newton—Raphson update step: R
B=(X"WX) ' XTWz,
where
Xnxp = 0n/0p", (design matrix)
Woxn = diag{E(—(?Qéj/ﬁnjz-)}, (weights)
Zox1 = XB+ W lu, (adjusted dependent variable)
[0 Thus to obtain MLEs B we use the IWLS algorithm:
(1 take an initial B Repeat
— compute X, W, u, z;
— compute new B and replace the preceding value;
until changes in E(B) (or, sometimes, B, or both) are lower than some tolerance.

0 Sometimes a line search is added, if E(Bnew) < E(Bold): i.e., we half the step length and try again.
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Derivation of IWLS algorithm

[0 To find the maximum likelihood estimate B starting from a trial value 3, we make a Taylor series
expansion in (6), to obtain

on"(B) =~ On;(B) 0%4;(B) On; (B n;(B) 5 B
g 9+ 3 P }j e G- 0. @)

If we denote the p X p matrix in braces on the left by —J(/3), assumed invertible, we can
rearrange (7) to obtain

100" (8)
op
This suggests that maximum likelihood estimates may be obtained by starting from a particular
B, using (8) to obtain 3, then setting 5 equal to 3, and iterating (8) until convergence. This is

the Newton—Raphson algorithm applied to our particular setting. In practice it can be more
convenient to replace J(3) by its expected value

_ - 9n(8) %5\ In;(B) .

Jj=1

B=B+J(8)" u(B). (8)

the other term vanishes because E{u;(3)} = 0. We write
1(B) = X(B)"W(B)X(B), (9)

where X () is the n x p matrix On(5)/05" and W () is the n x n diagonal matrix whose jth
diagonal element is E(—9%(;/0n?).
O If we replace J(3) by X(8)"W (B)X (/) and reorganize (8), we obtain

B=(X"WX)'X"W(XB+W lu) = (X"WX) ' X "Wz, (10)

say, where the dependence of the terms on the right on (3 has been suppressed. That is, starting
from (3, the updated estimate 3 is obtained by weighted linear regression of the n x 1 vector
adjusted dependent variable

2= X(B)B+W(B) u(B)

on the columns of X (/3), using weight matrix W (). The maximum likelihood estimates are
obtained by repeating this step until the log likelihood, the estimates, or more often both, are
essentially unchanged. The variable z plays the role of the response or dependent variable in the
weighted least squares step.

[0 Often the structure of a model simplifies the estimation of an unknown value of ¢. It may be
estimated by a separate step between iterations of 3, by including it in the step (8), or from the
profile log likelihood £, ().
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Examples

Example 17 (Normal nonlinear model) Give the components of the IWLS algorithm for the
normal nonlinear model.
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Note to Example 17

[0 Here the mean of the jth observation is 1; = n(x;; 3). The log likelihood contribution £;(n;) is
2y _ 1 2 1 2
li(ny,0%) = =5 {log o™ + —(y; — 1),
> ot 0%l
j 1 ; 1
_ Y _ J_
uj(n;) = oy —2 (5 =), = ot
the jth element on the diagonal of W is the constant o2,
The jth row of the matrix X = 0n/0B8" is (On;/0po,-..,0n;/0Bp—1), and as 7; is nonlinear as a
function of 5, X depends on f. R
After some simplification, we see that the new value for 3 given by (10) is
B=(X"X)' X" (XB+y—n), (11)
where X and 7 are evaluated at the current 3. Here nn # X3 and (11) must be iterated.

[0 The log likelihood is a function of 8 only through the sum of squares,

SS(8) = > _1{yj — n;(B)}2. The profile log likelihood for 2 is

(o) = max (8, 0%) = — {nlog o2 4 SS(B)/U2} ,
so the maximum likelihood estimator of o2 is 2 = SS(B)/n Although S? = SS(E)/(n —p)is
not unbiased when the model is nonlinear, it turns out to have smaller bias than 2, and is
preferable in applications.

[0 In some cases the error variance depends on covariates, and we write the variance of the jth
response as O'JQ- = 02(30]-,7). Such models may be fitted by alternating iterative weighted least
squares updates for 5 treating v as fixed at a current value with those for ~ with § fixed,
convergence being attained when neither estimates nor log likelihood change materially.
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Deviance

O Let i = 1;(B,x;), where 3 is MLE of 3, giving maximised log likelihood ¢(j3) and
nt =, 7n)-

O Let 7; be the value of 7); that maximises log f(y;;7;), and let 77 = (71,...,7,). This
corresponds to the saturated model, with

#parameters in 17 = #observations in y,
which will give the largest likelihood possible.

O Define the scaled deviance:

n
D =2 {log f(y;; ;) — log f(y;; 1)} > 0.
7=1

(0 Small D implies 7 & 7, so model fits well.

O Large D implies poor fit — like SS(B) in linear model.
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0

Differences of deviances

Example 18 (Normal linear model) Find the difference of deviances in the normal linear model.

Consider two models:

— Model A: 8T = (B4,...,8,) € RP vary freely — MLEs 5" = n(34);

— Model B: (B1,...,084) € R? vary freely, but 5,11, ..., [, are fixed — hence ¢ free parameters,
MLEs 7% = 5(5%).

Model B is nested within model A: B can be obtained by restricting A.

Likelihood ratio statistic for comparing the models is
N N n
2(0a — ) =2 {log f(y;;7}') —log f(y;; 7))} = D — Da,
j=1

and this ~ x2_, if the models are regular.

If ¢ unknown, replace it by an estimate: same distributional approximations will apply.
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0

Note to Example 18

Suppose that the y; are normal with means 7n; and known variance ¢. Then

log f(y;inj,¢) = —1 {log(2m¢) + (y; — n;)*/ o}

is maximized with respect to 7); when 7); = y;, giving log f(y;;7;, ¢) = —% log(2m¢). Therefore
the scaled deviance for a model with fitted means 7; is

D= ¢>1Z v — ;)7

which is just the residual sum of squares for the model, divided by ¢. If ; = x}ﬁ is the correct
normal linear model, the distribution of the residual sum of squares is gsz%_p, so values of D
extreme relative to the X%pr distribution call the model into question.

The difference between deviances for nested models A and B in which 8 has dimensions p and
q<p,

n
Dp=Da=6¢""> {; =07 = (i =0’} ~ xoq

when model B is correct. This distribution is exact for linear models.

If ¢ is unknown, it is replaced by an estimate. The large-sample properties of deviance differences
outlined above still apply, though in small samples it may be better to replace the approximating
x? distribution by an F' distribution with denominator degrees of freedom equal to the degrees of
freedom for estimation of ¢.
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2.2 Model Checking slide 108

Model checking

[0 Two basic approaches:

— overall tests either using generic statistic (e.g., chi-squared) or by model expansion (e.g.,
adding a term and testing for significance);

— regression diagnostics for detecting a few possibly dodgy observations.

[0 Most widely used diagnostics in the linear model y = X,,»,3 + € are residuals e; = y; — ¥; and
(much better) standardized residuals

yj — Uj

:7’ .:1""’ b
s(T—h)2 7 !

T

where the leverage h;; is the jth diagonal element of the hat matrix H = X(XTX)"'XT, and

the Cook statistic )

T e 5 hj
Y—9-3) U —V-5) = >

( ]) ( j) p(l _ hjj)

which measures the effect of deleting the jth case (z;,y;) on the fitted model.

C. = —
17 ps?
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Diagnostics in general case
O Linear model ideas work as approximations (2nd order Taylor series, painful expansions).
0 Leverage hj; defined as jth diagonal element of

H=WY"2X(X"WX) ' X"W'/2,
depends in general on 3 unlike in linear model.
[0 Cook statistic is change in deviance

~ ~ Boiv
Ci =2 {UB) ~ LF-) } = b

where B,j is MLE when jth case (x;,y;) is dropped, and 7p; is standardized Pearson residual
(see below).

[0 There are several types of residual (see next page).
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Residuals in general case

0 Deviance residual:
d; = sign(ij; — 1) [2{¢; (7j; ¢) — £33 $) N2,
for which Zd? = D is deviance.

O Pearson residual: uj(g)/\/wj(ﬁ).

0 Standardized versions

o i e (B)
=R 2T Ly (B)(1 — hyy) Y

and (even better)
* j—

i =rpj+ 7’1% log(rpj/rpj) ~ N(0,1)

for many models.

0 These all reduce to usual standardized residual for normal linear model.
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Example

Example 19 (Gumbel linear model) Give the components of the IWLS algorithm for fitting the
linear model

yj=Po+ bi(z; —T) +71e5, j=1,...,n,
with Gumbel errors having density function

. yi =1 Y =1
flyjsmm) =7 1eXp{— — —eXp<— ! ]>}

T

where T > 0 and n; = By + B1(x; — T); this distribution is natural for maxima, note that 7% is not the
variance.
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Note to Example 19

[0 As the data are annual maxima, it is more appropriate to suppose that y; has the Gumbel density

_ Yi =1 Yi =1
flyzmjsr) =7 1exp{—% — exp <—g> } (12)

T

where 7 is a scale parameter and 1; = By + f1(x; — T); here we have replaced the s with Ss for
continuity with the general discussion above.

O In this case
Y; —Nj Y —1j
ny7) = —log — U e (——) | (13)

and it is straightforward to establish that

0ti(njm) _ 1y Cexp (YT E _0%(ny,7) _ 2
anj T ’ 87]]2 ;

that On/0B" = X is the n x 2 matrix whose jth row is (1,z; — ), and W = 7721,,. Hence (10)
becomes 3 = (XTX)~}(X 3 + 7%u), where the jth element of u is 77 [1 — exp{—(y; — n;)/7}.

[0 Here it is simplest to fix 7, to obtain /3 by iterating (10) for each fixed value of 7, and then to
repeat this over a range of values of 7, giving the profile log likelihood #,,(7) and hence confidence
intervals for 7. Confidence intervals for 8y and (31 are obtained from the information matrix.

[0 With starting value chosen to be the least squares estimates of 3, and with 7 = 5, 19 iterations of
(10) were required to give estimates and a maximized log likelihood whose relative change was
less than 1070 between successive iterations. We then took 7 = 5.5, ..., 40, using B from the
preceding iteration as starting-value for the next; in most cases just three iterations were needed.
The left panel of Figure 1 shows a close-up of £,(7); its maximum is at 7 = 14.5, and the 95%
confidence interval for 7 is (11.9,18.1). The maximum likelihood estimates of 3y and f3; are
111.4 and 0.563, with standard errors 2.14 and 0.137; these compare with standard errors 2.61
and 0.177 for the least squares estimates. There is some gain in precision in using the more
appropriate model.
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Venice data

Example 20 (Venice sea level data) The figure below shows annual maximum sea levels in Venice,
from 1931-1981. The very large value in 1966 is not an outlier. The fit of a Gumbel model to the
data using IWLS gives MLEs (SEs) 5o = 111.4 (2.14) (cm) and 1 = 0.563 (0.137) (cm/year). The
standard errors for LSEs are 2.61, 0.177, larger than for MLEs with Gumbel model — gain in precision
through using appropriate model.

Sea level (cm)

100 120 140 160 180

1930 1940 1950 1960 1970 1980

Year
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Venice data

Figure 1:  Gumbel analysis of Venice data. Left panel: profile log likelihood ¢,(7) = maxg (8, 7),
with 95% confidence interval (11.9,18.1) (cm) for 7. Right panel: normal probability plot of residuals
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Summary

[0 For regression problems with independent responses y; dependent on parameters 3 through
parameter 7; = n(x;; 3), generalise least squares estimation to maximum likelihood estimation,
using iterative weighted least squares algorithm: iterate to convergence

B=(X"WX)'X"Wz, z=XB+W lu,

where

an ot

%0
Xnwp = X(8) = ggrr Uma = u(n) = o’ Wosn = W(n) = —F {3?7577T }’

with ¢ the log likelihood for the data.
O Standard likelihood theory is used for confidence intervals and model comparison.
O Linear model diagnostics (residuals, leverage, Cook statistics, ...) generalise to this setting.

OO Next: generalized linear models (GLMs), wide class of models with exponential family-like
response distributions.
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2.3 Generalized Linear Models slide 116
Motivation
0 Need to generalise linear model beyond normal responses, e.g. to data with y € {0,1,...,m}, or
y€{0,1,...}, ory > 0.
00 Consider exponential family response distributions (binomial, Poisson, ...), which have an

elegant unifying theory, and encompass many possibilities (in addition to the normal)

[0 Basic idea is to build models such that

E(y) =p, gp)=n=2"p,

where g is a suitable function, and y ~ exponential family (almost).
[1 Warnings:

— Don’t confuse Generalized Linear Model (GLM) with General Linear Model (GLM, in older
books, the latter is y = X3 + ¢, with cov(e) = o2V not diagonal);

— Don’t write y = p + ¢, since in a GLM the distribution of € usually depends on p.
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Generalized linear model (GLM)

[0 Normal linear model has three key aspects:
— structure for covariates: linear predictor, n = =™,
— response distribution: y ~ N(u,0?);
— linear relation n = p between p = E(y) and 7.

0 GLM extends last two to

— Y has density/mass function

y0 — b(0)

f(y:6,0) = eXp{ 3

+C(y;¢)}7 y eV, 0, od>0, (14)

where
> ) is the support of Y,
> Qg is the parameter space of valid values for § = 6(n), and
> the dispersion parameter ¢ is often known;
— n=g(u), where g is monotone link function
> the canonical link function giving 7 = 6 = b'~!(1) has nice statistical properties;

> but a range of link functions are possible for each distribution of Y.
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Examples

Example 21 (GLM density) Show that the moment-generating function of f(y;0,®) is
My (t) = exp[{b(0 + tp) — b(0)}/$], and deduce that

B(Y)=H(0) =, vax(Y) = 61"(0) = 6b" {6/~ ()} = 6V (1)
the function p— V(p) is known as the variance function.

Example 22 (Poisson distribution) Write the Poisson mass function as a GLM density, and find its
canonical link function.

Example 23 (Normal distribution) Write the normal density function as a GLM density, and find
its canonical link function.

Regression Methods Autumn 2024 — slide 119

67



Note to Example 21

[0 Suppose that Y has a continuous density; if not the argument below is the same, except that
integrals are replaced by summations.

O Let Qy={6:b(f) < oco}. Then
My()) = Blexp(t))

= /etyeXp{yg_Tf)(g)JrC(y;qﬁ)} dy

_ /exp {y(g ki t(i) —b(6) | c(y; 925)} dy.
If 6+t € Qp, then

/exp {y(@ 1 16) = b(6 + t9)

5 +C(y;¢)} dy =1,

SO
My (t) = Efexp(tY)} = exp [{b(0 + t¢) — b(6)} /9] .
[0 Hence the cumulant-generating function of Y is
Ky (t) = log My (t) = {b(6 + t¢) — b(0)} /¢,
and differentiating twice with respect to t and setting ¢t = 0 yields

E(Y) = Kg/(t)‘tzo - b/(6)7 Var(Y) - Kgi(tﬂt:o = ¢b,/(0)

[0 One can show that b(f) is strictly convex on €. Thus ¥/(6) is a monotonic increasing function of
0, so b'~1(-) exists and is itself monotonic, so V(i) = b"{b'"1 (1)} is well-defined.
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Note to Example 22

The Poisson density may be written as

fly;p) =exp (ylogp —p—logy!), y=0,1,..., pu>0,

which has GLM form (14) with @ = log i, b() = €, ¢ =1, and ¢(y; ¢) = —logy!. The mean of y is
p="b(0) = e’ = p, and its variance is b”(0) = ¢’ = p, so the variance function is linear: V(1) = p.
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Note to Example 23

The normal density with mean y and variance o

flysp,0?) = eXp{—(y v ) %log(27702)},

may be written

202

SO
0=p, ¢=0° bO)=3560% cly;¢)=—559"— 5log(2m0).

As the first and second derivatives of b(6) are 6 and 1, we have V(u) = 1; the variance function is
constant.
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Estimation of

Example 24 (IWLS algorithm) Find the components of the IWLS algorithm for a GLM.

O If canonical link is used then 0; = x;-fﬁ, so if ¢ is known, then
" (gl B — bl B)
(B = > 3 + c(y5; )
j=1
= {y'XB-K(B)}/o+Cy;9),

say, which in terms of [ is a linear exponential family with

— canonical parameter (3,1
- canonical statistic (X y)px1,
and many nice properties then hold.

O If X is full rank, then £(3) is (almost always) strictly concave and has a unique maximum in
terms of f.

OO Problem: the maximum may be at infinity in certain (rare) cases—this can arise with binomial
responses: beware of 0, ~ £36.
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Note to Example 24
[0 To compute the quantities needed for the IWLS step 3 = (XTW X)L XTW (X3 + W~u), we

need
on .
Xoxp = 25T Wosn = dlag{E(—GZEJ-/@nJQ-)}, Unx1 = {0¢;/0n;},
where (with ¢; instead of ¢ for generality, see the next slide),
4(8) = {y”T(j) +c(y;; ¢j)} , V0) =g, = guy) =258
j

O First note that dn; /063, = xj,, so X = 0n/0B" is just a matrix of constants.
[0 We need the first and second derivatives of /; with respect to 7;, so we write

(%j N a,uj 80j (%j

onj — On; Ou; 00;

with
omj O on oy —b(0;)
— = N, —==b"(0;)=V(u;), —=X==——"2
which yields
oty —=b0;) oy AG))

Uj = 75— = - - )
Tooomy g (w)eV () g (wy)éV (k) B(6)
say, where E(A) = 0. For the second derivative, we note that

0%; 0 04 _ <3Mj 96; 0 )% _ Ou; 06 {A'(Hj) A(Hj)B’(Hj)}

o on;om; an;  On; op; | B(O;)  B(6;)?

On; O 00;

and on noting that B(¢;) is non-random and A’(6;) = —b"(6;) = —V(p;), we obtain

o — E AR 1 Vi) 1
T o | g () V) 9 (k)5 V(kg) 9 (13)205V (1)
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Note to Example 24, part Il

0 From above we see that the components of the score statistic u(/3) and the weight matrix W (3)

may be expressed in terms of components 1; of the mean vector 1 as

w = 990400;) _  yi—yy
! onj 00; g ()b V (k)
aaj>2 02¢;(0;) 1
w; — = , 15
! (% 903 9 (1)? 05V (1)) (49)

where ¢'(11;) = dg(pj)/dp;. Thus 3 is obtained by iterative weighted least squares regression of
response

2=XB+g(Wy—w=n+4gWy-mn
on the columns of X using weights (15).

O By using y as an initial value for 1 and g(y) as an initial value for n = X3, we avoid needing an
initial value for f.
[0 It may be necessary to modify y slightly for this initial step. For example if we use the log link for
Poisson data, and some y; equal zero, then we may need to replace them with some small
positive value to avoid taking log 0 for some components of the initial n = logy.
Regression Methods Autumn 2024 — note 2 of slide 120

Estimation of ¢

[0 When ¢ unknown, it is often replaced by ¢; = ¢a;, with known a; and aj_l treated as a weight.
Then we replace the scaled deviance by the deviance ¢D.
0 If the model is correct and ¢ is known, then Pearson’s statistic
1= (g —1)?
P=—% S\,
¢; a;V(gs) "
analogously to the sum of squares in a linear model, with E(P) =n — p.
[0 The MLE of ¢ can be badly behaved, so usually we prefer the method of moments estimator
~ 1 <&
6= > (0 = ) Hay V(i)
j=1
which is obtained by solving the equation P = n — p, based on noting that E(X%_p) =n-—p.
O If the data are sparse (e.g., many small binomial or Poisson counts), then standard asymptotic
results are suspect.
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Example: Jacamar data

Table 3: Response (N=not sampled, S = sampled and rejected, E = eaten) of a rufous-tailed jacamar
to individuals of seven species of palatable butterflies with artifically coloured wing undersides. Data
from Peng Chai, University of Texas.

