

Regression Methods: Examination 2023

1 February 2023

Instructions: The time allotted for the examination is 180 minutes. You may answer in either English or French. No written material may be brought into the examination, but a simple calculator may be used. Full marks may be obtained with complete answers to four questions. The final mark will be based on the best four solutions.

Notation: 1_n , 0_n and I_n respectively denote the $n \times 1$ vectors of ones and of zeros, and the $n \times n$ identity matrix; $A_{r \times s}$ means that A is an $r \times s$ matrix; $X \sim \mathcal{N}_p(\mu, \Omega)$ means that X has a p -dimensional multivariate normal distribution with mean vector $\mu_{p \times 1}$ and variance matrix $\Omega_{p \times p}$; and $X_{p \times 1} \sim (\mu, \Omega)$ means that $\text{E}(X) = \mu_{p \times 1}$ and $\text{var}(X) = \Omega_{p \times p}$.

First name:

Last name:

SCIPER:

Exercise	Points	Indicative marks
1		/10 points
2		/10 points
3		/10 points
4		/10 points
5		/10 points
Total:		/40 points

Problem 1 Consider a linear model for a response vector $y_{n \times 1}$ that satisfies

$$E(y) = X\beta, \quad \text{var}(y) = \sigma^2 I_n,$$

where the known matrix $X_{n \times p}$ is of rank $p < n$, $\beta_{p \times 1}$ is to be estimated, and $\sigma^2 > 0$.

- Find the estimator $\hat{\beta}$ that minimises the Euclidean distance $\|y - X\beta\|$.
- Show that the fitted values $\hat{y} = X\hat{\beta}$ may be written as Hy , where the $n \times n$ matrix H is symmetric and idempotent, and interpret this in terms of the geometry of \mathbb{R}^n .
- If y has a normal distribution, show that \hat{y} is independent of $e = y - \hat{y}$ and by writing $y = \hat{y} + e$ show that $\hat{\beta}$ is independent of $e^T e$.
- Derive the distributions of $\hat{\beta}$ and of $e^T e$ when y has a normal distribution.

Hint: For (d) it may be helpful to write $I_n - H = U_{n \times n} D_{n \times n} U_{n \times n}^T$, where the properties of D and U should be given.

Problem 2 In an investigation on the teaching of arithmetic, 45 pupils were divided at random into five groups of nine. Groups A and B were taught in separate classes by the usual method. Groups C, D, and E were taught together for a number of days. On each day C were praised publicly for their work, D were publicly reproved and E were ignored. At the end of the period all pupils took a standard test, leading to the table below.

Group	Test result y									Average	Variance
A (Usual)	17	14	24	20	24	23	16	15	24	19.67	17.75
B (Usual)	21	23	13	19	13	19	20	21	16	18.33	12.75
C (Praised)	28	30	29	24	27	30	28	28	23	27.44	6.03
D (Reproved)	19	28	26	26	19	24	24	23	22	23.44	9.53
E (Ignored)	21	14	13	19	15	15	10	18	20	16.11	13.11

- Let y_{gj} denote the test result for pupil $j \in \{1, \dots, 9\}$ in group $g \in \{A, \dots, E\}$. Express the distributional specification $y_{gj} \stackrel{\text{ind}}{\sim} \mathcal{N}(\alpha + \beta_g, \sigma^2)$ as a linear model, giving the form of the 45×6 design matrix X . Describe problems that might arise in fitting this model, and suggest potential solutions.

There is no need to write out the entire design matrix.

- The output from a fit of this linear model is given below:

```

Call: lm(formula = y ~ group, data = arithmetic)

Residuals:
    Min      1Q  Median      3Q     Max
-6.1111 -2.6667  0.5556  2.5556  4.8889

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 19.667     1.147  17.151 < 2e-16 ***
groupB     -1.333     1.622  -0.822  0.4158    
groupC      7.778     1.622   4.796 2.26e-05 ***
groupD      3.778     1.622   2.330  0.0250 *  
groupE     -3.556     1.622  -2.193  0.0342 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.44 on 40 degrees of freedom
Multiple R-squared:  0.6042, Adjusted R-squared:  0.5647 
F-statistic: 15.27 on 4 and 40 DF,  p-value: 1.163e-07

```

- (i) Explain what is estimated in the **Estimate** column.
- (ii) What does the output suggest about the relative success of the teaching methods?
- (iii) Suggest how the model might be changed to increase the precision of estimation.

