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Lecture 1. Throughout these notes, we use indifferently A C B and A C B to
state that A is a subset of B, with possibly A = B. We would use instead A C B
to stress that A is a proper or strict subset of B, namely A C B yet A # B.

The set N of natural numbers does not contain 0. We set Ng := N U {0}.

The terms “function”, “map”, and “mapping” will be used synonymously. Given
a function f: X — R on a set X, given ¢t € R we abbreviate {z € X : f(z) <t} by
{f <t}. Thesets {f <t}, {f=t}, {f >1t}, {f >t}, etc. are defined analogously.

These lecture notes are strongly based on summaries of previous versions of this course by
Matthias Ruf, Michele Dolce, and Lucio Galeati, who thankfully shared their notes with me.
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0. A SHORT COMPENDIUM OF TOPOLOGY"

Let X be an arbitrary set. Then we have the following basic definitions. All
implicit statements are left to the reader as an exercise.

e A topology 7 C P(X) on X is a family of sets such that §, X C 7 that
is stable under finite intersections and arbitrary unions. The sets in 7 are
called open sets and the pair (X, 7) is called a topological space. The
closed sets of (X, 7) are exactly those sets whose complement is an open
set. The collection of closed sets is closed under arbitrary intersections and
finite unions.

e We say B C 7 is a basis of the topology 7 if every open set can be written
as union of elements in B.

e If 7y and 7 are two topologies on X with 7 C 75, we say 7 is coarser
than 75 and 7 is finer than 7.

o If (X,7) and (Y, p) are topological spaces, then a function f: X — Y is
called continuous if f~1(A) € 7 for every A € p, where f~! denotes the
usual preimage. (In general, images of open sets under continuous maps
need not be open.) If we want to specify the respective reference topologies
explicitly, we also write f: (X,7) — (Y, p).

o If f: (X1,11) = (Xa,72) and g: (X2,72) — (X3, 73) are continuous maps
between the three given topological spaces, so is their composition g o
[+ (X1,71) = (X5, 73) defined by go f(z) := g(f(x)).

o If B C X, its closure B of B is defined as the smallest closed set containing
B. In particular, a set is closed if and only if it coincides with its closure.
The interior int B of B is defined as the largest open set contained in B.
The boundary of B is defined as 9B = B\ int B.

e For a topological space (X, 7), a set K C X is compact is every open cover
of K admits a finite subcover. That is, given any (not necessarily countable)
collection {U; : ¢ € I} C 7 whose union contains K, there exists a finite
index set J C I such that K C |J,c; Us.

e The continuous image of compact sets is compact. That is, if f: (X, 7) —
(Y, p) is continuous and K C X is compact, then f(K) C Y is compact.

e A topological space (X, 7) is Hausdorff (or T2) if for all z,y € X with
x # y there exist U,, U, € 7 with € U, and y € U, yet U, NU, = 0. On
a Hausdorff topological space, singletons are closed sets. Additionally, you
should try to check in this case that compact sets are closed. (Note that
singletons are compact in any topology.)

e Given a topological space (X, 7) and a sequence (x,)nen in X, we say that
(Zn)neN converges to a point x € X (with respect to 7) if for every U € 7
containing x there exists ng € N such that x,, € U for all n > ng.

e Continuous functions preserve convergence of sequences. More precisely,
let f: (X,7) — (Y, p) be a continuous function and (z,),en be a sequence
converging to x € X with respect to 7. Then the sequence (f(x,))nen in
Y converges to f(x) with respect to p. This is an instructive exercise only
requiring to apply the definitions.

Remark 0.1 (Caveat). Special care is required when working with sequences in
abstract topological spaces! While they enjoy the natural property described above
(which we will often use throughout the course), the correct notion to use in order

1The content of this preliminary chapter is not examinable. Yet, we will frequently use some
of the facts provided here in the lectures and exercises.

’In general, one accepts the slight linguistic mismatch that “coarser” or “finer” can also mean
the two topologies coincide.
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to characterize the topology 7 would be nets, i.e. families labeled by a directed but
in general uncountable index set. We will not treat nets in detail and use them very
sparingly, which is why in most arguments we will rather consider mostly open sets,
and most importantly neighborhoods.

As a practical example, let us point out the following facts. On any topological
space (X, 7), you should try to check closed sets are sequentially closed. In other
words, if E C X is closed and (x,)nen is a sequence in E converging to x € X,
then x € E. However, the converse is not true: there exist topological spaces with
sequentially closed sets which are not closed. |

Although the basic objects in a topology are open sets, it is often convenient
(particularly in the first part of this course) to think in terms of neighborhoods.

e A set N C X is called a neighborhood of a point € X if there exists
U € 7 contained in N such that x € U. In particular, an open set U is a
neighborhood of all the points it contains. On the other hand, note that
neighborhoods need not be open in general.

e A family N, C P(X) of subsets of X is called a neighborhood basis of
x € X if every N € N, is a neighborhood of = and for every neighborhood
W C X of x there exists N € N, such that N C W. In particular, this
applies when W € 7.

e Specifying a topology 7 is equivalent to specifying a neighborhood basis N,
of every point x € X. Indeed, any open set can then be reconstructed as
a union of elements of N,: given U € 7, for any y € U there must exist
Ny € N, such that y € Ny, C U, which implies U = UyeU Ny. In particular,
the collection N := J, v N is a basis of the topology 7.

e Continuity of maps is characterized by neighborhoods. More precisely, a
map f: (X,7) = (Y, p) is continuous if and only if the preimage of any
neighborhood under f is a neighborhood. In fact, it suffices to verify this
property on bases of neighborhood at every given point in Y.

e Let 73 and 7 be topologies on X. Then showing 7 C 7 is equivalent to
verifying the following: for any x € X and any neighborhood N; C X of «
with respect to 7y, there exists a neighborhood Ny C X with respect to 7
with Xo C N7 and z € Ns. It is actually enough to verify this whenever Ny
belongs to a neighborhood basis of x with respect to 7.

e Closed sets can be defined intrinsically by neighborhoods. More precisely,
given B C X, then x € B if and only if for any neighborhood N C X of 2
we have N N B # 0.

