
Regression Methods: Examination

31 January 2024

Instructions: The time allotted for the examination is 180 minutes. You may answer in either
English or French. No written material may be brought into the examination, but a simple
calculator may be used. Full marks may be obtained with complete answers to four questions.
The final mark will be based on the best four solutions.

Notation: 1n, 0n and In respectively denote the n × 1 vectors of ones and of zeros, and the
n × n identity matrix; Ar×s means that A is an r × s matrix; X ∼ Np(µ, Ω) means that X has
a p-dimensional multivariate normal distribution with mean vector µp×1 and variance matrix
Ωp×p; and Xp×1 ∼ (µ, Ω) means that E(X) = µp×1 and var(X) = Ωp×p.
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1 /10 points

2 /10 points

3 /10 points

4 /10 points

5 /10 points

Total: /40 points
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Solution 1

(a) [2, seen] Minimising ‖y − Xβ‖ with respect to β is equivalent to minimising

‖y − Xβ‖2 = (y − Xβ)T(y − Xβ) = yTy − 2yTXβ + βXTXβ,

and differentiation and setting the result equal to zero gives

−2XTy + 2XTXβ = 0,

and, since the p × p matrix XTX has the same rank as X and therefore is invertible, this
gives

β̂ = (XTX)−1XTy.

(b) [3, seen] The second-order assumptions are that E(y) = Xβ and var(y) = σ2In. Under
these assumptions

E(β̂) = E
{

(XTX)−1XTy
}

= (XTX)−1XTE(y) = (XTX)−1XTXβ = β,

and, writing A = (XTX)−1XT, we have

var(β̂) = var(Ay) = Avar(y)AT = (XTX)−1XTσ2In{XTX)−1XT}T = σ2(XTX)−1.

(c) [5, seen/unseen] This is a version of the Gauss–Markov theorem. A linear estimator of
θ must be of the form θ̃ = bTy for some constant n × 1 vector b. If θ̃ is unbiased then
E(θ̃) = bTXβ = θ = aTβ for all β, i.e., bTX = aT, and var(θ̃) = bTvar(y)b = σ2bTb .

The estimator θ̂ has variance σ2aT(XTX)−1a, so

var(θ̃)−var(θ̂) = σ2bTb−σ2aT(XTX)−1a ∝ bTb−bTX(XTX)−1XTb = bT{In−X(XTX)−1XT}b.

It is readily checked that P = In − X(XTX)−1XT is symmetric and idempotent, so
its eigenvalues are either 0 or 1. The spectral theorem gives P = UDU T, where U is
orthogonal and D is a diagonal matrix containing the eigenvalues of P , so

var(θ̃) − var(θ̂) = σ2bTPb = σ2bTUDU Tb = σ2dTDd ≥ 0,

where d = U Tb 6= 0. Hence θ̂ has minimum variance among linear unbiased estimators
of θ.

Solution 2

(a) [3, seen] See Slides 8–12, 39–40.

(b) [2, unseen] The terms are (i) the first column, corresponding to a grand mean, (ii) columns
2–4, corresponding to rows, (iii) columns 5–7, corresponding to columns, and (iv) columns
8–10, corresponding to the treatments.

(c) [4, unseen] The matrix X is 9 × 10, so it is clearly rank-deficient; in fact the sum of
the columns of X for rows is the grand mean, and likewise for columns and treatments.
Hence the rank of X is at most 10 − 3 = 7. One way to obtain a full-rank matrix is to
drop the first column of each term, giving a 9 × 7 matrix, and then to orthogonalise the
remaining columns with respect to the grand mean. This process gives the matrix X∗,
and it is easy to check that its columns are all orthogonal, so it has rank 7.

The number of degrees of freedom for rows, columns and treatments is 2 each, so there
are 9 − (1 + 2 + 2 + 2) = 2 left for estimation of σ2.
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(d) [1, unseen] The ANOVA is unchanged if the order of the terms changes, because of the
orthogonality.