Aphrissa  Phoebis  Dryas  Pierella Consul Siproeta
boisduvalli  argante  iulia luna fabius  stelenest
N/S/E N/S/E N/S/E N/S/E N/S/E N/S/E
Unpainted  0/0/14 6/1/0 1/0/2 4/1/5 0/0/0  0/0/1

Brown 7/1/2  2/1/0  1/0/1 2/2/4 0/0/3 0/0/1
Yellow 7/2/1  4/0/2 5/0/1 2/0/5 0/0/1 0/0/3
Blue 6/0/0  0/0/0 0/0/1 4/0/3 0/0/1 0/1/1
Green 3/0/1 1/1/0  5/0/0 6/0/2 0/0/1  0/0/3
Red 4/0/0  0/0/0 6/0/0 4/0/2 0/0/1  3/0/1
Orange 4/2/0  6/0/0 4/1/1 7/0/1 0/0/2 1/1/1
Black 4/0/0  0/0/0 1/0/1 4/2/2 7/1/0  0/1/0

T includes Philaethria dido also.
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Jacamar data

Figure 2: Proportion of butterflies eaten (£2SFE) for different species and wing colour.
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Jacamar data

[0 How does a bird respond to the species s and wing colour ¢ of its prey?

[0 Response has 3 (ordered) categories: not attacked (N), attacked but then rejected (S), attacked
and eaten (E)

[0 The data form an 8 x 6 layout, with a 3-category response in each cell, total m.;
[0 Assume that the number in category E (response) is binomial:

Res ~ B(mes,mes), ¢=1,...,8,s=1,...,6,
where ¢ is colour and s is species, with probability that bird attacks and eats butterfly is

__exp(ac+7s)
1+ exp(ae+7s)’

Tes c=1,....8,s=1,...,0,

S0
— large «. corresponds to colours that the jacamar likes to eat,
— large ~y5 corresponds to species that it likes.

O This is a GLM with response y.s = 7'cs/Mes, E(Yes) = Tes, and canonical (logit) link function

n=log{rn/(1 =m)}, Nes=c+s.
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Jacamar data: Analysis of deviance

Table 4: Deviances and analysis of deviance for models fitted to jacamar data. The lower part shows
results for the reduced data, without two outliers.

Full data Without outliers

Terms df Deviance df  Deviance

1 43 134.24 35 73.68

14-Species 38 114.59 31 46.04

1+4-Colour 36 108.46 28 63.20

1+Species+Colour 31 67.28 24 28.02
Terms df Deviance | Terms df Deviance

reduction reduction
Species (unadj. for Colour) 5 19.64 Species (adj. for Colour) 5 41.18
Colour (adj. for Species) 7 47.31 | Colour (unadj. for Species) 7 25.78
Species (unadj. for Colour) 4 27.63 | Species (adj. for Colour) 4 35.18
Colour (adj. for Species) 7 18.03 | Colour (unadj. for Species) 7 10.48
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Jacamar data: Residuals

Figure 3: Standardized deviance residuals rp for binomial two-way layout fitted to jacamar data.
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Jacamar data: Parameter estimates

Table 5: Estimated parameters and standard errors for the jacamar data, without 2 outliers.

Aphrissa Phoebis Dryas Pierella Consul  Siproeta
boisduvalli argante iulia luna fabius stelenes
-1.99 (0.79) -2.22 (0.85) -0.56 (0.67) 0.16 (0.54) — 1.50 (0.78)
Brown Yellow Blue Green Red Orange Black

0.16 (0.73) 0.33 (0.68) -0.53 (0.81) —0.83 (0.75) -1.93 (0.88) —1.94 (0.85) —1.26 (0.86)

Interpretation

Residual deviance: 28.02, with 24 df

Pearson statistic: 25.58, with 24 df

[0 Standardized residuals in range —2.03 to 1.96: OK.

O 0Oo
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Example: Chimpanzee data

Table 6: Times in minutes taken by four chimpanzees to learn ten words.

Chimpanzee Word
1 2 3 4 5 6 7 8 9 10
178 60 177 36 225 345 40 2 287 14
78 14 80 15 10 115 10 12 129 80
99 18 20 25 15 54 25 10 476 55
297 20 195 18 24 420 40 15 372 190

W=

[ A two-way layout.

O Times vary from 2 to 476 minutes — need transformation (e.g., logarithm) if use linear model.
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Chimpanzee data

[0 How does learning time depend on word w and chimp ¢?

[0 Response is continuous and positive, so we try fitting the gamma distribution with mean y and
shape parameter v, i.e.,

1 r\”
flysp,v) = =y (—) exp(—vy/u), y>0, v,u>0,
i) = 0™ (4) expt-vufn)

so dispersion parameter is ¢ = 1/v (¢ = v = 1 for exponential).

[0 Possible link functions:
n =log u, (log, most common), 1 = 1/u, (reciprocal, canonical)
0 Linear model structure:
New = Ce + Y, c¢=1,...;4,w=1,...,10,

but the interpretation of the a. and ~,, will depend on the link function.

OO  With the log link, the deviances for models 1, 1+Chimp, 1+Word, and 1+Chimp+Word are
60.38, 53.43, 21.19, and 14.97. How many df are there for each model?
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Chimpanzee data: Analysis of deviance

Table 7: Analysis of deviance for models fitted to chimpanzee data.

Term df Deviance | Term df Deviance
reduction reduction

Chimp (unadj. for Word) 3 6.95 Chimp (adj. for Word) 3 6.22

Word (adj. for Chimp) 9 38.46 | Word (unadj. for Chimp) 9 39.19

0 Method of moments estimate is quS =0.432,so U = 1/¢A5 = 2.31.
[0 Use F' tests to assess effects of Word and Chimp, for example obtaining
6.22/3 .
0.42/3 =478 ~ Faor
if there is no difference between the chimps. What is the corresponding statistic for testing
differences between words?
[0 Residuals suggest that this model, or one with the inverse link, are both adequate, and both are

better than fitting a normal linear model to the log times.
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Summary

range of possible link functions.

Oo0Oo0oano

the classical linear model.

U
etc.)

[0 Standard diagnostics (residuals, . .

[0 Generalized linear models extend the classical linear model in two ways:

the response distribution is (almost) exponential family, so includes binomial, Poisson, gamma
and other distributions in addition to the normal;

the relation between the linear predictor n = T3 and the mean p is determined by a wide

Canonical link functions give particularly simple models and are widely used.
Estimates of 3 are obtained by IWLS, which has a simple form, with no need for initial values.
A simple estimate of the dispersion parameter ¢ is available using the method of moments.

Models are compared using the analysis of deviance, which generalises the analysis of variance in
Standard likelihood theory results are used for inference (standard errors, confidence intervals,

.) extend in a natural way to this setting.

Regression Methods
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2.4 Proportion Data slide 132

Binary response
[0 Response Y has Bernoulli distribution with
PY=1)=n, PY=0)=1-7, 0<7m<l.

and EY)=p=m, var(Y) = (1 — ).
O Linear link function m = n = 2™ can give 7 ¢ [0, 1], so not usually a good idea.

O Y can be interpreted in terms of a hidden variable/tolerance distribution: let Z = 2" + o¢,
where e ~ F'. Set Y = I(Z > 0), and note that

7=PY =1)=Pa"y+0e>0)=P(e>—-a"v/o)=1—- F(—z"pj),

say. Note that 5 = /o is estimable, but v and o are not.

[0 The corresponding link function is given by

n=a"B=-F'1-m)=g(n),

so different choices of F' yield different possible link functions.
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Link functions

Tolerance distributions and corresponding link functions for binary data.

Distribution F Link function
Logistic e"/(1+e") Logit n =log{r/(1—m)}
Normal ®(u) Probit n=&1(n)
Log Weibull 1 — exp(—exp(u)} Log-log n = —log{—log(m)}
Gumbel exp{—exp(—u)}  Complementary log-log 7 =log{—log(l —m)}

[0  The logit and probit links are symmetric.

O Logit (canonical link) is usual choice, good for medical studies (later), with nice interpretation,
but the probit is very similar to it and may be preferred in some cases, for its relation to the
normal distribution.

[0 The log-log and complementary log-log links are asymmetric.
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Logistic regression

0 Commonest choice of link function for proportion data is the logit, which gives

exp(a ) 1

P(Y:1):W:1+exp(:pTﬁ)’ P(YZO):l_ﬂ-:l—{—Tp(:pTﬁ)’

leading to a linear model for the log odds of success,

log {f)gjizé;} — log <£> =28, BeRP

[0 The likelihood for [ based on independent responses ¥1, ..., Y, with covariate vectors x1,..., Ty,
and corresponding probabilities 7, ..., m, is
no exp <Z”:1 ijTﬂ)
RS | C I e —" L L L
j=1 [Tj=1 {1 +exp <mﬂTﬂ)}

which is a regular exponential family with s(y) = X"y and log likelihood

(B) = (X"y)"B—> log{l +exp(z]B)}, BeRP,

=1

known as the logistic regression model.

Regression Methods Autumn 2024 — slide 135

Nodal involvement data

Data on nodal involvement: 53 patients with prostate cancer have nodal involvement (r), with five
binary covariates age, stage, etc.

m r age stage grade xray acid
6 5 0 1 1 1 1
6 1 0 0 0 0 1
4 0 1 1 1 0 0
4 2 1 1 0 0 1
4 0 O 0 0 0 0
3 2 0 1 1 0 1
3 1 1 1 0 0 0
3 0 1 0 0 0 1
3 0 1 0 0 0 0
2 0 1 0 0 1 0
2 1 0 1 0 0 1
1 0 0 1 0
1 1 1 1 1 1 1
1 1 0 0 1 0 1
1 0 0 1 1
1 0 0 0 0 1
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Deviances for nodal involvement models

Scaled deviances D for 32 logistic regression models for nodal involvement data. + denotes a term
included in the model.

age st gr xr ac df D age st gr xr ac df D
52 4071 + + + 49 29.76
+ 51 3932 + + + 49 23.67
+ 51 33.01 + + + 49 2554
+ 51 35.13 + + + 49 27.50
+ 51 3139 + + + 49 26.70
+ 51 3317 + + + 49 2492
+  + 50 30.90 + + + 49 2398
+ + 50 34.54 + + + 49 23.62
+ + 50 30.48 + + 4+ 49 19.64
+ + 50 3267 + + + 49 21.28
+ + 50 31.00 + + + + 48 23.12
+ + 50 2492 + + + + 48 2338
+ + 50 2637 + + + + 48 19.22
+ + 50 2791 + + + + 48 21.27
+ + 50 26.72 + + + + 48 1822
+ + 50 2525 + + + + + 47 18.07
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Model selection

[0 We have 32 competing models, and would like to select the ‘best’, or a few ‘near-best’.
O In general we have 2P models, so automatic selection of some sort is helpful.

0 Could use likelihood ratio tests (differences of deviances) to compare competing models, but this
involves many correlated tests, so may lead to spurious results.

[0 Usually minimise an information criterion, which accounts for the number of parameters in each
model, such as
AIC=D+2p, BIC=D+plogn,
where D is the deviance.
[0 Recall their properties, with p fixed and as n — oo:
— AIC tends to overfit, i.e., it has a positive probability of choosing a model that is too complex,;

— BIC applies a stronger penalty, so if the true model is among those fitted, it will choose it with
probability one;

— BIC usually yields less complex models than AIC, but they may predict less well.

[0 There are many other information criteria, but these are most used in practice.
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Example: Nodal involvement

[0 Model with lowest AIC has stage, xray, acid:

o"B = —3.05 + 1.65gtage + 1.91Txray + 1.641,iq,

where Istage = 1 indicates that stage takes its higher level, etc.
[0 Interpretation of this model:

— for an individual with stage, xray and acid at their lowest levels, the fitted probability of nodal
involvement is e =395 /(1 4 ¢=3:9%) = 0.045 (though there are no such people in the data, so
this involves extrapolation);

— for someone with only Istage =1, the odds of nodal involvement are
e~ 305+1.65 — o=14 = () 95 3 probability of 0.2;

— for someone with Istage = Ixray = I5¢jg = 1, the odds of nodal involvement are
e~ 305+ 1.65+1.91+1.64 = g 6 3 probability of 0.9;

[0 Problems with interpretation of residual deviance of 19.64: how many df? — can amalgamate
independent binary responses with same covariates.

[0 Likewise problems with residuals ...
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Nodal involvement residuals

Figure 4: Standardized deviance residuals for nodal involvement data, for ungrouped responses (left)
and grouped responses (right).
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Summary
0 Proportion data are often modelled using the Bernoulli/binomial response distributions.
O Link functions (logit, probit, ...) have interpretations in terms of underlying continuous variables
that have been dichotomized.
[0 The canonical and most commonly-used link is the logit, and fitting using this yields logistic
regression, in which
— the canonical parameter is the log odds;
— classical data structures (e.g., the 2 x 2 table) have nice interpretations.
[0 The deviance can be used to compare models (so can AIC, BIC, ...), but using its absolute value
to assess fit can be dangerous (exercise).
[0 Residuals for binary data are not very informative.
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2.5 Count Data slide 142

0

Types of count data

[0 Simplest models:

[0 Previous examples:

y €{0,1,2,...}, perhaps with upper bound m, depending on sampling scheme:
— counts, with no fixed total;
— m individuals, subdivided into various categories:

> nominal response—unordered categories (gender, nationality, ...)

> ordinal response—ordered categories (pain level, spiciness of curry, ...)

— single unbounded response, or Poisson approximation to binomial, takes Y ~ Pois(u);

— group of responses (Y1,...,Yy) with fixed total ) Y; = m has multinomial distribution,
probabilities (71,...,m4) and denominator m.

— Doll and Hill data on smoking had response y Poisson with © = T'A\(z; f);

— Jacamar data had ordinal (?) response N/S/E with total N+S+E fixed—multinomial with
d=3
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Poisson and multinomial distributions

O Y ~ Pois(p) implies that

W
f(%u)z;e ooy =0,1,2,..., p>0.

O Exponential family with natural parameter § = log 11, GLM with canonical logarithmic link,
' =n=logp.

O If Y is number of events in Poisson process of rate A\ observed for period of length T, then
u=AT and we set n = a7 + log T

— offset logT is fixed part of linear predictor 7

O IfY, nd Pois(p,),  =1,...,d, then the joint distribution of Y7,..., Y given Y1 +---+Y;=m
is multinomial, with denominator m, and probabilities
M1 _ Hd

725‘[:1”7“, ey Wd—72g21lur.

O If (Yi,...,Yy) ~ Mult(m;m,...,74), then marginal and conditional distributions, e.g., of

™ =

(Y1+Y27Yé+n+y5>}%a"'>yd)a (H>Y27Y21) | (YV3>Y57"'>YCZ)7

are also multinomial.
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Log-linear and logistic regressions

[0 Special case: if d = 2, then

YQ‘Yl—’-YQ:m ~ B(m,ﬂ': H2 )
H1 + o

O If = exp(y + 218), p2 = exp(y + z3/3), then

exp(y +25/) __expf(ze —21)"B}
exp(y+ 218) + exp(y +x38) 1+ exp{(xz —21)"}’

which corresponds to a logistic regression model for Y5 with denominator m and probability 7.

[0 Can estimate 8 using log linear model or logistic model—but can’t estimate -y from logistic model.

Regression Methods Autumn 2024 — slide 145

82



2.6 Poisson Regression

slide 146

> soccer

1 Aug
2 Aug
3 Aug
4 Aug
5 Aug
6 Aug
7 Aug
8 Aug
9 Aug
10 Aug
11 Aug
12 Aug
13 Aug
14 Aug
15 Aug
16 Aug
17 Aug
18 Aug
19 Aug
20 Aug

19
19
19
19
19
19
19
19
19
20
21
22
22
22
23
23
23
23
23
26

month day year

2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000

Premier League data

teaml
Charlton
Chelsea
Coventry
Derby

Leeds
Leicester
Liverpool
Sunderland
Tottenham
ManchesterU
Arsenal
Bradford
Ipswich
Middlesbr
Everton
ManchesterC
Newcastle
Southampton
WestHam
Arsenal

team2 scorel score2

ManchesterC
WestHam
Middlesbr
Southampton
Everton
AstonVilla
Bradford
Arsenal
Ipswich
Newcastle
Liverpool
Chelsea
ManchesterU
Tottenham
Charlton
Sunderland
Derby
Coventry
Leicester
Charlton
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i .

where

Premier League data

uly = exp(A + i = Bj),  pfy = explay — Bi)

[0 Two possibilities for fitting:

0 Treat these as Poisson counts with means

— A represents the home advantage;

— Poisson GLM, with 39 parameters;
— binomial GLM, with 20 parameters.

[0 380 soccer matches in English Premier League in 20002001 season.
[0 Data: home score yZ and away score y; when team ¢ is at home to team j, fori,j,=1,...,20,

— 4 and ; represent the offensive and defensive strengths of team 1.

Regression Methods
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Premier League data: Analysis of deviance

Poisson model

Binomial model

Terms df  Deviance Terms df  Deviance
reduction reduction

Home 1 33.58 Home 1 33.58

Defence 19 39.21 Team 19 79.63

Offence 19 58.85

Residual 720 801.08 Residual 332 410.65

teams—more in offence than defence.

there's no evidence of a lack of fit.

[0 There's a strong effect of playing at home, and lots of evidence of differences among the

[0 Both residual deviances are a little large, but since the counts are small, we don't expect the
large-sample x? distribution to apply well to the residual deviance.

[0 Simulations from the fitted model suggest that the residual deviances are not unusually large, so

Regression Methods
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small.

Simulated likelihood ratio statistics

Density
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| | ]

0.02
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Likelihood ratio statistic

Premier League data: Null deviance for defence effect

Defence effect deviance (in red) for the Poisson model is large(ish) relative to x?%, distribution, but the
asymptotics seem OK, based on simulations from a model without this effect (i.e., Home + Offence).
It seems we can trust asymptotic distributions for differences of deviances, even though the counts are

Ordered LR statistics
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Premier League data: Residual deviance

Residual deviance of 801 (in red) for the Poisson model seems large(ish) relative to x2,, distribution,
but the asymptotics are suspect because most of the counts are small. Comparison of observed
deviance with X%O distribution shows that 801 is in fact somewhat smaller than average for datasets

simulated from the fitted model.

Simulated likelihood ratio statistics
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Likelihood ratio statistic

Quantiles of chi-squared distribution, 720 df
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Premier League data: Estimates

Overall (§) Offensive () Defensive (3)

Manchester United 0.39 0.22 0.15

Liverpool 0.13 0.12 —0.08
Arsenal — 0.04 —

Chelsea —0.09 0.08 —0.22
Leeds —0.10 0.02 —0.17
Ipswich —0.16 —0.10 —0.13
Sunderland —0.33 —-0.31 —0.10
Aston Villa —0.48 —0.31 —0.15
West Ham —0.53 —0.33 —0.30
Middlesborough —0.53 —0.35 —0.17
Charlton —0.55 —0.21 —0.43
Tottenham —0.58 —0.28 —0.38
Newcastle —0.59 —0.35 —0.30
Southampton —0.60 —0.45 —0.25
Everton —0.75 —0.32 —0.46
Leicester —0.77 —0.47 —0.31
Manchester City —0.90 —0.40 —0.56
Coventry —0.93 —0.53 —0.52
Derby —0.93 —0.51 —0.45
Bradford —1.29 —-0.71 —0.62
SEs 0.29 0.20 0.20

Home advantage: A = 0.37 (0.07), exp(A) = 1.45.

