
Modern Regression: Examination 2022

5 July 2022

Instructions: The time allotted for the examination is 180 minutes. You may answer in either
English or French. No written material may be brought into the examination, but a simple
calculator may be used. Full marks may be obtained with complete answers to four questions.
The final mark will be based on the best four solutions.

Notation: 1n, 0n and In respectively denote the n× 1 vectors of ones and of zeros, and the
n× n identity matrix; Ar×s means that A is an r × s matrix; X ∼ Np(µ,Ω) means that X has
a p-dimensional multivariate normal distribution with mean vector µp×1 and variance matrix
Ωp×p; and Xp×1 ∼ (µ,Ω) means that E(X) = µp×1 and var(X) = Ωp×p.
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Exercise Points Indicative marks

1 /10 points

2 /10 points

3 /10 points

4 /10 points

5 /10 points

Total: /40 points

1



Solution 1

(a) [2, seen] We expect some subset of the material on slides 18, 19, 36. Primary aspects
concern the question being asked; in this case this is the linearity of the model, ie.,
E(y) = Xβ. Secondary aspects concern how one gets an answer, so these are variance
formulation, further distributional assumptions (e.g., for var(y)).

(b) [3, seen] e is the vector of raw residuals, used for all kinds of model checking (e.g.,
slide 37; a good reply will list the plots mentioned there). Under the second order
assumptions we have e = (In − H)y and if y ∼ (Xβ, σ2In), then in terms of the hat
matrix H = X(XTX)−1XT we find that E(e) = 0 and var(e) = σ2(In −H), so (in the
usual notation) the standardised residuals rj = ej/

√
s2(1− hjj) are preferable, as they

have constant variance.

(c) [2, unseen] Fitting the model y ∼ (Xβ, σ2V ) will give residuals e = (In − H)y whose
expected values will be (In −H)E(y) = (In −H)(Xβ + Zγ) = (In −H)Zγ = Qγ. The
columns of Q represent the residual variation in Z after removing any linear dependence
on the columns of X, so plotting e against the columns of Q shows how y varies with Z,
after removing their mutual linear dependence on X.

(d) [3, unseen] Let zr denote the rth column of Z. Panel A shows positive linear dependence
on z1 after allowing for X. Panel B shows quadratic dependence on z2 after allowing
for X. Panel C shows that the third column of Q is essentially constant, so z3 must be
almost a linear function of the columns of X, i.e., this shows collinearity between X and
z3. Hence nothing more can be explained by adding z3 to the regression.

Solution 2

(a) [3, seen] We use penalties to improve prediction and/or stabilise estimates when ex-
planatory variables X may be (almost) collinear (e.g., when p > n so we have a ‘wide’
regression), for variable selection (e.g., with the lasso), as a result of a Bayesian analysis
(the penalty stems from the prior), or in a mixed model.
When using the lasso and/or ridge methods we usually centre (and sometimes scale) the
response and design matrices, i.e., replace y and X by y− ȳ1n and X − 1nx̄, where ȳ and
x̄ contain the row means of y and X.

(b) [4, seen] See slides 88 and 93; note that we do not write DTD = D2 because D is not
necessarily square. The given expression shows that as λ→∞, β̂λ → 0, and we have

ŷλ = Xβ̂λ = UDV T × V (DTD + λIp)−1DTUTy =
∑
j:dj>0

uj ×
1

1 + λ/d2
j

uT
j y → 0.

(c) [3, seen] The hat matrix is Hλ = UD(DTD + λIp)−1DTUT and the usual definition of
equivalent degrees of freedom is

tr(Hλ) =
∑
j

d2
j

d2
j + λ

,

which is monotone decreasing in λ.

Solution 3
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(a) [3, unseen] The description makes it clear that families are randomly selected, so the ηf
are random, say N (0, σ2

f ), and the ‘errors’ εfs are also random, say N (0, σ2). Status and
crowding are not selected at random, so the parameters αs, βc and the interaction γcs are
fixed.
Judging from the table there are strong effects of Status and Crowding (the marginal
averages vary a lot), but it is not so clear whether the effect of Status depends on the
level of Crowding (i.e., whether the γcs are non-zero).