Solution 3

(a) [3, seen] Slide 119

(b) [2, seen] Example 22

(c) [3, seen] Slides 116–118

(d) [2, unseen] Yes, this is a GLM with Poisson errors and identity link function (which
might give negative fitted values).

Solution 4

(a) [4, seen] Slides 108–111.

(b) [6, unseen] A: the residuals seem to be from a Poisson regression model, which have
this characteristic banding pattern (corresponding to values 0, 1, 2, etc.) working from
the bottom to the top in the figure), but there are two or three outliers, shown by the
residuals larger than 3 or so. Drop these observations and try to fit again.

B: Residuals from a binary regression model, since there are negative residuals corre-
sponding to the 0s and positive ones corresponding to the 1s. There seem to be no
obvious problems here.

C: These look like residuals from a Poisson regression, for the reasons given in A, with
no obvious problems.

D: These are residuals for count data, for the reasons given above, but they seem to be
overdispersed (they are spread from −2.5 to +6, without any obvious outliers, unlike in
A), so perhaps fitting using a quasilikelihood is indicated.

Solution 5

(a) [2, seen/unseen] Slide 249; λ → 0 gives no penalty; λ → ∞ gives a straight line.

(b) [4, seen] We aim to minimise

(y − µ)T(y − µ) + λµT∆µ = yTy − 2yTµ + µT(In + λ∆)µ,

and this gives µ̂ = (In + λ∆)−1y = Hλy, say. The spectral theorem gives ∆ = UDU T,
where D = diag(d1, . . . , dn) with d1 = d2 = 0 < d3 < · · · < dn and U orthogonal, so

Hλ = (UU T + λUDU T)−1 = U(In + λD)−1U T.

Therefore

tr(Hλ) = tr{U(In +λD)−1U T} = tr{U TU(In +λD)−1} = tr{(In +λD)−1} =
n

∑

j=1

1

1 + λdj

,

which decreases monotonically as a function of λ, with tr(H0) = n and tr(H∞) = 2, corre-
sponding to a line that passes through all the points and a straight line. Its interpretation
is as equivalent degrees of freedom for the fitted model.
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(c) [2, seen] Writing µ − µ̂ = (In − Hλ)µ + Hλ(µ − y) gives

(µ̂−µ)T(µ̂−µ) = (y−µ)THT

λ Hλ(y−µ)+2(y−µ)THT

λ (Hλ−In)µ+µT(Hλ−In)T(Hλ−In)µ.

The last term here is constant and the second has expectation zero, while the first equals

tr {(y − µ)(y − µ)THT

λ Hλ}

and therefore has expectation σ2tr(HT

λ Hλ), because E{(y − µ)(y − µ)T} = σ2In. Hence

E {(µ̂ − µ)T(µ̂ − µ)} = σ2tr(HT

λ Hλ) + ‖(I − Hλ)µ‖2,

as required.

The interpretation is in terms of variance σ2tr(HT

λ Hλ) corresponding to ‘double smooth-
ing’ and squared bias ‖(I − Hλ)µ‖2. For the bias term

(In − Hλ)µ = (In + λ∆)−1(In + λ∆ − In)µ = λHλ∆µ,

which equals zero only if (i) λ = 0 (no penalty) or (ii) ∆µ = 0 (µ is in the kernel of ∆,
i.e., µ′′(x) = 0, i.e., µ(x) is a straight line).

(d) [2, unseen] Since Hλ is symmetric and semi-positive definite, the previous spectral de-
composition gives

tr(HT

λ Hλ) = tr{U(In + λD)−1U TU(In + λD)−1U T}

= tr{U TU(In + λD)−2}

=
n

∑

j=1

(1 + λdj)−2

<

n
∑

j=1

(1 + λdj)−1

= tr(Hλ),

since 1 + djλ ≥ 1, with some terms strictly larger than unity. This implies that the
fitted model with HT

λ Hλ will be smoother, because its equivalent degrees of freedom are
smaller.

——————— END OF THE EXAM PAPER ———————
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