Regression Methods
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Premier League data: Assessment of fit

Diagnostic plots for fitted model: residuals against 77 (top left); normal QQ-plot of residuals (top
right); Cook statistic C; against leverage ratio h;/(1 — h;) (lower left); Cook statistic C’; against case
number (lower right).

Residuals
- 1 0
I
o
8 o
o
EIA
Quantiles of standard normal

T T
-0.5 0.0 0.5 1.0
Linear predictor

0.015
I

Cook statistic

0.000 0.005 0.010
I

0.03 0.04 0.05 Or.‘?(617h0).07 0.08 0.09 0.10 0 200 C:Sl)eo 600
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2.7 Contingency Tables slide 154

Sampling schemes
O A contingency table contains individuals (sampling units) cross-classified by various categorical
variables.

— Example: the jacamar data cross-classify butterflies by
6 species x 8 colours x 3 fates

for a total of 144 categories, each with its number of butterflies 0,1,...,14.

[0 The sampling scheme underlying a table may fix certain totals. Suppose a pollster wants to find
out how people will vote. She might

— wait in the street for a morning, and get opinions from those people willing to talk to her;
— wait until she has the views of a fixed number, say m, of people;

— wait until she has the views of fixed numbers of men and women.

Example 25 Find the likelihoods for each of these sampling schemes, under (unrealistic!)
assumptions of independence of voters.
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Note to Example 25

[0 An R x C table arises by randomly sampling a population over a fixed period and then classifying
the resulting individuals.

[0 In the first scheme there are no constraints on the row and column totals, and a simple model is
that the count in the (7, ¢) cell, y,., has a Poisson distribution with mean .. The resulting
likelihood is y

M rc e
e Yre:
this is simply the Poisson likelihood for the counts in the RC' groups.

[0 The pollster may set out with the intention of interviewing a fixed number m of individuals,
stopping only when > ,. = m. In this case the data are multinomially distributed, with
likelihood |

m!
e Tre = 1,
an yT‘C! g re’ ;
with T = pire/ stt st the probability of falling into the (r,¢) cell.

[ A third scheme is to interview fixed numbers of men and of women, thus fixing the row totals
My = Y. Yre in advance. In effect this treats the row categories as subpopulations, and the
column categories as the response. This yields independent multinomial distributions for each
row, and product multinomial likelihood

m!
H{H; !Hw;fgc}, Srie= =Y w1,
T cIret ¢ c c
in which e = fire/ >, port-
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O

O

Contingency tables and Poisson response models

Multinomial models can be fitted using Poisson errors, provided the appropriate baseline terms are
always included in the linear predictor.

Write the data as two-way layout, with C' columns and R rows with fixed totals (e.g., 6 x 8 = 48
rows each with 3 columns for the jacamar data).

Consider Poisson model with means i, = exp(, + z}.5):
— the row parameters 1, ...g are nuisance parameters, not of interest;
— we want inference for the parameter of interest, .

Corresponding multinomial model has fixed row totals m, and probabilities

T — Hre . exp(%“ + 907?@5) . exp(:ﬂfcﬁ)
re = 0 = ~C = ~C ’
dod=t Brd g1 exXp(yr +x5yB) D gy exp(x)yB)
forr=1,...,R, ¢c=1,...,C; i.e., one multinomial variable for each row.

The resulting multinomial log likelihood is

R C
> yrelogme

Onius(Bsy | my)

r=1c=1
C
= 3 S o (L)
r=1 \c=1 d=1
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Contingency tables and Poisson response models, Il

Lemma 26 [f parameters T, for the row margins are included in the above setup, then we can write
EPOiSS(Ba 7_) = EPoiss(T; m) + EMult(ﬁ; Yy | m)

O Implications:

— the MLEs of 8 and 7 based on the LHS are the same as those from separate maximisations of
the terms on the right:

> B equals the MLE for the multinomial model,
> T =My
— the observed and expected information matrices for 3,7 are block diagonal.
— SEs based on the multinomial and Poisson models are equal (exercise).
[1 General conclusion: inferences on (3 are the same for multinomial and Poisson models,

provided the parameters associated to the margins fixed under the multinomial
model, i.e., the ~y., are included in the Poisson fit.
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Note to Lemma 26
O The Poisson model has no conditioning, so with log s, = 7, + ;.5 the log likelihood is

R

C C
T
gPoiss(57 'Y) = Z (yrc 10g Hre — Mrc) = Z (mr'}’r + Z yrcwqj:cﬁ - 6% Z exTCB> .
c=1 c=1

r,C r=1

00 Now we reparametrise in terms of the row totals 7. = ) _ iy, noting that

c C
T §
=€ E meﬁa v = log 7 — log { eXp(SCECﬁ)} )

c=1 c=1

SO

r=1 c=1 c=1

R R C C
EPoiss(Ba 7_) = Z (mr log 7 — Tr) + Z {Z ym’ﬂg@ﬁ — m, log (Z @m?c5> } ’
r=1
m

= éPoiss(T; m) + Onule (5a Yy |
which is the log likelihood corresponding to

)

— independent Poisson row totals m, with means 7., and, independent of this,

— the multinomial log likelihood for the contingency table.
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Jacamar data

Response (N=not sampled, S = sampled and rejected, E = eaten) of a rufous-tailed jacamar to
individuals of seven species of palatable butterflies with artifically coloured wing undersides. Data
from Peng Chai, University of Texas.

Aphrissa  Phoebis  Dryas Pierella Consul Siproeta
boisduvalli  argante  iulia luna fabius  stelenest
N/S/E N/S/E N/S/E N/S/E N/S/E N/S/E
Unpainted  0/0/14 6/1/0 1/0/2 4/1/5 0/0/0  0/0/1

Brown 7/1/2  2/1/)0  1/0/1 2/2/4 0/0/3 0/0/1
Yellow 7/2/1  4/0/2 5/0/1 2/0/5 0/0/1 0/0/3
Blue 6/0/0  0/0/0 0/0/1 4/0/3 0/0/1 0/1/1
Green 3/0/1 1/1/0  5/0/0 6/0/2 0/0/1 0/0/3
Red 4/0/0  0/0/0 6/0/0 4/0/2 0/0/1  3/0/1
Orange 4/2/0  6/0/0 4/1/1 7/0/1 0/0/2  1/1/1
Black 4/0/0  0/0/0 1/0/1 4/2/2 7/1/0  0/1/0

T includes Philaethria dido also.
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Jacamar data: Models

[0 Let factors F', S, C represent the 3 fates, the 6 species, and the 8 colours.
O Themodels CxS, CxS+F,and C x5+ C x F mean we set

log Hesf = Olcsy log Wesf = Qes +f, 1Ogﬂcsf = Q¢s + Yef-

[0 The vector of probabilities corresponding to the model with terms C % S is

(7‘(’ 1 Tes, T 3)_ ( Hest Hes2 Hes3 ) —(l 1 l)
csly teszy tes - 3 ) 3 ) 3 —\3233/)»
Zf:l :u'csf Zf:l ,U'csf Zle ,U'csf
and that corresponding to the model with terms C' xS + F' is
(Tests Tesas Tes3) = ( Hesl Hes2 Hes3 )
csly tcszy 'tes - 3 9 3 Y 3
Zf:l Hesf Zf:l Hesf Zf:l Hesf
— 1 (e, e, e™)
en 4 e 4 e 7 '
[0 Exercise: similar computations for C« S+ Cx F and Cx S+ C*x F+ Sx F.
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Jacamar data: Analysis of deviance

Deviances for log-linear models fitted to jacamar data.

Terms df Deviance
Cx*xS 88 25942
CxS+F 86 173.86
CxS+CxF 72 139.62
CxS+S*xF 76 148.23
CxS+CxF+S+«F 62 90.66
CxS«F 0 0

O The null model C * .S is not of interest.
O The first model it is sensible to fit is C'x S + F.

[0 The best model seems to be C' xS+ C x F'+ S * F', corresponding to independent effects of
species and colour, though its deviance is high (but remember the two outlying cells!)
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2.8 Ordinal Responses slide 161

Pneumoconiosis data

Period of exposure x and prevalence of pneumoconiosis amongst coalminers.

Period of exposure (years)
58 15 215 275 335 395 46 515
Normal 98 51 34 35 32 23 12 4
Present 0 2 6 5 10 7 6 2
Severe 0 1 3 8 9 8 10 5

O Here
Normal < Present < Severe,

so these are ordinal responses with d = 3 categories and the total in each group (corresponding to
each period of exposure) fixed.

[0 We imagine that the assigned category stems from an underlying continuous variable, even if this
cannot be quantified very well.
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Models

0 Assume we have n independent individuals whose responses I, ..., I, fall into the set {1,...,L},
corresponding to L ordered categories, and that

w=P; <l)=m+--+m, l=1,...,L, =1,

0 The corresponding likelihood is H;‘L:1 71, where usually the contribution 7, = 7y, (n;) for
individual j will depend on covariates x; through a linear predictor 7; = x}ﬁ.

[0 We often want the interpretation of the parameters not to change if we merge adjacent
categories, and we can do this using an underlying tolerance distribution, with

L=l & z;8+e€(G-1,4), Go=-00<( < <1< =00,

where the tolerance distribution I’ of ¢; is often taken to be logistic, giving the proportional
odds model, in which

Wl(.%';r,@) = P(lel < 1‘;5 +e< Cl) = F(Cl — ijﬂ) — F(lel — .%';Fﬂ), l=1,...,L;

here (1,...,(r—1 are aliased with an intercept 5y and are not usually of interest.
OO Another standard tolerance distribution is F'(u) = 1 — exp{— exp(u)}.
[0 To fit, we just apply IWLS to the multinomial likelihood H?Zl I

Regression Methods Autumn 2024 — slide 163

Pneumoconiosis data

Pneumoconiosis data analysis, showing how the implied fitted logistic distributions depend on x. Left:
plots of empirical logistic transforms for comparing categories 1 with 2 + 3 and 1 + 2 with 3; the
nonlinearity suggests using log x as covariate. Right: fitted model, showing probabilities for the three
groups with an underlying logistic distribution.

c 3 3 x=51.5
s ° 2 | x=46
@ 3 3 2 L
S 3 x=39.5
= 3 2 2 2 .
S o x= 335
(2] -
E’ 3 2 x=275
S < 2 x=21.5
E_ x=15
S L |
] 2 x=5.8

«I) [

10 20 30 40 50 0 5 10 15
Exposure x Linear predictor
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Comments on count data
[0 Log-linear models are mathematically elegant and useful defaults for count data, with close links
to logistic regression, based on the relation between the Poisson and multinomial distributions.

[0 Interpretation of log-linear models can be difficult, especially for contingency tables, because
marginal and conditional parameters cannot be disentangled.

[0 Other models exist that are less elegant mathematically, but are more interpretable statistically.

[0 Also possible to fit models for ordinal data, using multinomial models and tolerance distribution
interpretation used for binomial data.
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2.9 Overdispersion slide 166
Overdispersion

[0 Often find that discrete response data are more variable than might be expected from a simple
Poisson or binomial model, so we see

— residual deviances larger than expected
— residuals more variable than expected under the model
but otherwise no evidence of systematic lack of fit

[0 This is overdispersion, perhaps due to effect of unmeasured explanatory variables on the
responses.
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UK monthly AIDS reports 1983-1992

Diagnosis Reporting-delay interval (quarters): Total
period reports

to end

Year Quarter Of 1 2 3 4 5 6 >14  of 1992
1988 1 31. 80 16 9 3 2 8 6 174
2 26 99 27 9 8 11 3 3 211

3 31 95 35 13 18 4 6 3 224

4 36 77 20 26 11 3 8 2 205

1989 1 32 92 32 10 12 19 12 2 224
2 15 92 14 27 22 21 12 1 219

3 34 104 29 31 18 8 6 253

4 33 101 34 18 9 15 6 233

1990 1 31 124 47 24 11 15 8 281
2 32 132 36 10 9 7 6 245

3 49 107 51 17 15 8 9 260

4 44 153 41 16 11 6 5 285

1991 1 41 137 29 33 7 11 6 271
2 56 124 39 14 12 7 10 263

3 53 175 35 17 13 11 2 306

4 63 135 24 23 12 1 258

1992 1 71 161 48 25 5 310
2 95 178 39 6 318

3 76 181 16 273

4 67 66 133
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AIDS data

U
U
U

0

0

UK monthly reports of AIDS diagnoses 1983-1992, with reporting delay up to several years!
Example of incomplete contingency table (very common in insurance)

Chain-ladder model: number of reports in row j and column k is Poisson, with mean

Analysis of deviance:

Residual deviance is obviously far too large for a Poisson model to be OK, but the model is also
too complex, since we expect smooth variation in the «;.

Residuals on next page show no obvious problems, just generic overdispersion.

ik = exp(a; + Bg).

Model df Deviance reduction Deviance
14184.3

Time (rows) 37 6114.8 8069.5

Delay (cols) 14 7353.0 716.5

Regression Methods
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AIDS data: Assessment of fit

Diagnostic plots for fitted model: residuals against 77 (top left); normal QQ-plot of residuals (top
right); Cook statistic C; against leverage ratio h;/(1 — h;) (lower left); Cook statistic C’; against case

number (lower right).
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AIDS data

O Data (+) and predicted true numbers based on simple Poisson model (solid) and GAM (dots).

[0 The Poisson model and data agree up to where data start to be missing.

Diagnoses
300 400 500

200

100

1984 1986 1988 1990 1992

Time
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Dealing with overdispersion

[0 Two basic approaches:
— parametric modelling

— quasi-likelihood estimation, based only on the variance function

Example 27 (Linear and quadratic variance functions) Suppose that, conditional on e > 0,
Y ~ Pois(ue), where E(e) = 1 and var(e) = £. Show that this can lead to either linear or quadratic
variance functions, but a lot of data may be needed to distinguish them.

Comparison of variance functions for overdispersed count data. The linear and quadratic variance
functions are V(1) = (1 + &) and Vi (p) = p(l 4+ Egu), with &, = 0.5 and £ chosen so that
VL(15) = VQ(15).

7 1 2 5 10 15 20 30 40 60
Linear 15 30 75 150 225 30 45 60 90
Quadratic 1.0 2.1 58 133 225 33 60 93 180
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Note to Example 27

Let € have unit mean and variance £ > 0, and to be concrete suppose that conditional on ¢, Y has
the Poisson distribution with mean pe. Then

EY)=EA{EY |e)}, var(Y)=var.{E(Y |e)} +E:.{var(Y | ¢)},
so the response has mean and variance
E(Y) =Ec(ue) = p, var(Y) = vare(ue) + Ec(pe) = p(l +&p).

If on the other hand the variance of € is £/, then var(Y') = (1 + &)u. In both cases the variance of
Y is greater than its value under the standard Poisson model, for which £ = 0. In the first case the
variance function is quadratic, and in the second it is linear.
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Negative binomial model

Example 28 (Negative binomial) In Example 27, if ¢ is gamma with shape parameter 1/v, show
that

Fy+v) vy
Tyl v+ e

and that quadratic and linear variance functions are obtained on setting v = 1/§ and v = /¢
respectively.

The log link function log u = 2™ is most natural.

& is estimated by maximum likelihood or through Pearson’s statistic.

flysp,v) = y=0,1,..., u,v>0,

Example 29 (AIDS data)
O MLE &g = 22.7 (5.5)
O Analysis of Deviance (with EQ fixed):

Model df Deviance reduction df  Deviance
464  7998.3

Time (rows) 37 3582.5 427  4415.8

Delay (cols) 14 3892.2 413 5236

O Still somewhat overdispersed?
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AIDS data: Deviance residuals for NB model

Clear improvement over previous plots, even if not perfect.

Normal Q-Q Plot

o%

Sample Quantiles
0
I

Theoretical Quantiles
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Quasi-likelihood

[0 Recall two basic assumptions for the linear model:
— the responses are uncorrelated with means p; = x}ﬁ and equal variances ¢?;
— in addition to this, the responses are normally distributed.

[0 To avoid parametric modelling, we generalise the second-order assumptions, to

E(Y;) = py, var(Y;) = ¢;V(wy),  g(kj) =mn; = x5 B,

where the variance function V(-) and the link function are taken as known.

[0 We obtain estimates 3 by solving the estimating equation
BBY) = XTul(B) = 3 ajuy(8) = 3 S rn il
= = MJ ¢J (15)

O If the mean structure is correct, then E(Y}) = 1, so E{h(8;Y)} = 0, and under mild conditions
B is consistent (but maybe not efficient) as n — oco.
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Quasi-likelihood 11

Recall that the general variance of an estimator 3 defined by an estimating equation A(5;Y),x1 = 0,

has sandwich form
On(B;Y) . On(B;Y)™ !
E{ 95" } vr{h(ﬁ,Y)}E{—iaﬁ } .

Lemma 30 [f V(u) is correctly specified, then var(3) = (X"W X)~', where W is diagonal with
(5.7) element {g'(113)*&;V (1;)} "

O If ¢; = ¢a;, with known a; > 0 and unknown ¢ > 0, then we obtain
— B by fitting the GLM with variance function V(1) and link g(y);
— standard errors by multiplying the standard errors for this fit by 51/2, where

n

~_ 1 (y; — 1)
¢ n—p;%g’(w)w(ﬁj)'
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Note to Lemma 30

O Note first that we can write A1)
_ A
uj(8) = us(ny) = AL,
1= By )
where A;(p;) =Y; — p; and Bj(pj) = g’ (15)9;V (15). Only Aj is random and E{A;(p;)} = 0.
Hence if we let prime denote derivative with respect to u;,
Ouj(py)  Aj(ng)  Aj(uy)Bj(ky)

O, B ;) B (u5)
has expectation E{A}(;)}/B;(k;) = —1/B;(1;)-
O  We require E{—0h(3;Y)/0B"} and var{h(B;Y)}. Now

Ouj(B)  Onj Ou; Ou;(B) . 1
BT OBT In; Oy, 7' (ug) (15)

which gives

E{ ahégTY)}__z”:ij{angT } Z %:XTWX

Jj=1 =1

where W is the n x n diagonal matrix with jth element {g’(1;)%¢;V (11;)}~*. Moreover if in

addition the variance function has been correctly specified, then var(Y;) = ¢;V (;), and hence

var{h(B;Y)} = X var{u(p Z TiT; VE;;;?/)( 7 =X"WX.

Thus the sandwich equals (XTW X)~!

[0 Had the variance function been wrongly specified, the variance matrix of 3 would have been
(XTWX)"HXTW'X)(XTWX)~L, where W’ is a diagonal matrix involving the true and
assumed variance functions. Only if the variance function has been chosen very badly will this
sandwich matrix differ greatly from (X™W X)~!, which therefore provides useful standard errors
unless a plot of absolute residuals against fitted means is markedly non-random. In that case the
choice of variance function should be reconsidered.
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Quasi-likelihood 11

0 Under an exponential family model, h(3;Y") is the score statistic, so 3 is the MLE and is efficient
(i.e., it has the smallest possible variance in large samples).

[0 If not, inference is valid provided g and V are correctly chosen, and 3 is optimal among
estimators based on linear combinations of the Y; — ji;, by extending the Gauss—Markov theorem.