Problem 3

- (a) What do you understand by the phrase *degrees of freedom of a regression model fit*?
- (b) A regression model fit to independent response variables $y^T = (y_1, \dots, y_n)$ with equal variances σ^2 provides fitted values $\hat{y}^T = (\hat{y}_1, \dots, \hat{y}_n)$. Let $m(y, \hat{y}) = \sum_{j=1}^n \text{cov}(y_j, \hat{y}_j)/\sigma^2$. Discuss the situations where y_j and \hat{y}_j are independent and where $\hat{y}_j = y_j$.
- (c) Find $m(y, \hat{y})$ for a linear model with p linearly independent covariates.
- (d) A penalized least squares fit sets $\hat{y} = Sy$, where $S = X(X^T X + \lambda D)^{-1} X^T$ and $\lambda > 0$. Under suitable conditions on $X_{n \times p}$ and $D_{p \times p}$, show that the corresponding function $m(y, \hat{y})$ is monotonic decreasing in λ .

Hint: You may use without proof the result that if $A_{q \times q}$ and $B_{q \times q}$ are positive semidefinite, $A + \lambda B$ is invertible for some $\lambda > 0$, η is an eigenvalue of $(A + \lambda B)^{-1} A$, and (i) if B is invertible, then $\eta = \eta' / (\lambda + \eta')$, where η' is an eigenvalue of $B^{-1/2} A B^{-1/2}$, (ii) if A is invertible, then $\eta = 1 / (1 + \lambda \eta'')$, where η'' is an eigenvalue of $A^{-1/2} B A^{-1/2}$.

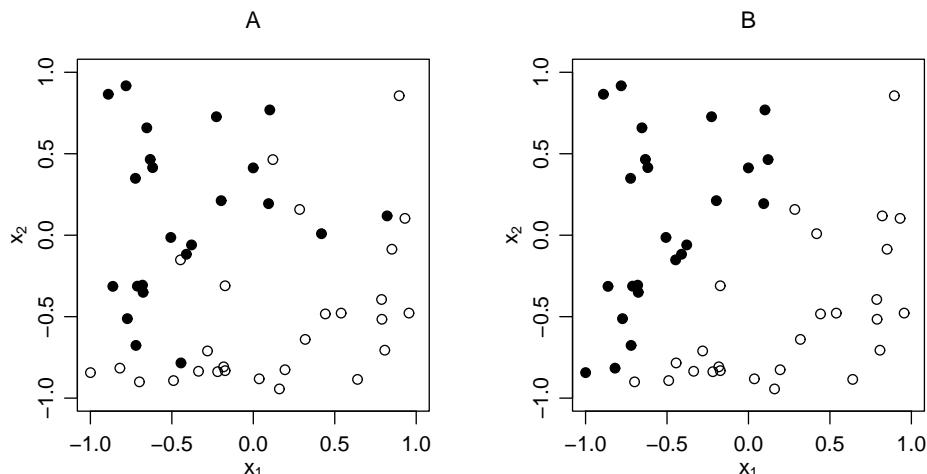
Problem 4

Independent Bernoulli variables Y_1, \dots, Y_n satisfy

$$\Pr(Y_j = 1) = 1 - \Pr(Y_j = 0) = \frac{1}{1 + \exp(-x_j^T \beta)},$$

where x_1, \dots, x_n are known $p \times 1$ vectors of constants and the unknown parameter $\beta \in \mathbb{R}^p$ is to be estimated from the observed values y_1, \dots, y_n of Y_1, \dots, Y_n .

- (a) Find the log likelihood $\ell(\beta)$ and show that it is never positive.
- (b) If there exists a vector γ such that $x_j^T \gamma > 0$ when $y_j = 1$ and $x_j^T \gamma < 0$ when $y_j = 0$ ($j = 1, \dots, n$), then show by considering $\ell(t\gamma)$, where t is scalar, that the maximum likelihood estimate has at least one component that equals $\pm\infty$. What is then the value of the log likelihood?
- (c) The figure below shows two sets of observed responses as solid black ($y_j = 1$) or as a circle ($y_j = 0$) for data with $n = 50$ and $p = 2$. In each case say whether you expect to have difficulties with likelihood estimation, and explain what you would expect when fitting a model.



Problem 5 What problems might arise in fitting regression models with Poisson response distributions to over-dispersed count data? How would they manifest themselves, and what solutions might you propose?

————— END OF THE EXAM PAPER —————