(b) [5, unseen] Variation between families is based on the averages

ȳf · = ηf + ᾱ· + βc + γ̄c· + ε̄f ·, f = 1, . . . , 18,

which are independent N (ᾱ·+βc+ γ̄c·, σ2
f +σ2/5) variables, so the three Category averages

ȳCc· = 1
6

6c∑
f=6(c−1)+1

ȳf ·
ind∼ N (ᾱ· + βc + γ̄c·, σ

2/6f + σ2/30), c = 1, 2, 3

have different means, but (for example) the sum of squares for families in Category 1
satisfies

5∑
s=1

6∑
f=1

(ȳf · − ȳC1·)2 = 5
6∑

f=1
(ȳf · − ȳC1·)2 D= 5χ2

5(σ2
f + σ2/5) D= (5σ2

f + σ2)χ2
5,

and the sum of these for the three categories therefore has 15 df and its mean square will
estimate 5σ2

f + σ2. This is the residual at the first level, and it is the basis for testing
hypotheses about differences between Crowding categories (significant at between 0.01
and 0.05, according to the ANOVA).
Comparisons within families (e.g., on status) involve differences such as

ȳ·1 − ȳ·2,

from which the family effects ηf disappear, so the comparison will be based on the residual
sum of squares within families, which can be used to estimate σ2. This is the basis for
assessing the presence of βs (which show a highly significant effect of Status) and γfs
(which show no significant variation, i.e., no interaction between Status and Crowding).

(c) [2, unseen] The variance of the difference of the averages for the father and mother (for
example),

ȳ·1 − ȳ·2,

is σ2/18 + σ2/18 (recall that the ηf disappear from this difference, which is comparing
members of the same family), which gives the stated standard error if we repace σ2 by
the mean square 25.28. The value of this is 1.676, so there are clearly no significant
differences between the parents and the first child, or between the last two children, but
equally clearly Children 2 and 3 have higher averages than the rest of the family.

Solution 4

(a) [2, seen/unseen] Treating accident numbers as Poisson variables is quite common (though
one needs to watch out for excess zeros and/or overdispersion). The parameters αi
correspond to year effects, the βj to day effects, and γ to an effect of the speed limit that
is the same for both years.

(b) [3, seen/unseen] See slides 271–272 and/or problem 39. Here we expect the binomial
distribution to be derived for full points (the question says ‘find’, not ‘state’ or ‘give’).
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(c) [5, unseen] Following the argument in (b) we find that

y1j | y1j + y1j = mj
ind∼ B(mj , pj), pj = eα1−α2+γ(I1j−I2j)

1 + eα1−α2+γ(I1j−I2j) ,

so the intercept in the binomial logistic model estimates α1 − α2 and the coefficient of
lim1-lim2 (which corresponds to I1j − I2j) estimates γ.
(i) There seems to be no evidence that α1 6= α2.
(ii) There is very strong evidence of a speed limit effect (the z-test gives −6.78, which is
massive when compared to the standard normal distribution).
(iii) γ̂ .= −0.29, so eγ̂ ≈ 0.75, corresponding to a one-quarter reduction of the mean number
of accidents on days with the limit. The corresponding approximate 95% confidence
intervals for γ and eγ are −0.29 ± 1.96 × 0.043 = (−0.374,−0.205) and (0.69, 0.81).
Applying the limit has a very significant downward effect on the number of these accidents.
(iv The residual deviance D is around 108 on 90 degrees of freedom, which is not at all
unusual: with 90 df we have D ·∼ N (90, 2× 90) so the significance level of the observed
D is around 1− Φ{(108− 90)/

√
180} .= 0.1.

The fit appears to be adequate, though one would like to inspect residual plots to be sure,
because the residuals may be a bit more dispersed than we would expect. This is not
surprising, as we would expect there to be some overdispersion relative to the Poisson
model, though this will probably not affect the overall conclusions.

Solution 5

(a) [4, seen] See slides 229–231. We expect a full derivation here, with all details (no bluffing,
no gaps).

(b) [4, seen/unseen] We need

X = ∂η

∂βT
, W = diag{−E{∂2`(η)/∂η2} = diag{κ′′(η1), . . . , κ′′(ηn)}, u = y − κ′(η),

and the adjusted dependent variable is z = Xβ+W−1u = η+(y−κ′(η)}/κ′′(η). Probably
we will get the initial value of η as κ′−1(y).

(c) [2, seen] If the step goes outside Θ, then we might need to decrease the step length. But
this is an exponential family, so the log likelihood is concave unless Θ is restricted in
some way.
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