0 In fact we can define a quasi-likelihood ) and its score through

Z [ e e M) = )

and a (quasi-)deviance as D = —2¢Q(5;Y).
[0 To compare models A, B with numbers of parameters pg < pa and deviances Dg > D 4, we use
the fact that
(Dp — Da)/(pa — pB)
A

if the simpler model B is adequate. This is easy in R.

FPA*Z’BW*Z’A’
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AIDS example

> aids.ql <- glm(y~factor(time)+factor(delay) ,family=quasipoisson,data=aids.in)
> anova(aids.ql,test="F")

Analysis of Deviance Table

Model: quasipoisson, link: log

Response: y

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev F Pr (>F)
NULL 464 14184.3
factor(time) 37 6114.8 427 8069.5 92.638 < 2.2e-16 **x*
factor(delay) 14 7353.0 413 716.5 294.402 < 2.2e-16 **x*
Signif. codes: O ’*x%’ 0.001 ’**x’ 0.01 x> 0.056 ’.” 0.1 > > 1
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Summary

[0 Overdispersion is widespread in count and proportion data.
[0 We deal with it either by
— parametric modelling, or

— quasi-likelihood (QL) estimation, which involves assumptions only on the mean-variance
relationship.

[0 QL estimators equal the ML ones, but SEs are inflated by ¢/2.

O (Quasi-)deviance can also be defined, and used for model comparison, with F tests replacing x>
tests.
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3 Regularisation slide 180

3.1 Basic Notions slide 181
Tall and wide regressions
[0 So far we have supposed that we have a tall regression:
— the number of units n exceeds the number of variables p,
— the design matrix X has rank p.
[J In many ‘modern’ settings we instead have a wide regression:
— n and p are comparable, p > n, maybe even p > n;
— in genomics, for example (typically) n = O(102,103), p = O(10°,10%);
— hence rank(X) = min(n,p) = n.
[0 Even tall X may be ‘almost singular’, making 8 ‘almost inestimable’.
0 Solutions:
— subset selection (drop certain columns of X);
— seek different good explanations of response variation, not single model;
— regularisation (often with prediction in mind).
O  Certain regularisation methods (e.g., lasso) also perform subset selection.
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Different good explanations

0 With p > n, perhaps p > n, X is rank-deficient and many 8 may give X3 = y.
O To find important variables we include intrinsic variables (gender, ...) in all models, and then
— choose some k (preferably < 15) such that k£ < n and suppose that p < k% (let a = 3 for easy
visualisation);

— assign each variable to a cell of a hyper-cube with coordinates {1,..., k}%;

— fit a linear model containing each set of k variables corresponding to the ak®~! rows,
columns, ...of the cube, so each variable appears in a distinct models;

— for each such model, retain the two variables that are most significant.

[0 Iterate the above procedure, retaining only the most significant variables at each stage, aiming for
a final set of 10-20 variables, for which a careful analysis is performed, perhaps leading to several
different good explanations of the response variation.

[0 Some cells of the hyper-cube may be empty, and important variables might be assigned to several
cells.

0 The above design is a form of balanced incomplete block design (BIBD) (with &% treatments
and ak®~! blocks).

[0 See Cox and Battey (2017, PNAS)
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Collinearity

00 Columns of X collinear if there exists a non-zero vy, such that Xv =0, i.e., rank(X) < p, so
there is no unique 3 minimising ||y — X 3||%.

[0 Software deals with this by dropping columns of X, but it may be better to write X5 = X4,
where X C' is full rank and  has a clear interpretation.

O If X is nearly collinear, its SVD Uy xp DixpVpsp, With dy > -+ > dp, > 0, gives

p
B=(X"X)'X"y =VD Uy = (uly/d.)v,,

r=1
so 3 is a linear combination of the vectors v, with coefficients uly/d,. As var(U%y) = 021,
R P
var(B) = e’V DT D_V"T = o2 Z d2v,07,
r=1

i.e., B is unstable in the directions corresponding to the v, with small singular values d,.

O In numerical analysis, collinearity often measured using condition number (dl/dp)l/Q, but its
statistical meaning is unclear.
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Regularisation

O Stop 3 from fluctuating too wildly in directions with small eigenvalues d,., by adding a
non-negative penalty py(5) and choosing /3 to minimise the penalised sum of squares

ly — XBI[* + pA(B)- (16)
O The strength of the penalty depends on a positive parameter A that constrains 8 more as A
increases.
O  Often pa(B) = Ap(f), where, for example,
- p(B) = |1BlI3 = >_P_, B? gives ridge regression (aka Tikhonov regularisation);
- p(B) =18l = XP_, |B:| gives the lasso (aka L; regularisation);
- p(B) = (1— )83 + a|B]|]1 for 0 < a <1 gives the elastic net;

- p(B) = 25:1 p;ﬂHﬂgHQ, with 3, being p, x 1 sub-vectors of /3, gives the grouped lasso,

which penalises factors with parameters (3.
[0 It is useful to see regularisation through the lens of Bayesian inference, with the regularising term
equivalent to the prior density.
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Bound form
[0 Equivalently we can take the bound form of the minimisation problem, i.e.,
minimises ||y — X 8|3 subject to p(3) <t,

for some t > 0, where setting ¢t = oo just gives the least squares estimates.

[0 Below: constraint balls for ridge (left), lasso (centre) and elastic-net (right) regularisation. The
sharp corners of the last two allow for variable selection as well as shrinkage.
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Bayesian setting

[0 Treat all unknowns as random variables, and compute conditional distribution of unobserved
unknowns conditional on observed unknowns.

[0 Requires prior density on 3, and if o2 is known, then a simple combination of data model and
prior model is

y | B,0% ~ N(XB,0%L,), B|0*~Ny(Bs,o?Vi), (17)

where the prior model is determined by 5, and V.
O Full specification would require prior on o2, but we don't need this.
[0 Let = mean we have dropped additive constants not involving the argument of a density.

0 The log multivariate normal density is
log £ | 1, 2) =~ log2m — log 2] — Sz — )"z — )
= 2Ty — %xTQflx
= Qx)=2"a-— %xTBx,
say, and as exp Q(x) is proportional to a unique probability density function,

E(X)=p=DBta, var(X)=Q=DB"!, where B is the precision matrix.
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Bayesian linear model |

O The model (17) gives
2 _ fylB,0*) (B0
log f(Bly,0%) = log{ 7] 0% }

= log f(y|B,0%) +log f(5|o?)
- (y B X/B)T(y B X/B) o (/8 B /8*)TV>;1(/8 B /8*)
202 202
oy = XBI3+ (8- BV (B~ B).
O Comparison with (16) shows that p)(3) represents prior beliefs about the likely values of 3:
before seeing the data, the most plausible value is /3., with precision V,7!.

[0 Dropping more constants,

log (8] y,0?)

S {BTX Ty~ T (XTX)B/2 4+ BTV B — TV 2)
= 5 287Xy 4 VI8 - BTXTX 4 V)Y, (18)

which is Q(x) with z, a and B replaced by 3, (X"y + V,715,)/0? and (X*X + V1) /02,

0 Hence f(B|y,0?) is multivariate normal with mean vector and variance matrix

E(B|y,0%) = (X" X +V,H) N (XTy +V,'8,), var(B|y,0?) =c*(X"X + V1)L

Regression Methods Autumn 2024 - slide 188

Bayesian linear model Il

0 The maximum a posteriori (MAP) estimator of 3 is E(3 | y,02), and the MAP estimator of
AgxpB is AE(B | y,0?), which has a posterior normal density.

O When XTX is invertible,
B=E(B|y,0%) = (X"X +V, ) (X" XB+V,'B.)

is an average of 3 and B, weighted by XX and VL.

[0 The posterior precision matrix
var(B | y,0%) " = X" X/o? + V. /o?

adds the Fisher information and the prior precision matrix, V, /o2
[0 High precision corresponds to small variance, and conversely:
— letting V,”! — 0 yields an improper prior density; and

— for large V7! the posterior precision is essentially determined by the prior precision.

Thus the prior density regularises 3 by including 5, and V.
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Improper prior density

[0 We only need V, to add information in directions corresponding to small singular values of X, so
we might use an improper prior in which V, is singular:
1
F(B10%) = —————pexp{~(8~5.)V.7 (8- B:)/(20°)}, (19)
(@mp2 Vi
where V, has spectral decomposition ED,ET,
—  |Vi|+ denotes the product of the non-zero elements of D,, and
— Vi =2 4..506r6r /der is a generalized inverse of V.

[0 Below we write V.~ even when V, is invertible.

O (19) is improper because it is not integrable in the directions of the columns of E for which the
corresponding d} equal zero, but we need only that the posterior density of 5 be proper, i.e., that
the posterior precision matrix

var(f | y,0%) " = X" X /o + V" Jo?
is invertible.
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Empirical Bayes

[J Use the data to estimate the prior: construct estimators using Bayesian arguments, but assess
their properties using classical criteria (bias, MSE, ...)
[0 The estimator 3 = E(8 | y,02) has mean and variance
E@8) = (X'X+ V) (XTXB+V,B)
= /8 + (XTX + V*_)_lv*_(ﬁ* - 6)7
var(3 | 8) = XXX + V) XX (XTX 4+ V) (20)
[1 Hence B
— is biased unless 3, = 3,
— has smaller variance than 3
so maybe there is a bias-variance tradeoff when estimating Af.
O If we write u = E(3 | 8), then the MSE is
B (43— 4817 |8) = E{(B-B)"A"A(B-B) | B}
= elu{aB-B-pa} |4
= u[E{AB—p+p-B)B-p+n-pTA"|B}].
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Empirical Bayes Il
[0 The expectation above is
Advar(3 | B) + (XX + V)WV (B = B)(8 = BTV (XX + V)T AT,

giving the MSE when estimating a fixed S.

[0 Taking expectations over the prior model for 3 gives
E (143 - A7) = 0% {A(X™X + V) 71AT}, (21)

which is larger than Avar(B | B)A™ and does not depend on f,.
[J This computation uses only the mean and variance, so holds under second-order assumptions.

[0 From now on we set 8, = 0, unless we state otherwise.
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Equivalent degrees of freedom
I If we set 8, = 0, then the fitted values are
§=XB=X(X"X+V,)"'X"y = H.y,

say.

[0 We define the equivalent degrees of freedom of the fit as
edf = tr(H,) = tr{X(X"X + V,) ' X"} = p — tr{ (X" X + V) "'V, },

[0 This is lower than p unless V,” = 0, so regularisation reduces the degrees of freedom by an
amount that depends on V.

O The penalised estimate is a linear function of the unpenalised one (if it exists), as we can write
B=(X"X+V,) ' X"XE =P,

say. As
edf = tr(H,) = tr(FPy),

this gives an alternative formula useful in complex models.
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How much penalisation?
0 Often V,~ depends on some \ > 0 that must be chosen, as well as o2, which is usually estimated
by a (penalised) residual sum of squares.

00 To estimate A, we compare y; with its predicted value g’j):j = x}BA,,j, where 3,\,,]» is
Br=(X"X +V.) ' X"y
computed with the jth rows x; and y; of X and y omitted.

O Using Lemma 14, the leave-one-out cross-validation sum of squares is then

n n

. . (Y5 — rj)’
CVa =3 (o~ 0, = Iy =5 1P = X0 (75
j=1 j=1 AJd

where 7y ; is the jth element of the complete-data fitted value Hyy and h,) j; is the jth diagonal
element of Hy = X (XTX + V,7 )71 X7 for the overall fit.

[0 More often we use the generalized cross-validation criterion

~ (Y — rg)’?
VA= 2 Tt e

[0  Whichever criterion is used, it is typically minimised numerically over a grid of values of A.
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REML

[0 Cross-validation makes only second-order assumptions.

0 Under normality, the marginal density of y is N{XB,,0%(I, + XV, X7)}, so we could estimate
Bs, 0% and A by maximising the corresponding likelihood.

O If n and p are large, this results in biased estimates of A and o2, so we prefer to eliminate 3.,
resulting in a log restricted likelihood whose form is given below, with W;l =1I,+ XV, X"

Lemma 31 In a model in which y ~ N (X}, O'QW;l), where W depends on a parameter A, a log
restricted likelihood for 0 and \ is

n—op 1 ~ P
log 0 — = (y = Ux)"Wa(y — In),
2 20

1
tre (0, 3) = 5 log(IWAl/|X WAX]) -

where By = (X"W,X) "' X™W,y and § = X Bx. For fixed X the restricted maximum likelihood

estimator of o2 is therefore 1

n—p
and the resulting profile log restricted likelihood for X is

or = (y—90)" Wiy — ),

n— ~
() = 2 1og(Wal/IX Wi X)) - L P i0g 52,

DN | =
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Note on Lemma 31

O Suppose that f(y;«, 5) depends on two parameters, that interest is focused on «, and that for
fixed « there is a minimal sufficient statistic s,, for 5. Then f(y; o, 8) = f(y | sa; @) f(sa; @, B),
and since the first density on the right is a proper conditional density not depending on (3, we can
use it for inference on «, in the form

log f(y | sa; ) = log f(y; a, B) —log f(sa: , B).

As the left-hand side of this expression does not depend on 3, we may be able to simplify the
right-hand side by an astute choice of 5.

O In the normal model we take a = (02, \). If « is fixed, then s, = B = (XTWyX) 1 XTWyy is
sufficient for 3; its distribution is NV,{, c*(XTW,X)~1}. Hence

trEnL(02,A) =log f(y | Bxio? A) = log f(y; 0%, A, B) — log f(Br; 0%, A, B)
which equals
~Rlogo? + Hlog Wl - 55y — X6 Waly - X5)
+ Dlogo? — Log | XTWAX] + 5By — 6 X WX (By - ),
or equivalently, on setting 8 =0 and ) = Xﬁ)\,

Stog(Wal/x Wax)) - U Piogo? Ly —gixtmgy).
00 The last term reduces to the given form because 7} Wx(y — y\) = 0, so the term in brackets in
the last displayed equation is the residual sum of squares (y — y\)"Wa(y — U»)-
[0 The restricted maximum likelihood estimator 3?\ and the profile log restricted likelihood for A are
obtained by maximising fremr (02, \), for fixed A and then dropping constant terms from
(rEML(T2, N).
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Numerical example from Wood (2011, JRSSB)

The usual methods (AIC, GCV, ...) for choosing A are available, but we focus on likelihood methods;
see below.

| " o
2 ] _
- - o
by > o o =
;. 8 - § o u 24
- Y E i
% g2 2 5
g1 2 h
5 10 5 0 5 45 10 5 0 & 45 10 5 0 5
log(%) log(%) log(%)
(b) © (d)
8
B il %9
—a oy
— S 34 o | S 01
= 3 s s
% ST RN S & 2
& 3R < €
= e — U -
ST T 21 \ By
T T T T T T T T T T © L T T T T
-15 -10 -5 0 5 -15 -10 -5 0 5 -15 -10 -5 [ 5
x log(h) log(1) log(%)
(e) () (9) (h)

Fig. 1. Example comparison of GCV, AlCc and REML criteria: (a) some (x,y)-data modelled as y; = f(x;) +
&;, &; independent and identically distributed N(0,02) where smooth function f was represented by using
a rank 20 thin plate regression spline (Wood, 2003); (b)—(d) various smoothness selection criteria plotted
against logarithmic smoothing parameters, for 10 replicates of the data (each generated from the same
‘truth’) (note how shallow the GCV and AICc minima are relative to the sampling variability, resulting in rather
variable optimal \-values (which are shown as a rug plot), and a propensity to undersmooth; in contrast the
REML optima are much better defined, relative to the sampling variability, resulting in a smaller range of
-estimates); (e)—(h) are equivalent to (a)—(d), but for data with no signal, so that the appropriate smoothing
parameter should tend to co (note GCV’s and AICc’s occasional multiple minima and undersmoothing in
this case, compared with the excellent behaviour of REML; ML (which is not shown) has a similar shape to
REML)
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3.2 Simple Applications slide 197

Ridge regression

[0 Used for prediction when X is close to singular.
O  If the first column of X is 1,,, we set 8, =0 and V,” = AS = Adiag(0, I,—1), giving

Br= (X" +AS)'X"y, a=XBy = X(X"+AS) "Xy = Hyy,
and effective degrees of freedom

1

p
edfy = tr(Hy) = tr{(X"X + AS) ' XX} = > Tow
r=1 r

where &, > - > d5 > §; = 0 are the eigenvalues of (X" X)~1/28(XTX)~1/2.
O As X increases from zero to infinity, edfy decreases from p = rank(X) to 1. The two are
equivalent, but edfy is more easily interpreted, because it is not related to the scale of X.

O The inverse exists even if X*X is singular, but if it is invertible then
Br=(X"X +A9) " HX"X + AS — AS)(X"X) "' X"y = B— A(X"X + AS) 'S5,

so as A — oo all the elements of BA tend to zero, other than the first. This corresponds to
reducing the prior variance to zero, thereby giving the data themselves less and less influence on
the elements of 3y other than the first, and thus stabilises the estimator.
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Example: Cement data

> cement

x2 x3 x4

26 6 60 78.
29 15 52 74.
56 8 20 104.
31 8 47 87.
52 6 33 095.
55 9 22 109.
71 17 6 102.
31 22 44 T72.
54 18 22 93.
47 4 26 115.
11 1 40 23 34 83.
12 11 66 9 12 113.
13 10 68 8 12 109.

= >
[l o N B

© 00N WN -
=
N R W N

[y
o
N
[
B W00 O 0 NN OOWwWO
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Example: Cement data

Full model Reduced model
Parameter Estimate Standard error Estimate Standard error
Bo 62.41 70.07 71.64 14.14
51 1.55 0.74 1.45 0.12
5o 0.51 0.72 0.42 0.19
53 0.10 0.75
By -0.14 0.71 —0.24 0.17

[0 The next slide shows results for ridge fits for these models.
[0 Looks like 3 df is optimal for prediction.
0 Software often preprocesses X and y by either

— centering both, by subtracting column means, or

— centering y and centering and scaling X, so the column means are zero and the column
variances are unity.

O The singular values for the centred X matrix are 78.8, 28.5, 12.2, 1.7, and those for the centred
and scaled X matrix are 5.18, 4.35, 1.50, 0.14, so it matters which is used.

O The singular values for the (centred) reduced matrix are 78.8, 19.8 and 9.15.

[0 The shrinkage due to increasing A occurs more slowly for the reduced model.
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of A, with x1, x2, and x4 only.

CV criterion

-05 0.0

Example: Cement data/Ridge analysis

df,

Top left: CV (black) and GCV (red) as functions of degrees of freedom df. Top right: dependence of
dfy on \. Bottom left: ) as a function of A, with all four covariates. Bottom right: 8y as a function
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Comments

[0 The literature on ridge regression is very large and very dispersed, with many variants and many
connections to ML techniques.

[0 Be careful with software: any pre-processing of X is not always described.
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Autumn 2024 - slide 202

Semiparametric regression

so what can | do?’

[0 Normal linear model has two main aspects:

- stochastic variation, y ~ N, (u,021,).
[0 Can relax the stochastic assumption using other distributions or second-order assumptions, but
still have parametric model for the systematic part.

[0 Most basic tool is the scatterplot smoother.

— systematic variation, E(y) = p, and p = X3 with parameters [3;

[0 Often want to relax systematic part for more flexible models, for
— exploratory data analysis — ‘will a linear model be adequate?’
— confirmatory data analysis — ‘I've fitted a linear model, is it adequate?’

— general modelling — ‘the data are too complex to expect a simple parametric model to work,

— semiparametric modelling — ‘I will use a parametric model for the effects of interest, but can
| model nuisance effects more flexibly?’

Regression Methods
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Example: Motorcycle data

Measurements of head acceleration (g) at time after impact (ms) in a simulated motorcycle accident,
used to test crash helmets:

° o * s * .
?O"ﬁo-ﬂm". ...'.' .o -o.. o...
g N ..o... ° : :. .
g 3 A .s ¢ ® e ¢
§ I " ': . 3
A
%1 LR
T Y. T T T
10 20 30 40 50
Time after impact (ms)
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Scatterplot smoothing
O Have data (z1,y1),. .., (@n,yn), with z_ <z <--- <z, <24 (ahem) and we wish to estimate
E(y) = p(z), for z € X = [x_, z4].
[0 Suppose that © € M, a function space spanned by n linearly independent basis functions that can
be identified by evaluation at x1,...,x,, and let p; = pu(z;).
[ Can choose a basis {b1(z),...,bn(x)} for M such that p(z) =37, j1;b;(x) interpolates
(.Z'l,,ul), ey (wnnu'n)
[0 Suppose that M contains the linear functions on X" and that the second derivatives of the b;(x)
are not all zero, so functions in M may also be nonlinear in x.
[0 To estimate p we minimise a penalised sum of squares,
n
Sty = ) + 2 [ @) da, (22)
j=1 .
where the roughness penalty imposes smoothness: if A — 0, then p(z;) = y; and [
interpolates, but when A — oo even tiny wiggles in u will give a huge penalty, making 1 linear.
O The penalty does not affect linear functions, so M = L& P, where L and P are the

two-dimensional vector space of linear functions on X’ and an (n — 2)-dimensional vector space of
nonlinear functions on X', and € denotes addition of vector spaces.
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Scatterplot smoothing Il

[0 The roughness term is
/{M//(x)}de:/ Z,U'jb” dr = Zﬂzﬂj/ b// b//( )deMTSM,
X x i1
say, where p" = (p1, ..., tn).
O Shxn has (i,5) element [, b7 ()b (x) dz and is symmetric and positive semi-definite of rank
n — 2, because linear functlons are unpenalised, so S1, = S(z1,...,z,)" = 0.
[0 The penalised sum of squares
(=) (y—p) + " Sp= =27y + p' (L + AS)p,
is minimised by 7iy = (I,, + AS)~!
(0 As X increases from zero, the fitted value [1) shrinks from y towards the straight-line regression fit
to y, which is unpenalised.
[ The equivalent degrees of freedom are edfy = tr(Hy) =37, (1 + A;)7L, where
01 > -+ > 03 > 6o = 01 = 0 are the eigenvalues of S. As ) increases edf) decreases
monotonically from edfy = n towards edf,, = 2.
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Scatterplot smoothing Il

0 In principle we might take any basis functions, but in practice we usually take local polynomials
known as splines that have good approximation properties.

O There are many forms of splines, which
— are often cubic polynomials with finite support between values of & known as knots,

x3,..., T}, and then S is tri-diagonal,

— sometimes form a natural cubic spline, which has K = n and certain optimality properties,
— are discussed in more detail later.

O If there is no penalisation (A = 0) then we have a standard linear model, and spline basis
functions are called regression splines.

0 Under second-order assumptions we choose A by minimising CV(\) or GCV ().

[0 Under normal-theory assumptions we can use REML to estimate o2 and \.

0 Obvious generalisation allows weight matrix W = diag(wy, ..., w,).

O If the xq,...,x, are not unique, write E(y) = Npxn tn/x1 in terms of the means p at the n’
unique elements of x, and minimise

(y = Np)"W(y — Np) + Au* Sp.
where S,/ arises as before from the roughness penalty on u(x).
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Linear, quadratic and cubic B-splines
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Example: Motorcycle data

Scatterplot smooths based on natural cubic splines with edf equal to 5 (red), 10 (blue), 20 (green),
and chosen by CV (cyan, edf = 12.8) and GCV (pink, edf = 12.26):
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Example: Motorcycle data

Scatterplot smooths based on natural cubic splines with weights 16 when = < 12 and 1 for x > 12,
and edf chosen by CV (red, edf = 14.7) and GCV (blue, edf = 13.7):

L] L)
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10 20 30 40 50
Time after impact (ms)
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Choosing K and )\

[0 Above we took K = n basis functions, but for statistical purposes we seek a summary of the
data, so we hope that edf < n, so we hope that K < n, maybe even K < n.

[0 Theory suggests that as n — oo we need K = O(n'/%) or even O(n!/?) to get near-optimal
estimation of p(x), when p lies in reasonable function classes;

O In practice we take K (more than) large enough to give enough flexibility (increasing it if results
are suspect, K = 9 by default in mgcv), and allow A to determine the smoothness of the curve;

00 Typically the knots x} are placed at equally-spaced quantiles of .
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Example: Motorcycle data

§ ]
—_ 8 7]
oo "
©
& 2 8
g o 8 =
8 9
7 8
T 8 ®
‘T ] o
8 -
I I I I I I I I
10 20 30 40 50 5 10 15 20 25 30 35 40
Time after impact (ms) Degrees of freedom
O Left: linear spline fits with A = 0 and K = 10 (black), 20 (red), 40 (blue), and optimal GCV
choice of A with K = 40 ( )
O Right: GCV()) as a function of dfy for K = 40.
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Comments
O We discuss inference (beyond ‘point’ estimation) and adaptive estimation of weights later . ..
[0 Here we are producing point estimates; later we discuss the construction of confidence sets.
[0 An alternative local averaging approach uses locally weighted fits, such as the Nadaraya—Watson
estimator .
fi(z) = > -1 K{(z — ;) /h}y;
> -1 K{(z —j)/h}
where
— the kernel function K is something like the Gaussian density, and
— the bandwidth h plays a role similar to edf.
This is also a linear smoother, and in fact the spline smoothers have representations in terms of
equivalent kernels.
O Local averaging can be extended to local likelihood fitting of more complex models.
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3.3 Lasso slide 214

L, penalties

00 The quadratic penalty |||z generalises to other L, penalties

p
18llg = 15:1%
r=1

shown below for p = 2 and (working inwards) ¢ = 100, 10, 3, 2, 1.5, 1, 0.5, 0.2;
IBllo = #{Br # 0} counts the number of non-zero parameters.

o

(Some picture credits here and later: Simon Wood)

Regression Methods Autumn 2024 — slide 215

Basic geometry

O If D(B) is a sum of squares or negative log likelihood, then
B = argming {D(8) + AlI8llq} ,

— satisfies || Gy, = t for some ¢, and

— minimises D(/3) on that contour, i.e.,
By = argming D(3) such that 18xllq = t,

because otherwise we could reduce D(/3) while leaving the penalty unchanged, i.e., 35 would
not be optimal.

[0 The sets |3y, =t
— have cusps (and thus can set 3, = 0) when ¢ < 1,
— are non-convex (and thus may give non-unique solutions) when ¢ < 1,

so there is a unique solution if the contours of D(/3) and ||3||, are convex, and both a unique
solution and the possibility of choosing variables (sparsity) by setting 3, = 0 when ¢ = 1.
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Basic geometry Il

Penalised solutions (red dots) for ¢ = 2, 1, 0.45, with contours of D(/3) in grey and solution contour
for || 8]|4 in red.

@ v w4

e 4 e e 4

p2

0.5
B2

05
B2

0.5

0.0
0.0
0.0

0.5
-0.5
0.5

-1.0 -0.5 0.0 0.5 1.0 15 -1.0 -0.5 0.0 05 1.0 15 -1.0 -0.5 0.0 0.5 1.0 15

B B B

As A — o0 the constraint tightens and the red contours shrink around the origin, and as A — 0 the
constraint relaxes and the 3y tends to the unconstrained estimate.
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Lasso

0 The lasso (least absolute shrinkage and selection operator) objective function can be written
as

L= 3lly = XBll2 + AlBl1,

so suppose we have minimised this for some Ao, giving active set A = {r : 3, # 0} and

L=3(y—XaBa)"(y— Xaba) + XD I5:,
recA
and now we aim to decrease \ (i.e., to relax the constraint).

O Now d|z|/dz = sign(x), so when

dL

R = X4(XaBa —y) + Asign(Ba) = 0,

we have R R
Ba = (XAXa) ' X4y — MX4Xa) 'sign(Ba) = b — Aq,
say, i.e., B4 is linear in A until A changes.
O A changes on deleting a column X, from X 4 or on adding one from its complement X 4e.

O sign(B4) only changes when (say) 3, passes through zero, but r leaves A when 3, = 0.
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Lasso algorithm

[0 A variable in A is deleted if a component of 54 = b — Aa hits zero as \ decreases from \g, which
occurs at A_ = maxy<y, br/a,.
O If X, is the rth column of X, then r will enter A if adding X,.3, decreases L, i.e., if

dL
a8,

<0, Br>0,
>0, Br <0,

XP(XB — y) + Asign(5,) {
so (3, remains inactive if | X" (y — XB)| < A.
[0 Thus as A decreases, A changes when for some r in the complement A€ of A we have
X[ (y— XaBa) = £,
or, setting Ba=b—\a,
Xie(y — Xab) + M(XjeXaa+1)=0 = c+Ad+x1) =0,

say: the next variable is added when A = Ay = max)<),{—¢/(d, £1)}.
O Hence if s = sign(f3), the algorithm decreases \ from
— the highest A at which the a first variable is active, and defines the A and s, then
— finds the next A at which A changes, stores it and the corresponding 3, updating A and s.
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Practical matters and thresholding

0 Usually

— Ais chosen by dividing the data into training and testing subsets and minimising some
measure of prediction error for the test subset,

— gy is centered and X has no column of ones, and

— the columns of X are standardized to have zero mean and unit variance — what this means in
terms of interpreting the components of 3 is then unclear!

[J We can think of penalised estimators as using different sorts of thresholding functions, where 3
is replaced by 5 = g)() and (conceptually)

— for the lasso there is soft thresholding,

(w) =% ul <A,
u) =
9 sign(u)(Ju| — A), otherwise,

— for variable selection there is hard thresholding,

0, |u|l <A,
gA<u>:{ [u

u, otherwise,

— for ridge regression there is shrinkage, g(u) = u/(1 + \).
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Threshold functions
Soft threshold Hard threshold Ridge
< < -
< -
o o~ -
o~ -
© © ©
g 8o RS
= > >
o
o] | o |
| |
<
T - T
T T T T T T T T T T T T T T T
4 2 0 2 4 4 2 0 2 4 4 2 0 2 4
beta beta beta
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Soft thresholding

Top panels: the sum g(3) of the L; penalty and the least squares function (both in grey) is the black
line, which has a cusp at 5 = 0. If the left- and right-hand derivatives of the sum are equal at zero,
then the minimiser (at the red vertical line) is non-zero, but not otherwise. Bottom panels: the
derivative ¢/(3) = 0 when 3 = .

gamma=0.5, betahat=0.9 gamma=0.5, betahat=0.4

- L - /

T T T T T T T T T
-1.0 05 00 05 10 -10 -05 00 05 1.0

beta beta
gamma=0.5, betahat=0.9 gamma=0.5, betahat=0.4
T T T T T T A T T T T
-1.0 -05 00 0.5 1.0 -1.0 -05 00 05 1.0
beta beta
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Example: cement data

O Estimated coefficients for lasso fit against L; norm and A:

Coefficients
05
|

Coefficients
0.5

0.0
0.0

0.0 0.5 1.0 1.5 2.0 -2 -1 0 1 2
L1 Norm Log Lambda

Regression Methods
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O

0

Comments

Least angle regression (LAR) is similar to the lasso, and can compute the lasso solution path
for all X in O(n?) operations (faster than ridge, O(np?), when p > n).

Theory: one can ask about the properties of fy in suitable settings (e.g., n,p — oo with

p/n — ¢ > 0). Then under certain conditions one can show that lasso variable is consistent (i.e.,

the probability that the variables with /3, # 0 are selected tends to 1), but that the By themselves
are inconsistent (because soft thresholding implies that |3, .| is systematically smaller than |5,]).

Many (many!) variants and related procedures exist to overcome such problems.

Computation: lasso and elastic net penalisations available in R package glmnet and extend to
generalized linear models and more general regressions (later).

For any regression model we can define the degrees of freedom as

n
) ~ ~ 2
o2 cov(y;, §;) = tr{cov(y,§)}/o*;
j=1
this reduces to previous definitions but can be computed in more situations.

When D(f3) is a general loss function (e.g., a negative log likelihood for a GLM), the exact
algorithm above is replaced by a coordinate descent algorithm that updates each S, in turn,
with the other components fixed. This too is very efficient.
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3.4 Splines slide 225

Basis functions

0 We seek to estimate a function p(xz) based on data (z1,91), ..., (Tn, Yn)-

O There are n parameters pg = pu(x1),. .., pn = p(x,) (plus noise, ...), so we assume that u(z)
belongs to a suitable class of functions, defined for x € X.

[0 Simple linear model is
Hnx1 = BnxpBpx1, rank(B) = p < n,
with the columns of B evaluations at z1,...,z, of basis functions.
[0 The basis functions may be
— global (e.g., polynomials, trigonometric/Fourier functions),
— local (e.g., splines),
— multiscale (e.g., wavelets).
[0 We choose the basis for
— suitability for the problem at hand (e.g., suitably smooth), and
— computational reasons—want fast, preferably O(n), handling of n x n matrices.

0 Focus on spline functions, on which there is a huge literature.
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Aside: Polynomial regression

[0 Classical approach is to fit a polynomial of degree p — 1, i.e.,

plag) = Bo+ B + - + Bpaal

and choose Sy, ..., Bp—1 to minimise the sum of squares
Sy —nlap)¥ =3 {ur = (Bo+ By +--+ Bpaah )
j=1 j=1

giving //8\p><1 = (BTB)~'B™y, where (j,i) element of n x p matrix B is x;fl.

0 Comments:

easily copes with missing values/unequally spaced observations;

use orthogonal polynomials to avoid numerical problems if n, k large;

sensitivity to observations at extremities of series often leads to poor fit;

usually doesn't work well because infinite differentiability everywhere is generally unnecessarily
restrictive.
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Piecewise linear basis

[0 Place knots of a univariate x at 27 < --- < 2%, and define tent functions

b(x) = @0/ =), o <o <,
0, otherwise,
(x—ap_)/(a —2_y), x5, <z <a]
b(z) = . k—1 f ki’ 51 *k’ k=2,...,K -1,
(xk:Jrl - x)/(karl - xk), T, <T < Tpoqs
b )@ —ak )/ (@ — T ), Tk <@ <,
K(T) = _
0, otherwise :

these are non-zero only in (z}_,, 2}, ;) (compact support) and take value 1 at z,.

[0 An exact linear interpolant of data y1,...,yx at the knots is the function

K
p) = bp(x)yr = B(x)"y,
=1

which by construction
— passes through the points (z},yx) and

— is linear between the knots.
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Piecewise linear basis I

0 - 0 —
° .
<+ ° <
o« ¢ °
c
Ke]
5 ™ ™ —
c
2 . >
.GE) ~ A ° ° o
o | >O<>< W\ /><>< o |
T T T T T I T T T T T I
00 02 04 06 08 1.0 00 02 04 06 08 1.0
X X

O Left: piecewise linear basis functions by(x) and data (z}, yx).
O Right: functions bg(z)yx and linear interpolant (bold).
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Statistical use

O Aim for summary of the n observations, so interpolation not useful.

[0 Could use K < n knots, but fit tends to depend heavily on their locations, so better to use
high(ish) K and impose structure by penalising roughness of u(x):

K-1
B)\ = argming {Hy — BB+ X Z {,u(:cz_l) —2u(zr) + M(:UZH)}Q} .

k=2
[0 The second term sums squared numerical second derivatives at the internal knots, and X\ imposes
the degree of penalisation:
— A =0 (no penalty) gives the interpolant,
— A — oo forces the second derivatives to be zero, so gives a straight-line fit.

00 On setting (i, = p(x}) and writing

81— 2089 + B3 1 -2 1 0O 0 O 51
B2 — 233+ B4 01 -2 1 00 B2
1 0 B3| = D(K72)><K6K><17

B3 —284+08B5| — [0 O 1 -2

the penalty is Y1 ' (Be—1 — 26 + Bry1)? = (DB)" DB = FD DB = "SB, say.
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Penalized fit
[0 The penalty matrix S is of side K x K but of rank K — 2, because

the null space of S consists of all straight lines Syl + 12, which are unpenalised.

O Hence (recalling ridge regression),

By = argming {|ly — BA|* + A8"SB} = (B*B+\S)"'B"y

giving
fitted values 7 = Bp\=B(B"B+AS)"'B"y = H,y,
K
equivalent degrees of freedom df, = tr(H)) = Z L
=1+
where

— 1 <--- <ng €[0,1] are the eigenvalues of (B"B)~'/2S(BTB)~1/2,
— n1 =n2 =0, corresponding to the null space of S, so

— dfy is monotone decreasing in A, with

A=0) K>df,>2 (A—o0).
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Higher-order splines
0 The pth degree spline basis with knots 27 < --- < 2} is
Lz,...,2 (x—a)), ..., (x —2k)E,

where u; = max(u,0) is the positive part function.
0 The resulting basis matrix B is highly collinear and gives an implausible statistical model.

[0 B-spline bases span the same linear space, but have better numerical properties. They are
defined by adding boundary knots zj and z7,; and setting up an augmented knot sequence

<<yl eg <ty =21 < STk =T Sk S Tr414m <o < TRyoM;

typically the 74 outside [z{, 7} ] are set to the boundary knot values. Then

Bpi(r) = I(mp < <7pyr), k=1,...,K+2M -1,
T — Ty Thtm — &
Bim(z) = —— % B @)+ T B (@), k=1,..., K +2M —m,
Tk+m—1 — Tk Tk+m — Tk+1

where we set By 1 = 0 if 7, = 7,41 (avoiding division by zero).
OO0 Cubic splines (p = 3, M = 4) give visually smooth functions.

00 K =10 on the next slide, with M = 2 (linear), M = 3 (quadratic) and M = 4 (cubic), and the
Tk set to equal the boundary knots.
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Linear, quadratic and cubic B-splines

Spline f
00 02 04 06 08 10

Spline fu
00 02 04 06 08 10

Spline functions

00 02 04 06 08 10
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Natural cubic spline

00 Suppose the z; are distinct (no loss of generality) and
a<z<--<zp<b, X=]Ja,b CR.

O A natural cubic spline adds the constraint that the function is linear outside [z1, z,,], and thus
avoids high variance due to quadratic and higher terms outside this interval.

0 A natural cubic spline
— has K =n knots, at 1 < --- < 2,
— is a cubic polynomial on each interval between knots,
— is continuous, with continuous first and second derivatives at each knot, and
— s linear on [a,z1] and [z, b], with zero second and third derivatives at z; and xy,
- has
2+ 4(n — 1) + 2 parameters — 3n linear constraints =n
degrees of freedom (df), which can be split into
> 2 df for a linear fit, plus

> n — 2 df for the second derivatives u”(x2), ..., 1" (xn—1).
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Natural cubic spline

Second derivative

04
~
=
>
© -
2

Third derivative

a;
~
=
®
®
=4

[0 A natural cubic spline may be constructed by integrating a linear second derivative function p”(z)
which is determined by p”(x2),..., " (xx—1) and because p”"(z) =0 for x & (v1,x k).

[0 On integrating twice we gain two constants: u(x) = o + Sz + [ fox/ w’ (u) duda’.

O Above 1 =1,...,z19 = 10, so the spline is determined by 1" (2),...,1”(9) and the line.
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Optimality of natural cubic splines

[0 Let S2(X) denote the set of functions p differentiable on X' = [a, b] with absolutely continuous
first derivative y': i.e., there exists an integrable function " such that
[F W (u)du = i/ (x) — i/ (a) for z € X.

O Clearly any g with two continuous derivatives on X lies in Sa(X).

Theorem 32 Suppose n > 2, thata < x1 < --- < x, < b, and that p is the natural cubic spline
interpolating yi,...,Yn at x1,...,xp. If i € So(X) also interpolates the y;, then

/ //2 / ///2
X

O Thus p minimises the roughness penalty X [, 4”2 in a larger class of functions than that to
which it belongs, making it a natural choice as an interpolant, because minimising

Z{yj i) }? +)\/X~"(x)2 dw

for fi € So(X) will automatically result in a natural cubic spline p: if fi(x;) = p(x;), then the
penalty is reduced by using p.

with equality iff i = .
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Note to Theorem 32

Let v = i — p € So(X), and note that v(z;) = 0 for each j, since pu(x;) = fi(x;) = y;. The natural
boundary conditions imply that p”(a) = p”(b) = 0, so integration by parts yields

o= ewert = [y = [ s [ .

and hence the facts that p/” is piecewise constant and that v(xz;) = 0 yields

Tjt1 n—1
o == [ i = zw ) [ = = S vty — viap)) =0,
Zj 7j=1

Hence

/ ~ 112 / M —|—V :/ M//2+2/ N//V//+/ y”2:/ M//2+/ y//22/ ///2
X X X X X

wth equality iff v”(x) = 0. This occurs iff v(z) is linear, but since v(z;) = 0 at at least two points,
v(z) =0 forall z € X.
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More splines

0 Sometimes cyclic effects (e.g., seasonality, diurnal variation) must be modelled smoothly, so (e.g.)
December joins smoothly onto January. Then the penalty and spline basis must be modified
accordingly, to give a cyclic (cubic) spline.

O P-splines are a version of B-splines (usually with equally-spaced knots) in which a difference
penalty is applied to the parameters to control the wiggliness of u, e.g.,

K-1 -1 1 0 0---
Wy (Br1 — /Bk)Q =p"D*WDB, with D=0 -1 1 0 ---|,
k=1 . . . . e
and W = diag(ws, ..., wx—1). These are easy to set up and flexible, but messy if the knots are

not equi-spaced, and the penalty is less readily interpreted.

O For an adaptive spline we can let wy = wy(z) vary with x, for example setting
w(z) = B(x)Arx1 and thus having D™WD = Y, \;D"diag{B;(z)}D, where B;(x) is the lth
column of B(x), then estimating the vector \.

O Other possibilities include (Wood, 2017, Chapter 5)
— shape-constrained splines to impose, e.g., monotonicity on the fit;

— thin-plate, Duchon and tensor product splines used in spatial problems; and

— soap film splines used when smoothing over complex domains.
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Motorcycle data: adaptive fit
Standard (left) and adaptive (right) spline fits, the latter with X' =40 and L = 5:

o | o |
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o 8 o
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g g
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10 20 30 40 50 10 20 30 40 50
Time after impact (ms) Time after impact (ms)
Regression Methods Autumn 2024 — slide 238

128



3.5 General Framework slide 239

Generalisations

0 We've discussed estimation of a single function u(x), but in applications we may have
— covariates to be treated parametrically,
— several smooth functions,
— non-normal response variable,
— random effects (later).

[0 To include ordinary covariates and allow for weights, we write
y| b~ (BO,c*W), BO=Xj+ Zb,

where B = (X,Z)isnxd, 0§ = (f7,0")"isdx1,d=p+ qand

— the n X p matrix X represents the ordinary covariates, plus any unpenalised columns for
smooth components,

— the p x 1 parameter vector (3 is unpenalized,

— the n x g matrix Z represents the bases for any smooth functions,

— the ¢ x 1 vector b is penalized,

— the n x n diagonal matrix W = diag(wy, ..., w,) contains positive weights,

and everything ‘goes through as before’.
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Additivity and identifiability

0 Consider the additive model
E(y) = p1(z) + pa(2),

where 1, po belong to suitable classes of smooth functions; if
T =time, 2z = space,

then g is defined on X} C R and po is defined on Xy C R2.

[0 There is an identifiability problem, since we could map

pi() = (@) +a, p2(2) = p2(z) —a, a€R,

and the fitted values would not change, so we must constrain p1 and ps.

[0 As before, we use bases for p1 and ps, writing

E(y) = Zb= (Zi(z) Z2(2)) (2;) ,

where we penalise the g1 elements of b; and the ¢o elements of bs.
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Ensuring identifiability
[0 The identifiability problem is solved by centering the fitted smooth, i.e., enforcing
1} Znsgbgx1 =0

for each smooth term.

O In general we can use a QR decomposition. If Cyxgbgx1 = Oax1, With a < g, write

CqTxg QquRar = (Ql QQ) (%1> )

where @) is orthogonal,

— (@7 has dimension ¢ X a,

— (2 has dimension ¢ x (¢ — a), and

— R; has dimension a X a and is upper triangular.

Then if we set byx1 = Q2] , we have

(g—a)x

Cb=R'Q"b= (R} o)< i) Qubf = (R? o)( 0 >b’:0.

QQ qum
[0 Thus the constraint is satisfied if we replace Z,,xq by (ZQ2),,x(4—1); this reduces b to dimension
(g—1) x 1.
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Penalty formulation
[0 Minimise
(y—BO)"W(y—BO)+0"S\0 = (y— XB— Zb)"W(y — X — Zb) + 67 S5)\0

where S is a sum of symmetric positive semi-definite d X d matrices S,,,, such that

M
075,60 = 07 (Z )\mSm> 0 = Z AmbE S% by A > 0,
m=1

where S* is the non-zero diagonal block of S;,, and b has sub-vectors by,...,by.

O With M =2, 3, by and by are vectors of respective lengths p, ¢; and g2, and ST and S5 are
square matrices of sides ¢; and g2, so

3 0 0 0 00 0
=161, Sa=MAMS1+XS=X1]0 Sik O]l +X[0 0 O ,
by 0 0 0 00 S

with S7 and Ss partitioned conformably with 6.
O Let S denote the g x ¢ corner of Sy corresponding to b; here S} = diag(A157, A2S3).
O Note that |Sy|+ = [S¥|+.
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Estimation

O For fixed )\, the minimiser and fitted values for

(y — BO)"W (y — B6) + 05,0

are
0, = (B"WB+S,) 'B"Wy, %= B0,=B[B"WB+S5,) 'B"Wy = H,y.

O If the unpenalized least squares estimator 0= (B™W B)~!B™Wy exists, then
)= (B"WB+5,) 'B"WBO =0 — (B"WB+ 5,)"15,0 = P\0,
and if § is the unpenalised fitted value, then
Uh =7 — B(B"WB + 5,)"'5,0.
0 Now we must decide
— how many degrees of freedom for each smooth?
— how to select the smoothing parameters?
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Amount of smoothing

O We write R R
0y = P9,
say, where Py, shows how penalisation shrinks 0 towards 500 = (BT, 0m)".
O If A=0, then Py = I,;, and the degrees of freedom of the two fits are both ~ p + ¢, but as
A — 00, P, tends to the projection matrix onto the column space of X,,,.
O On slide 193 with just one smooth term we defined
p+q
edfy = tr(Hy) = tr(P\) = »_ Pypr € (.0 + q),
r=1
which gives the usual definition for a linear model.
O If 07 = (5",b],...,b},), we define the effective degrees of freedom edf, , associated to the
mth smooth as being the sum of those P, ,, that correspond to the elements of b, in 6.
[0 To choose the vector A we use either
— CV(A) or GCV(A) (second-order assumptions),
— REML (normal-theory assumptions).
O Must optimise over (log) A\, e.g., by grid search (CV/GCV) or other methods (REML).
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0

Inference

So far we have discussed only ‘point estimation’ of a smooth function u(x), but in applications
we also want

— pointwise confidence intervals for smooth functions,
— overall confidence bands for (say) {u(z) : € S}, where S is some subset of X, and
— tests of hypotheses such as ‘is the spline part needed?’ and ‘is the curve monotonic?’

Under the normal model we have the Bayesian interpretation from slide 191,
01y A~ N (B0 V2), Va=*(B'WB+ 8,7,

from which we can simulate to find bounds for any function A(6).

If A() = Appxab, then ~
A0 |y, 0%\ ~ Ny (Afy, AV AT),

and generalisation of (21) gives that its mean square error is
MSE = E (\|A§A - A9||2) = tr(AVHAY),

which takes into account both estimation error and prior uncertainty about 6.
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g
g

Average coverage probabilities

[0 This ignores estimation error for o> and .

Bayesian credible intervals have good frequentist properties, averaged over the domain of x.

Let the random index variable J choose the m rows aJT of A with equal probabilities, and aim to
choose constants d and c; such that the average coverage probability

ACP :P{|a§§)\—a}9| < dCJ} =1-

i.e., ACP has a desired value averaged over y, 6 and J.

The random variable
a}(Ox — 0)/cs = aj{0y — E(0\)}/cs + af{E(0)) — 0}/cs = S+ T,

say, has a mixture of normal distributions, where

— S is approximately normal and E(S) = 0,

— T is random (because of J) with E(T") ~ 0, but var(T") < var(S).
We now choose C = diag(cy, ... ,cn) = diag(AVyAT)/2, so that

var(S + T) ~ m™E {Hc—lA(é; - 9);]2} = mlr (CTTAWRATCTY) = 1,

and then setting d = z;_,/» gives the required value for ACP.
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Example: Average coverage probability

Figure 6.7 The Nychka (1988) idea. The main black curve shows a true function_f(x), while
the grey curves show 500 replicate spline estimates f(ac) The dashed curve is ]Ef(m) Inset at
top right are scaled kernel smooth estimates of the distributions of the sampling error, f ]Ef
(continuous black); the bias, lFf [, evaluated at a random x (dotted) and f [ evaluated
at a random x (dashed). In grey is the normal approximation to the dashed curve. Evaluation
at a random x turns the bias into a random variable, which has substantially lower variance
than the approximately normal f-E f Hence the sum of the randomized bias and sampling
error is approximately normally distributed. The variance of this sum turns out to be well
approximated by the Bayesian posterior covariance for f.

(Wood, 2017)
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Example: Motorcycle data

Standard (left) and adaptive (right) spline fits, the latter with K = 40 and L =5, and 95% pointwise
confidence intervals:

3 3
C C
c c
-2 o -8 o
© ©
9 9
[ [
g 2 g 9
el el
(3] ©
£ s T 3
i i
10 20 30 40 50 10 20 30 40 50
Time after impact (ms) Time after impact (ms)
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Example: Spring barley data

Plot yield at harvest for 75 varieties of spring barley sown in 3 blocks each of 75 plots:

Location x Block 1 Block 2 Block 3
Variety Yield y Variety Yield y Variety Yield y
1 57 9.29 49 7.99 63 11.77
2 39 8.16 18 9.56 38 12.05
3 3 8.97 8 9.02 14 12.25
4 48 8.33 69 8.91 71 10.96
5 75 8.66 29 9.17 22 9.94
6 21 9.05 59 9.49 46 9.27
7 66 9.01 19 9.73 6 11.05
8 12 9.40 39 9.38 30 11.40
9 30 10.16 67 8.80 16 10.78
10 32 10.30 57 9.72 24 10.30
11 59 10.73 37 10.24 40 11.27
12 50 9.69 26 10.85 64 11.13
13 5 11.49 16 9.67 8 10.55
14 23 10.73 6 10.17 56 12.82
15 14 10.71 47 11.46 32 10.95
16 63 10.21 36 10.05 48 10.92
17 41 10.52 64 11.47 54 10.77
18 1 63 37

11.09

10.63

11.08

Regression Methods
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Example: Spring barley data

22

20
1

18
1

Ypoon et oMy

Yield y
12 14 16
| | |

Location x

Yield as a function of location for the three blocks, with yields for blocks 2 and 3 offset by the
addition of 4 and of 7 respectively. Value 37 in block 3 is missing.
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Spring barley data and polynomial fits

Yield y
14 16 18 20 22
| | | |

12
1

10
1

Location x

Yield as a function of location for the three blocks, with yields for blocks 2 and 3 offset by the
addition of 4 and of 7 respectively, with fitted polynomials of degrees 20, 10 and 50.
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Example: Spring barley data

[0 We fit a model with parametric variety effects and smooth effects for the fertility patterns in the
blocks,
Ynx1 ~ (Xnx75B75x1 + Z1b1 + Zaby + Z3bs, 0°1,),
where
— n =224, as one of the responses is missing,
— X is a matrix of indicators (0/1) of which variety is in which plot in each block,
— (3 are the variety effects, with the model parametrized without an overall mean,

- Zy, of dimension n X (py, + gm) corresponds to the basis functions for the smooth in block m,
and

— by, are of dimensions (py, + gm) X 1, for m = 1,2, 3, corresponding to the smooth effects, and
- Pm + gm =9 by default (after centering) when using gam in R package mgcv.

O Taking p,, = 2 would correspond to null smooth fy + 12 for each block (i.e., linear fertility
pattern), but the identifiability constraints impose 5y = 0. Hence in fact p,, = 1 for a linear
baseline smooth and the degrees of freedom for the smooth terms lie in [1,9] (see slide 255).
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Example: Spring barley data

library(SMPracticals)
data(barley)

library(mgcv)

# ML fit of variety as fixed effect, with GCV estimation of lambdas,
# with splines for fertility gradients within each block

fit.gcv <- gam(y~Variety-1+s(Location,by=Block) ,data=barley)

# fit of variety as fixed effect, with REML estimation of lambdas,
# with splines for fertility gradients within each block

fit <- gam(y~Variety-1+s(Location,by=Block) ,method="REML",data=barley)
# REML fit with variety as a random effect and splines for fertilities

fit.re <- gam(y~s(Variety,bs="re")+s(Location,by=Block) ,method="REML",
data=barley)
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Example: Spring barley data

O Using GCV the smooths have dfy = 8.3, 6.8, 6.3, with & = 0.65 and AIC = 513.1, the residual
degrees of freedom is 224 — 75 — 8.3 — 6.8 — 6.3 = 130.6, with SEs around 0.4 for the estimated
variety effects (0.54 for variety 27).

O Using REML the smooths have dfy = 7.2, 3, 6.1, with & = 0.66 and AIC = 518.3, the residual
degrees of freedom is 132.7, with SEs around 0.4 for the estimated variety effects (0.53 for variety
27).

[0 The estimated smoothing parameters are Xl = 0.0029, Xz = 0.18 and X;:, = 0.0078.

O The effective degrees of freedom for the smooth terms, with the totals:

Block Py .y Total
1 1.00 1.07 0.90 0.7 0.65 0.17 038 131 1 7.18
2 0.61 021 012 —-0.2 003 -026 001 149 1 3.00
3 0.99 1.04 0.76 04 041 -0.18 0.18 147 1 6.07

0 The P, ,, need not be positive, though their total for each smooth is positive.

[0 In applications it would be wise to check whether increasing ¢,,, would lead to very different fits.
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Example: Spring barley data

B o |
< \
© | o |
] ]

Yield y

Left: data (offset by adding 4 and 8 to blocks 2 and 3).
Right: estimated fertility patterns (with estimated df 7.2, 3, 6.1) and 95% unconditional pointwise
confidence intervals, fitted using REML. The intervals are wider for blocks 1 and 3.
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Example: Spring barley data

2
22

20

! ! L ! ! L
Yield y
14 1

18

[

Yieldy
Yieldy

Center: Estimated variety effects (also offset)

Left: data (offset by adding 4 and 8 to blocks 2 and 3).

Right: residuals (also offset, and showing serial autocorrelation?)
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Yieldy

20

18

16

14

12

10

Example: Spring barley data

f

Yieldy

22

20

18

16

14

12

10

Yieldy

2
8

14

12

T T T T T T
0 20 40 60 0 20 40 60 0 20 40 60

Location x Location x

Left: data (offset by adding 4 and 8 to blocks 2 and 3).
Center: estimated fertility patterns (REML), also offset.
Right: residuals.

Regression Methods

Example: Spring barley data

[0 Should the varieties be treated as randomly selected from a population of varieties?

0 If so, we use the same basis matrix X as in the previous model, but add a penalty matrix A\gSg
and minimise the penalised sum of squares

(y — BO)"(y — BY) + 675,50,

where
Sy = AgSg + A1S1 + XaSa + X353,
where Sz = diag(I75,0).
[0 The effective degrees of freedom are then 44.8 for 5 and 7.5, 3.9 and 6.4 for the splines.
[0 The optimal smoothing parameters are Xﬁ = 1.76, Xl = 0.0027, /):2 = 0.073 and /)\\3 = 0.0070.

[0 The fixed-effects model has 75 degrees of freedom for /3, so this is substantial shrinkage; the
estimated standard deviation drops from 0.65 to 0.39.

[0 The estimates under the random-effects model have standard errors around 0.31 (0.36 for variety
27), compared to 0.41 (0.54 for variety 27) for the fixed-effects model.

[1 The next slide compares the estimates.
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Example: Spring barley data

Comparison of estimated variety effects under fixed-effects and random-effects models:

11.0
1

100
1
*
L J

Variety estimates under random-effects model
9.5
I
L]

9.0

T T T T T T
9.0 9.5 10.0 10.5 11.0 115

Variety estimates under fixed-effects model

T
12.0

Regression Methods

Autumn 2024 — slide 260

Comments

[0 Penalised estimation extends the basic smoothers to include
— parametric terms in models,
— several smooth terms,

— spatial and more complex smoothing,

‘random effect’ parameters,

and extends to generalized additive models in a natural way.

[0 The baseline variance o2 and smoothing parameter(s) \ are estimated using cross-validation

under second-order assumptions or REML under normality.

[0 The empirical Bayes formulation allows inference on parameters and smooth functions in a unified
way — usually ignoring the uncertainty for o and \ is not too critical.

0 In practice n and d may be very big, so direct matrix inversion is computationally painful, and
then indirect methods (e.g., based on the Woodbury formula) are needed to compute 6y and V.

Regression Methods
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3.6 Components of Variance slide 262

Background and motivation
[0 All the models so far have involved just one level of randomness, corresponding to ‘measurement
error’ on individual responses.
[0 Complex layering of randomness can arise in applications, and then conclusions may depend on
how it is dealt with.
O Two conceptually different set-ups (which may give the same models):
— observational /experimental setup generates several layers of randomness;
— we find it useful to treat the parameters of some model as drawn from a distribution.
The first concerns logical properties of the data, whereas the second is a modelling assumption.
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Example: Blood pressure
[0 Blood pressure data: P = 25 patients each made V' = 16 visits to a clinic, and on each occasion
their systolic and diastolic blood pressures were measured twice.
[0 Consider just the diastolic pressure. We expect there to be variation
— between patients,
— between visits within patients, and
— between measurements within visits,
which we could model as
Ypom = P +bp+epy +Epom, p=1,...,Pv=1,...,.Vm=1,..., M,
where
— v is the population mean diastolic blood pressure (DBP),
— by is the difference between the patient and population mean DBP,
— epy is the difference between this and the mean DBP on the vth visit, and
—  €pum is the difference between the mean DBP for the pth patient at the vth visit and the mth
measurement on that visit,
11 11 11
by " N(0,02) 1L e 2 N(0,02) UL 2y S N(0,02).
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Example: Blood pressure

patno patient visno dbpl dbp2 sbpl sbp2
1307 1 7 95 85 150 130

1307 1 8 85 85 140 140
1307 1 9 90 90 150 150
1307 1 10 80 80 135 135
1307 1 11 80 80 130 125
1307 1 12 85 85 150 155
1307 1 19 80 80 130 130
1307 1 20 80 80 140 140
1307 1 21 90 85 145 140
1307 1 22 75 75 130 130
1418 2 7 104 106 160 148
1418 2 8 98 104 158 162
9202 25 21 91 90 142 139
9202 25 22 80 78 162 160
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Fixed and random effects

Chimpanzee Word
1 2 3 4 5 6 7 8 9 10
178 60 177 36 225 345 40 2 287 14
78 14 80 15 10 115 10 12 129 80
99 18 20 25 15 54 25 10 476 55
297 20 195 18 24 420 40 15 372 190

A WO N =

O Times (min) for four chimpanzees to learn each of ten words.

[0 A possible model for log time is
Yew | acaﬁw ifn\‘d-/\/'(ﬂ_{_ac‘i'ﬁw>o-2)> ¢ = 1,...,024,211 = 17"'>W: 10.

O The a. and/or the §,, would be considered as constant fixed effects if we were interested in the
relative linguistic abilities of these particular chimps and/or if we planned further tests with these
particular words.

O Either (or both) of the a. and §,, might be considered to be random effects if they were
thought to be sampled from a larger population whose variation is of interest.
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Two distinctions

O We distinguish fixed and random effects (above).
[0 We distinguish nested and crossed effects:

— in the blood pressure data, replicate measurements at each visit are nested within visit,
because there is no logical connection between yy, ,, 1 and y, ,.1 (we could permute the final
index m within each patient/visit combination without changing the data structure). Likewise
if we ignore any possible time effects between visits, we could consider that visits are nested
within patients;

— in the chimp data, the effects are crossed, because permuting chimps or words would entail
permuting entire rows or columns of the data table: there is a logical connection between y.,
and Ye,w, and between Yy, and Yoy

O In R syntax, with patient and visit number declared as factors, for nested effects we write

y ~ patient/visno

read as ‘separate effects for visit number within the levels of patient’ and for crossed effects with
chimp and word declared as factors we write

y ~ chimp + word
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Nested model ANOVA

O For the nested model
Ypom = B +bp+epy +€pom, p=1,...,Pv=1,...,.Vim=1,..., M,
and with a dot and bar denoting averaging over that index, we write
Ypom = Y... = Ypom ~ Ypu. T Ypo. = Yp.. T Yp.. — Y.,

and note that

Ypom — ypv- = Epum — Epv-
Upo —Up. = €po +Epv — (& +5p);
Up.—T.. = bp+e +5p. —(b.+e.+E.),

so the overall sum of squares is

D Woom =007 = D Woom —Tp) >+ Y Uy —Tp )2+ Y, Wy —7..)°

p7v7m p7v7m p7v7m p7v7m
= Z (ypvm - ypv.)Q + MZ(@pU - ypn)2 + VM Z(yp - ym)Qv
p,v,M p,v p

where these terms are independent sums of squares for variables that are
N(0,0%), N(0,02 4 c*/M), N{0,0% +02/V +c*/(VM)}.
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Nested model ANOVA Il

[1 Hence
Z Wpom = Tpo.)® ~ T Xby(ai—1);
p,v,m
_ _ D
> Wpo —Tp)> ~ M(0?+0%/M)Xp_qy = (Mo? + %)X 1),
p7U7m
2
> G~ T~ VM (0F + 5+ ) xbor 2 (VMR + Ma? +0%)h o,
p7v7m

and we can estimate the components of variance o2, 02 and o} from the ANOVA table.

[0 The interpretation of the ANOVA depends on whether we regard 55 = ZP(bp _ 5)2 and
52 = 21771)(6])1) - Ep)Q as random or f|Xed

Term df Sum of squares E(Mean square) when terms below random
€ g € g,e,b
Between patients P-1 >, —¥.)%  VM& +Ms: VM +Mo? VMo + Mp?
+0? +0? +0?
Between visits PV —1) > Gpo — Up.)? M§? + o2 Mo? + o2 Mo? + o2
within patients
Between measures  PV(M —1) > (Ypom — Upo.)? o? o? o?
within visits
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Nested and crossed ANOVA

[0 Nested analysis of the blood pressure data:

summary ( aov(dbp ~ patient/visno, data=blood.dia) )
Df Sum Sq Mean Sq F value Pr(>F)

patient 24 23059 960.8 124.29 <2e-16 **x*
patient:visno 375 39082 104.2 13.48 <2e-16 *xx*
Residuals 400 3092 7.7

(1 Likewise, crossed analysis of the chimpanzee data:

summary ( aov(log(y) “chimp+word,data=chimps) )
Df Sum Sq Mean Sq F value Pr(>F)
chimp 3 5.33 1.778 2.719 0.0642 .
word 9 45.69 5.077 7.765 1.5e-05 *xx*
Residuals 27 17.65 0.654

There are C' — 1 degrees of freedom for chimps, W — 1 for words, and (C' — 1)(W — 1) for the
residual.

[0 In both cases, we can use the ANOVA table to estimate the variance components and then
perform synthesis of variance: e.g., how large would W need to be to distinguish the learning

abilities of two chimps with probability 0.957
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Example: Blood pressure
[0 Solving the equations
0 =77, Mo?+0>=1042, VMoi+ Mo?+o* = 960.8,
gives (in units of millimeters of mercury, mmHg)
0=28, 0.=6.9, 0,=>5.2,

so the largest variation is between different visits within patients, while that between
measurements on a single visit is smallest.

[0 Different comparisons require appropriate baseline variances:

— if we are interested in how patient p's response varies from visit to visit, we use
Ypor- — Ypuy: = B+ bp + €puy + Epuy- — (1 + bp + €puy + Epuy.) ~ N(0, 203 + 202/M)>

as a basis for a test of a significant difference, whereas to compare average blood pressures for
two different patients we use

Upr- — Upg = bp1 + Epy. + Epr — (bpy + Epo. + Epye) ~ N{0, 207 + 202 /V + 20 /(VM)}.

O Split-unit designs are set up to make the most important comparisons within units (here
patients) and less important ones between units, and the ANOVA reflects this.
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General form

0 We could have written the nested model above as
y=1lyu+ Xpb+ Xee + ¢,

with design matrices X3 and X, for the patient and visit-within-patient effects.
0 Thenif

— b and e are treated as fixed (ordinary parameters),
y ~ No(Lnp + Xob + Xee,0°1),
— bis treated as fixed but e ~ Npy (0,021py), then
Y~ No(Lop+ Xopb, 02 X X[ + 0°1,),
- and if b ~ Np(0, O'I%Ip) independent of e ~ Npy(0,02Ipy), then
y ~ Nu(Lpp, o2 Xy X{E + 02X XE + 021,).

[0 Hence random e or b give patterned covariance matrices depending on their variances.
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Summary

[0 Components of variance ANOVA is easily performed directly for balanced data.

0 Standard ANOVA tables have different interpretations, depending on which components of
variance are taken to be random or fixed.

[ Extensions are needed to deal with more complex settings, with unbalanced data, or with
non-linear or non-normal errors — hence mixed models, i.e., models with both random and fixed
parts, arising in many different settings (and with different names):

— components of variance (as above),

classical experimental design (split-plot designs, ...),
— repeated measures,

— longitudinal models,

—  multi-level models,

— hierarchical models.

0 Can subsume linear versions into the linear mixed model, which can be extended to nonlinear

models, GLMs, ...
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3.7 Linear Mixed Model slide 274

Linear mixed model

[0 The linear mixed model may be written as
Ynx1 = anpﬁpxl + anqqul + Enx1, b~ Nq(oa Qb)a g Nn(O, Q)a

where
— [ represents the fixed effects,
— b represents the random effects, and
- usually Q = o?1,,.
[0 This has the same structure as when smoothing, with the columns of Z giving the structure of
the random effects.

O Equivalently,
ylb ~ Np(XB4+Zb,Q2), b ~ N (0,9),

which gives marginal response distribution
Yy~ Na(XB,ZQZ" +Q), ZQZ" +Q=0*A7 (),

say, with 1 the vector of distinct variance ratios appearing in A™! (e.g., 02/0?%,...).

O Although Q is often diagonal, Z£2,Z7 is not, so inverting Z€, Z™ + € involves O(n?) flops in
general, and we should avoid working with A.

Regression Methods Autumn 2024 - slide 275

145



Maximum likelihood estimation

[0 Let b denote the MLE of b for fixed 3 (and %). Then
Bt 0) = [ 68,020 f0%,0) b

- 27T)q/2
= aba ’ 27 X (
f(y 5 g Tzz)) ‘ZTQ_lz—l-Qb_l’l/Q
Fly | b 8,07 9)f(b] 0% 0)
|ZTQ-17 4 Q|12
so (apart from additive constants) —2log f(y; 3,02%,1) equals

)

(y— X8 — ZB)Tgfl(y —XB- ZB) + BTQb_lg + log{|Q| ||| 2" Z + Qb_ll}

0 The first two (quadratic) terms here depend on 3 and b, so given v and o2 we can find @/, and
b(B,1)) explicitly, and thus obtain 05(1).
0 By noting that

Foly B0 0) = fly | b B,0%, %) f(bso?,9) ) f(y; B, 0%, )

and taking logs, we obtain

bly~N, {B, (Z 017 + le)*l} L b= (2" z+ o) 2T (y - XB).
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Note on maximum likelihood estimation

0 Suppressing the parameters 3, o and 1 for now, we write the log integrand in

f(y) = / £(y,b)db = / £y | b)F(b)db
in the form B ~ B ~
log f(y,b) = log f(y,b) — 5(b— b)"H(b)(b—b),

where the linear term of the Taylor series equals zero, because it is evaluated at the maximising
value b, and the given Taylor series is exact because the log likelihood is quadratic.

O On ignoring terms not involving b we have
~2log f(y,b) = —2log f(y | b) — 2log F(b) = (y — XB — Zb)" Q" (y — X — Zb) + b"Q; ',

" Hb)=H=7"0"'Z+Q,"
does not depend on b, and thus

) = 1D [en{-30-HTHE-D} @

(2m)1/2
|1ZT0-1Z + Qb—1’1/2’

as announced; the integral equals the normalising constant for a Nq(B,H_l) density.

= fly.b) x 2m)"?H|? = f(y,b) x
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Inference on [
[0 Since
Yy~ No(XB, Z0Z" +Q),

weighted least squares gives
B={X"(ZNWZ"+ Q) ' X} X (ZWZ" + Q)" Ly,

with R
B~ N [BAXT(Z0ZT + Q)XY

where in general we need O(n?) flops to invert the n x n matrix ZQ,Z" + Q.

-~

O For cheaper calculation of var(3), we use the inversion formulae and obtain

var(B)pmp -\ _ (XTQTIX XTQ7lz T
: : A VD GV AL Vel /S O

)

dxd
where d = p + ¢, which involves only O{nd?} flops, as Q is usually diagonal.
O Note that var(b | y) = (Z"Q71Z + Q; ')~ can be obtained as a by-product.

O In practice these formulae are evaluated at the MLEs 52 and ¢ and used to compute confidence
intervals etc. for elements of 5.
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Inference on random effects

[0 Conventional terminology: we estimate parameters 3 and predict random variables b.
[ To find the best predictor b(y) of b we minimise

By [{B) — 0} {bw) -},

which gives b(y) = E(b | y), with (Woodbury formula):
Eb|y) = (20 Z2+00) 270 (y— XB),
var(b|y) = (Z"Q7'Z+ Qb_l)_l.

[0 Replace parameters 3, 02, 1) by estimates to get best linear unbiased predictor (BLUP) b and
its estimated variance.

0 Residuals
y—XB = Zb+y—XB—Zb
- ~ ~ —1 ~ ~
— Zbh+ {In —Zz (ZTQ—lz + le) ZTQ—l} <y _ Xﬂ) ,

split into two parts, with Zb attributable to random effects, and the second the usual residual
y — X B shrunk towards zero; this estimates €.
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Note on conditional mean and variance

O First we write B ~
b(y) —b="0b(y) —E(b|y) +E@[y) -,
expand {b(y) — b} {b(y) — b} and take expectation over b conditional on y to get

B [{b(y) = 0} () — b} 1] = {bw) ~E@® | )} {bs) ~ B [)} +var(e | ),

which is minimised when b(y) = E(b | y). Any other choice will give a larger expectation when we
take E,, so this is optimal.

O To obtain E(b | y), we note that

(y) Y {(Xﬁ) <Q+ZQbZT ZQb>}
b nta 0 )’ 0 Z" ) [
so using standard formulae for conditional normal distributions, we have
E(bly) = Q2" (Q+ 202" (y - XB),
var(b | y) = Q— WZ" (Q+ Z027) ' ZQ,.
[0 The Woodbury formula applied to the conditional variance gives

var(b | y) = (Z2"Q7'Z + Qbfl)il

as required.
O For the conditional mean we apply the Woodbury formula to (Q2 + ZQI)ZT)_1 and get
Eb|y) = WZ" {Q—l —alz (ot + zratz) ! ZTQ—l} (y — XB)
= o {l,-2'07z (@' + 2707 2) '} 270y - Xp)
= o {0 (@ + 2707 2) T Z2re T y - XB),

as required, where we wrote the term in braces in the second line as
I-B(A+B)'=AA+B)™!, withA=Q, ' and B=2"Q"17.
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Example: Rat growth

Weights (units unknown) of 30 young rats over a five-week period

Week Week

1 2 3 4 5 1 2 3 4 5
1 151 199 246 283 320 16 160 207 248 288 324
2 145 199 249 293 354 17 142 187 234 280 316
3 147 214 263 312 328 18 156 203 243 283 317
4 155 200 237 272 297 19 157 212 259 307 336
5 135 188 230 280 323 20 152 203 246 286 321
6 159 210 252 298 331 21 154 205 253 298 334
7 141 189 231 275 305 22 139 190 225 267 302
8 159 201 248 297 338 23 146 191 229 272 302
9 177 236 285 340 376 24 157 211 250 285 323
10 134 182 220 260 296 25 132 185 237 286 331
11 160 208 261 313 352 26 160 207 257 303 345
12 143 188 220 273 314 27 169 216 261 295 333
13 154 200 244 289 325 28 157 205 248 289 316
14 171 221 270 326 358 29 137 180 219 258 291
15 163 216 242 281 312 30 153 200 244 286 324
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Example: Rat growth
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30 13 3 6 25 27 21

350 4

200 —
~ 150

Weight (?)
=
~
N
[oe]
[
o]
=)
N
o
(6]
N
5

~ 350
~ 300
- 250
~ 200
~ 150

i
IS
IS
i
=
s
i
S

29 10 4 22 23 7 15 12
350 -
300 (e
250 -
200 -
150 — -
rrrrJirrrrJirrrr1irrrrirrrrIirrrrIirrrrIrroroT
01234 01234 01234 01234
Week
Regression Methods Autumn 2024 — slide 280

149



Example: Rat growth
Example 33 (Rat growth data)

O Write
yjt = Bo +bjo + (B1 +bj1)xjs +e50, t=1,...5,j=1,...,30,

where the random variables (bjo,bj1) have a joint normal distribution with mean vector zero and

unknown variance matrix and the ; g N(0,02). In matrix terms,
Yj1 1 Tj1 1 Tj1 €41
A I A Bo . bjo , . ]
: =|: +1: + 1, j=1,...,30;
Yj5 I x5 I x5 Ej5
the overall model with n = 150 is obtained by stacking these expressions.

O We set (xj1,...,x55) = (0,...,4), so that [y is the mean weight in week 1.

0 p = 2 parameters; ¢ = 60 since two random variables per rat.
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Example: Rat growth

> rat.growth
rat week y

1 1 0 151
2 1 1 199
3 1 2 246
4 1 3 283
5 1 4 320
6 2 0 145

> fit.reml <- lme(fixed= y~week, random="week|rat, data=rat.growth)
> summary(fit.reml)
Linear mixed-effects model fit by REML
Data: rat.growth
AIC BIC logLik
1096.58 1114.563 -542.2899

Random effects:
Formula: “week | rat
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 10.932986 (Intr)
week 3.534747 0.184
Residual 5.817426

Fixed effects: y 7 week
Value Std.Error DF t-value p-value

(Intercept) 156.05333 2.1589786 119 72.28109 0
week 43.26667 0.7275228 119 59.47122 0
Correlation:
(Intr)
week 0.007
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Example: Rat growth

Results from fit of mixed model to rat growth data, using REML. Values in parentheses are for ML fit.

In each case 02 = 5.822.

Parameter Fixed Random
Estimate Standard error Variance Correlation
Intercept ~ 156.05 2.16 (2.13) 10.932 (10.712)
Slope 43.27 0.73 (0.72) 3.532 (3.46%)  0.18 (0.19)

[0 REML estimates of €2 slightly larger than ML estimates, but effect is small since p = 2.
[0 Estimated mean weight in week 1 is 156, but SD of individual rats around this is 11.

[0 Correlation between slope and intercept is small but positive: initially heavier rats tend to gain

weight faster.

0 Variation around individual slopes is given by &, smaller than for the intercept variance.

[0 Shrinkage of intercept estimates, shown on next page, is small in this case.

[0 Residuals look acceptably normal.
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Example: Rat growth

Residuals and random effects
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Comments

[0 Testing for non-zero variance components involves tests on the boundary of the parameter space,

which have nasty asymptotic properties: if ¢ = 0, then a likelihood ratio statistic for testing
1 = 0 satisfies W ~ %X% + %X% as n — 0o, meaning that

Po(W=0)=13, Po(W>w)=3P(i>w), w>0.

Unfortunately,

— Po(W = 0) can be very different from 3 even in large samples, and

— in more complex problems, the limiting distribution can be much more complex.

O Sometimes clearer to write a mixed model in multi-level model form
y:Xﬂ—FZLbL—F"'—FZobo,
where the ¢; X 1 vectors b; are all mutually independent with means zero and variance matrices
Q, s0Y ~ N, (X5, ZZL:O ZiUZF), where Zy = I,,, by = € and Qy = 02 1,.

[0 The same basic approaches apply in nonlinear mixed models and generalized linear mixed
models (GLMMs), but integrals appear everywhere and have to be approximated numerically,
leading to nastier computations.
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Generalized additive model

[0 Now we write
E(y)=n, g(p) =n=BO=XB+ 2b,
where
— y follows a GLM (or more general) distribution,
— ¢(+) is a link function,
— the rest is as before ...
giving a generalized additive model (GAM).
[0 For a general treatment, suppose we have a penalized log likelihood,
n
ON(0) = () — 367530 =Y L;{n; (6)} — 56" 5x0,
j=1
where 0451 (with d = p + q) contains ,x1 and byx1, the latter penalized using a symmetric
positive semidefinite d x d matrix S, and the underlying observations y1, ..., y, giving likelihood
contributions /1,..., £, are assumed to be independent.
[0 Now we apply the argument leading to the IWLS algorithm to ¢, leading to the penalized
iterative weighted least squares (PIWLS) algorithm.
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PIWLS

O For fixed A, we apply (ridge regression) iterative weighted least squares with update step
0, = (B"WB+ S,) 'B"Wz,

where S) is the penalty matrix, and
Bpxa = 0n/00", (design matrix)
Wixn = diag(w,...,w,), w;= {E(—82€j/877j2»)}, (weights)
Unx1 = OL/On, (score vector),
Znx1 = BO+ Wy, (adjusted dependent variable).
It is easier (but less stable) to use the (random) —82€j/8nj2- in place of E(—82€j/8nj2-).
[0 Thus to obtain (penalized) MLEs 6 we use the PIWLS algorithm:
[0 fix A and take an initial 5,\. Repeat
— compute n, B, W, u, z;
—  compute new 8y = (B"WB + Sy) "' B™W z;
until changes in £5(6y) (or 8y, or both) are lower than some tolerance.
O We may add a line search: if E)\(g)\,new) < Z)\(§>\701d), halve the step length and try again.
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Note: Derivation of PIWLS algorithm

[0 To find the estimate ) starting from a trial value 6, we make a Taylor series expansion in the
score equation

_ 0By L O) | Ph(0)

0="%36 =26 " aaoer
where
A(0) _ o O”0\(9) _ <~ 9n;(0) 0°;(9) In;(0) |~ i (0)
g~ B0 =50 5, _; 06, oz 06, +j:1 56,08, 1) T Snrs:

where B = B(0) = 0n/00". If we use the approximation

_P0(0)

So9r = B WB+ 8, W= diag{-F (0%¢;/0m3) }

where the diagonal matrix of second derivatives is replaced by its expectation, then
0 = B"w() — S0 — (B"WB+ Sy)(0 — 6)
B™u(0) + B"W B — (B"W B + 5,)0,.
If BTW B + S, is invertible, this gives

0\ = (B"WB+ 5,) 'B"(u+ WB6) = (B"WB + 5,) 'B"Wz,

where z = B + W~ u, as required.
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Relation with least squares

[0 With fixed A, the penalized MLE
0, = (B"WB+5,) 'B"Wz

results from fixing €, and then iteratively solving the minimization problem

<W1/22> <W1/2B> 9
- dx1
0 (n+d)x1 @x (n+d)xd g

where @ is a matrix square root of Sy, i.e., Q5Q\ = Sh.

2

min ,
0

[0 The corresponding smoothing matrix is taken to be
H), = B(B*"WB + 5\)"!B™W,

and the effective degrees of freedom for a smooth component are defined as the sum of the
corresponding diagonal elements of

Py, = (B"WB+ S,)'B"WB,

with both H) and P, evaluated at the final step of the iteration.
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Approaches to iteration

O Having chosen how to choose A for fixed 6, there are two main algorithms:

— performance iteration — repeat { fix A, update 6 with one step of PIWLS, update A } to
convergence;

— outer iteration — repeat { fix A, iterate PIWLS to convergence, update \ } to convergence.
O Performance iteration

— can be faster,

— but since the objective function for 6 changes at each step, it may not converge—especially in
the context of concurvity (collinearity for curves ... ), when two or more smooth functions
are (almost) confounded.

O Outer iteration

— is computationally more burdensome,

—  but will converge to a (local) optimum.

Regression Methods Autumn 2024 — slide 290

155



Choice of )\

[0 The choice of A can be based on the marginal density of y,

g B.N) = / Sy | b B)F(b: N db

which has no closed form in general (but is Gaussian if both fs are Gaussian).
[0 Various ways to approximate the integral:

— quadrature (doesn't work well when dim(b) is high);

— simulation (e.g., importance sampling, same problems as quadrature);

— Laplace approximation;

— use the EM algorithm to avoid approximating the integral.

[0 We focus on Laplace approximation.
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Laplace approximation

Lemma 34 Let h(u) be a smooth convex function defined for u € R?, with a minimum at u = ,
where Oh(@)/Ou = 0 and the matrix of partial derivatives hy = 9*h(@)/0udu” is positive definite,

and let
In:/ e~ (W) 4y,
Rd

Then I,, = I, {1 +O0(n } and its Laplace approximation is

- (2m)4/?

I, = fnh(ﬂ).
|nh2|1/2

O For marginal density approximation we let 6 = (3,1, b,,1)" ~ Ny(0, 5} ), and write

g, [1/2
F 80 = [ o300 = N [esw (2(0)) 0.

where [ is unpenalised, |Sy|+ is the product of the non-negative eigenvalues of S), and

0x(0) =£(0) — %QTS)\H = O(n);

the assumptions of Lemma 34 should be satisfied by h(u) = —n=10,(6).
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Note on Lemma 34

[0 Close to @ a Taylor series expansion gives
h(w) = h(@) + b (@) (u — @) + 3 (u— @)"h" (@) (u — @) = k(@) + 3 (u— @) ha(u — @)

so if we set z = (nhy)Y/?(u — @) then u = @ + (nho)/?z, du/dz = (nhy)~'/2, and arguing
heuristically (ignoring the third and higher terms),

ja enh(ﬂ)/en(u&)Thg(uﬂ)/2du

e—nh(ﬂ) / e—zz/Q% dz
o dz

Cuh
N <|nh2|> ‘ ’

because the d-dimensional normal density has unit integral.

O A more detailed accounting is needed to get the error term. Take the scalar case (d = 1) for
simplicity. We start by writing

nh(u) = nh(a)+ %nhg(u —a) + %nhg(u —a)® + ﬁnh;;(u —a)t 4
hs /b3 ha/h2
— nh(i) + 322+ 1 3}51/3 SN RUTL TS e

A B
= nh(@)+ 322 + Wz?’ + 524 +0(n™%/?)

say. Hence

2
e mh(W) = e_"h(a)_%ZQ {1 - iz?’ - 524 +3 <_i23 - §z4> + O(n?’/z)}
n n n

i1 A B A?
e (@527 {1 - 1—/223 - =320+ O(n_g/Q)} .
n n n

[0 As the odd moments of the normal density are zero, integration with respect to z leaves only the
n~! term and the next remaining term is O(n~=2). The fourth and sixth moments of the standard
normal distribution are respectively 3 and 15, and

15k hy B3 My

1542/2 — 3B = 15(hg/h3/* /6)2 /2 — 3{h4/(24hy)} = ——3 — =% — -2
/ (s [hy = /6)°/2 = 3{ha/ (24h2)} = 7508 = 512 = 2a3 ~ wa3

as required. The same argument works for m > 1, but it is more of a bloodbath.
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Comments on Laplace approximations

O The O(1/n) error is relative, so the approximation is often surprisingly accurate;
[0 since the odd moments of the normal density are all zero, the expansion has only terms whose
orders are even powers of n= /2 e, n7l,n"2, .. ;
O I, involves only h and the hessian matrix hy at @, so is easily found, numerically if necessary;
[J the series is asymptotic, so the partial sums may not converge, and including additional terms
may not be useful,
[0 as most of the normal probability lies within +3 standard deviations of the mean, the limits of the
integral are almost irrelevant provided they are far enough away from ;
O if
o o
I, = / e " du, g, = / e~ gy,
—0oQ —0o0
where h*(u) = h(u) + O(n™1), then
(In/Jn) + (fn/jn) =1+ O(n_Q),
so two Laplace approximations can be better than one.
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Approximate REML

[0 Laplace approximation gives the approximate restricted log likelihood
0(\) = Llog [Sy]y — L1og [BTW BT 4 S| + £(8)) — 3055505 + Op(n™h),
where O,(n~!) is a (random) term of order n~! and
0, = (B"WB+5,) 'B"Wz
results from iterating PIWLS to convergence for fixed A and satisfies 8&(@)/89 = 0.
[0 The expression for 5)\ contains
B=B(0,), W=W(@), =z=DB(0\0+W(0ru(b)),
which involve the first two derivatives of the log likelihood contributions /;.
O Newton—Raphson maximization of £,(\) requires its first two derivatives, so we need
oh, i,
ON7 ONOAT’
which will involve the third and fourth derivatives of the ¢; ...could be painful.
O A version of this is implemented in mgcv.
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UK monthly AIDS reports 1983-1992

Diagnosis Reporting-delay interval (quarters): Total
period reports

to end

Year Quarter OF 1 2 3 4 5 6 ... >14 of 1992
1988 1 31. 80 16 9 3 2 8 6 174
2 26 99 27 9 8 11 3 3 211

3 31 95 35 13 18 4 6 3 224

4 36 77 20 26 11 3 8 2 205

1989 1 32 92 32 10 12 19 12 2 224
2 15 92 14 27 22 21 12 1 219

3 34 104 29 31 18 8 6 253

4 33 101 34 18 9 15 6 233

1990 1 31 124 47 24 11 15 8 281
2 32 132 36 10 9 7 6 245

3 49 107 51 17 15 8 9 260

4 44 153 41 16 11 6 5 285

1991 1 41 137 29 33 7 11 6 271
2 56 124 39 14 12 7 10 263

3 53 175 35 17 13 11 2 306

4 63 135 24 23 12 1 258

1992 1 71 161 48 25 5 310
2 95 178 39 6 318

3 76 181 16 273

4 67 66 133

Regression Methods
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AIDS data

[0 Chain-ladder model: number of reports in row j and column k is Poisson, with mean

but

— why should there be different parameters a; and 3}, for every row and column?

pir = exp(aj + Br),

— Wouldn't smooth variation be more plausible?
O Better models (maybe?):

ik = exp{s(j) + Bk},

pik = exp{s(j) + s(k)},

where the time effect s(j) and the delay effect s(k) vary smoothly.

0 Should also account for the overdispersion ...

Regression Methods
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Example: AIDS data

library(mgcv); library(boot)
data(aids)

aids.in <- aids[c(1:570) [as.logical(l-aids$dud)],] # these are elements in the twofway table
aids.glm <- glm(y~factor(time)+factor(delay),family=quasipoisson,data=aids.in)
aids.gaml <- mgcv::gam(y~s(time,k=20)+factor(delay)-1,family=quasipoisson,data=aidg.in)
plot(aids.gaml,page=1)
> anova(aids.gaml)

Formula:
y 7 s(time, k = 20) + factor(delay)

Parametric Terms:
df F p-value
factor(delay) 14 261.6 <2e-16

Approximate significance of smooth terms: # Ref.df can be ignored
edf Ref.df F p-value
s(time) 4.891 6.129 189.1 <2e-16

aids.gam2 <- mgcv::gam(y~s(time,k=20)+s(delay,k=15) ,family=quasipoisson,data=aids.]in)
> anova(aids.gam?2)

Formula:
y ~ s(time, k = 20) + s(delay, k = 15)

Approximate significance of smooth terms:
edf Ref.df F p-value

s(time) 4.896 6.134 189.0 <2e-16

s(delay) 11.453 12.754 285.5 <2e-16

The fits are very similar, but aids.gam2 has slightly lower AIC of 792.0 compared to 792.1 — these
are so similar that the choice should be based on interpretability rather than on AlC.
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Example: AIDS data
<
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Estimates of (centered) smooth functions s(j) and parameters based on plot(aids.gam1) and
coef(aids.gam1).
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Example: AIDS data
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Estimates of (centered) smooth functions s(j) and s(k) based on plot(aids.gam?).
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Example: AIDS data

Diagnoses
300 400 500
1 1 ]

200
Il

100
Il

1984 1986 1988 1990 1992
Time
Numbers of recorded deaths (+), with estimated mean deaths per quarter based on chain-ladder
model (solid) and on Poisson (black dashes) and quasi-likelihood GAMs with Poisson variance
function V(i) = u (red dashes). The last two estimates have 95% pointwise confidence intervals
(dots) based on the fit (treating the smoothing parameters as fixed). To make these | had to compute
the fitted means for the missing lower right triangle of the data table.
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Closing
[0 The basic ideas of regression, dependence of a response on explanatory variables, extend far
beyond the linear model, to
— non-linear dependence on explanatory variables;
— general response distributions (Poisson, binomial, ...);
— random effects models—some parameters treated as random, and others as fixed;
— smooth curve fitting by basis function methods in (generalized) additive models.
0 Unifying themes are:
—  (semi-)parametric modelling using basis functions;
— maximum likelihood inference;
— estimation using iterative weighted least squares algorithms;
— penalized fitting to allow for random effects/basis functions;
— analysis of deviance;

— residuals and other diagnostics.

Regression Methods Autumn 2024 — slide 301

162



	1 The Linear Model
	1.1 Introduction
	Dictionary
	Linear model
	Notation
	Useful matrix decompositions
	Least squares fit
	Analysis of variance I
	Analysis of variance II
	Terms
	Model formulae
	ANOVA
	ANOVA table
	Coefficient of determination
	Comments

	1.2 Inference
	Reminder: Moment-generating function
	Reminder: Multivariate normal distribution
	Reminder: 2 distribution
	Reminder: 2 densities
	Reminder: Student t distribution
	Reminder: Student t densities
	Reminder: F distribution
	Reminder: Computation
	Statistical models
	Second-order and normal assumptions
	Consequences of second-order assumptions
	Second-order assumptions and large samples
	Normal-theory linear model
	Inference on 
	Prediction

	1.3 Analysis of Variance
	Analysis of variance
	ANOVA table
	Example: Cement data
	Example: Cement data
	Example: Cement data
	Example: Cement data
	Orthogonality
	Balance

	1.4 Diagnostics
	Assumptions and model checking
	Residuals
	Checking linearity
	Checking the variance
	Checking independence
	Checking independence
	Checking for outliers and normality
	Checking normality, n=50
	Checking normality, n=200
	Leverage and influence
	Response transformation
	Example: Poison data
	Box–Cox transformation
	Example: Poison data
	Example: Poison data
	Summary on model-checking

	1.5 Model Building
	Goals
	Meta-algorithm
	Initial examination of data

	1.6 Variable Selection
	Albert Einstein (1879–1955)
	William of Occam (?1285–1347/9)
	Automatic variable selection
	Prediction error
	Bias/variance trade-off
	Leave-one-out cross-validation
	Generalized cross-validation
	Akaike information criterion
	Other model selection criteria
	Simulation experiment
	Stepwise methods
	Stepwise methods: Comments
	Example: Nuclear power stations
	Example: Nuclear power stations

	1.7 Robustness and Estimating Functions
	M-estimation
	Choice of 
	 and '
	Estimation
	M-estimator variance
	Efficiency
	Example: Survival data
	Simulation (right-hand panel on slide 85)
	Quantile regression
	Expectile regression

	2 General Models
	Smoking data
	Smoking data
	Smoking data
	Comments
	Simple fixes

	2.1 Inference
	Revision: Likelihood
	Revision: Maximum likelihood estimator
	Revision: Regular model
	Revision: Comments on regular models
	Revision: Likelihood ratio statistic
	Revision: Profile log likelihood
	Model setup
	Iterative weighted least squares (IWLS)
	 IWLS II
	Examples
	Deviance
	Differences of deviances

	2.2 Model Checking
	Model checking
	Diagnostics in general case
	Residuals in general case
	Example
	Venice data
	Venice data
	Summary

	2.3 Generalized Linear Models
	Motivation
	Generalized linear model (GLM)
	Examples
	Estimation of 
	Estimation of 
	Example: Jacamar data
	Jacamar data
	Jacamar data
	Jacamar data: Analysis of deviance
	Jacamar data: Residuals
	Jacamar data: Parameter estimates
	Example: Chimpanzee data
	Chimpanzee data
	Chimpanzee data: Analysis of deviance
	Summary

	2.4 Proportion Data
	Binary response
	Link functions
	Logistic regression
	Nodal involvement data
	Deviances for nodal involvement models
	Model selection
	Example: Nodal involvement 
	Nodal involvement residuals
	Summary

	2.5 Count Data
	Types of count data
	Poisson and multinomial distributions
	Log-linear and logistic regressions

	2.6 Poisson Regression
	Premier League data
	Premier League data
	Premier League data: Analysis of deviance
	Premier League data: Null deviance for defence effect
	Premier League data: Residual deviance
	Premier League data: Estimates
	Premier League data: Assessment of fit

	2.7 Contingency Tables
	Sampling schemes
	Contingency tables and Poisson response models
	Contingency tables and Poisson response models, II
	Jacamar data
	Jacamar data: Models
	Jacamar data: Analysis of deviance

	2.8 Ordinal Responses
	Pneumoconiosis data
	Models
	Pneumoconiosis data
	Comments on count data

	2.9 Overdispersion
	Overdispersion
	UK monthly AIDS reports 1983–1992
	AIDS data
	AIDS data: Assessment of fit
	AIDS data
	Dealing with overdispersion
	Negative binomial model
	AIDS data: Deviance residuals for NB model
	Quasi-likelihood
	Quasi-likelihood II
	Quasi-likelihood III
	AIDS example
	Summary

	3 Regularisation
	3.1 Basic Notions
	Tall and wide regressions
	Different good explanations
	Collinearity
	Regularisation
	Bound form
	Bayesian setting
	Bayesian linear model I
	Bayesian linear model II
	Improper prior density
	Empirical Bayes
	Empirical Bayes II
	Equivalent degrees of freedom
	How much penalisation?
	REML
	Numerical example from Wood (2011, JRSSB)

	3.2 Simple Applications
	Ridge regression
	Example: Cement data
	Example: Cement data
	Example: Cement data/Ridge analysis
	Comments
	Semiparametric regression
	Example: Motorcycle data
	Scatterplot smoothing
	Scatterplot smoothing II
	Scatterplot smoothing III
	Linear, quadratic and cubic B-splines
	Example: Motorcycle data
	Example: Motorcycle data
	Choosing K and 
	Example: Motorcycle data
	Comments

	3.3 Lasso
	Lq penalties
	Basic geometry
	Basic geometry II
	Lasso
	Lasso algorithm
	Practical matters and thresholding
	Threshold functions
	Soft thresholding
	Example: cement data
	Comments

	3.4 Splines
	Basis functions
	Aside: Polynomial regression
	Piecewise linear basis
	Piecewise linear basis II
	Statistical use
	Penalized fit
	Higher-order splines
	Linear, quadratic and cubic B-splines
	Natural cubic spline
	Natural cubic spline
	Optimality of natural cubic splines
	More splines
	Motorcycle data: adaptive fit

	3.5 General Framework
	Generalisations
	Additivity and identifiability
	Ensuring identifiability
	Penalty formulation
	Estimation
	Amount of smoothing
	Inference
	Average coverage probabilities
	Example: Average coverage probability
	Example: Motorcycle data
	Example: Spring barley data
	Example: Spring barley data
	Spring barley data and polynomial fits
	Example: Spring barley data
	Example: Spring barley data
	Example: Spring barley data
	Example: Spring barley data
	Example: Spring barley data
	Example: Spring barley data
	Example: Spring barley data
	Example: Spring barley data
	Comments

	3.6 Components of Variance
	Background and motivation
	Example: Blood pressure
	Example: Blood pressure
	Fixed and random effects
	Two distinctions
	Nested model ANOVA
	Nested model ANOVA II
	Nested and crossed ANOVA
	Example: Blood pressure
	General form
	Summary

	3.7 Linear Mixed Model
	Linear mixed model
	Maximum likelihood estimation
	Inference on 
	Inference on random effects
	Example: Rat growth
	Example: Rat growth
	Example: Rat growth
	Example: Rat growth
	Example: Rat growth
	Example: Rat growth
	Comments

	3.8 Generalized Additive Models
	Generalized additive model
	PIWLS
	Relation with least squares
	Approaches to iteration
	Choice of 
	Laplace approximation
	Comments on Laplace approximations
	Approximate REML
	UK monthly AIDS reports 1983–1992
	AIDS data
	Example: AIDS data
	Example: AIDS data
	Example: AIDS data
	Example: AIDS data
	Closing