As a basic example, let us recall how the above concepts readapt consistently to
the case of metric spaces.

e Given any set X, a semimetric on X is a map d: X? — R such that
d(z,z) = 0 for every z € X, d(z,y) = d(y,z) for every z,y € X, and
d(z,z) < d(z,y) +d(y, z) for every x,y,z € X. If additionally d does not
vanish outside the diagonal of M2, then d is called a metric on X. In the
first case, the couple (X,d) is called a semimetric space, in the second a
metric space.

e On a semimetric space (X,d), the open ball with center € X and radius
r > 0 are defined by B, (z) :={y € X :d(z,y) <r}.

e The topology 7¢ induced by the semi-metric d on X is defined as
follows: a set U C X is open if and only if for every x € U there exists r > 0
such that B.(z) C U. (Note B,(x) always contains x.) In other words, the
collection of open balls {B,(z) : € X, r > 0} forms a basis of the topology
74, Moreover, for any fixed z € X, {B,.(z) : » > 0} forms a neighborhood
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basis of x. This is not the only option: for instance, {B;/,(x) : n € N} is
also a (countable) neighborhood basis of z.

e Given a semimetric space (X, d), the topology 7¢ is Hausdorff if and only if
{d(z,-) = 0} = {z} for every x € X. In other words, 7¢ is Hausdorff if and
only if d is a metric. For this reason, in these notes we will only consider
metric spaces instead of semimetric spaces.

We finally recall two basic operations on topological spaces.

o If (X, 7x) is a topological space and Y C X, then the subspace topology
(or relative topology) of Y is given by v :={UNY :U € 7x}. Then
(Y, 7y) is a topological space and 7y is the smallest topology which makes
the inclusion map ¢: Y — X given by ¢(y) := y continuous. Furthermore,
a set N’ C Y is a neighborhood of y in 7y if and only if it is of the form
N’ = NNY, where N C X is a neighborhood of y in 7x. Similarly, bases
and neighborhood bases of 7y and 7x can be shown to be in analogous
direct correspondences.

e For an arbitrary family of sets {X; : i € I'}, the product set X :=[[,.; X;
can be identified as the collection of all possible indexed tuples (z;);cr
such that z; € X; for all 7 € I. Given an arbitrary family of topological
spaces {(X;,7;) : i € I'}, we define the product topology [[,.; 7i on their
product X as the coarsest topology such that for every i € I, the projection
m;: X = X; defined by m;(z) := x; is continuous.

Often, the reference topologies are clear from the context. In this case, we will
name topological properties and notions without explicit reference to the topology.
However, note carefully that sometimes topologies need specification to rule out
ambiguities or errors. For instance, the clause “[0,1) is open” is not true for the
standard topology on R, but it is true for the relative topology on [0, 1].

1. LOCALLY CONVEX VECTOR SPACES

This first chapter introduces the basic objects we will consider throughout the
course in a rather abstract fashion. It might take a bit of time to develop the
right intuition about them. The basic idea is to set the properties of convergence,
compactness, etc. of test functions and distributions on a topological ground. For
relevant and helpful applications and examples, see the exercise sheets and the
upcoming chapters.

Remark 1.1 (Convention). In principle, vector spaces can be defined over arbitrary
fields K; throughout the course, however, we will restrict ourselves to vector fields
over R. In particular, whenever we say “let X be a vector space”, we mean X is an
R-vector space. However, note that all stated results would still hold (with minor
modifications) for complex vector spaces. |

1.1. Basic notions. Given n € N, Euclidean space R™ will always be endowed
with the Euclidean topology Tguc induced by the Euclidean metric do given by

do(2,9) == V]z1 — g2+ + |20 — ynl?

Definition 1.2 (Topological vector space). Let X constitute a vector space with
given addition +: X? — X and scalar multiplication -: R x X — X. Moreover,
let T be a topology on X. The couple (X, 7) will be called a topological vector
space, briefly TVS, if the mappings + and - are continuous. Here, X? and R x X
are endowed with the evident product topologies T2 and Tguel X T, respectively.

Remark 1.3 (Separate continuity). It follows from the definition of the product
topology that addition and scalar multiplication in a TVS (X, 1) are separately
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continuous. Given any Z € X, define the translation f: X — X by f(x) :=x + Z.
Then f is continuous. Moreover, it is straightforward to check f is invertible with
continuous inverse. Therefore, translations are homeomorphisms on topological
vector spaces. Analogously, given £ € X the map g: R — X given by g(\) := Az is
continuous. For a fixed A € R the map h: X — X with h(z) := Az is continuous.
If X # 0, you should check h is invertible with continuous inverse. In other words,
nontrivial dilations are homeomorphisms of X. |

Remark 1.4 (Neighborhoods). The topology of a TVS (X, 7) is characterized by
bases of neighborhoods of the origin. Indeed, as translations are homeomorphisms
by the previous remark, they map open sets to open sets and neighborhoods to
neighborhoods. In particular, a set N C X is a neighborhood of 0 if and only if
x + N is a neighborhood of x, where we set z + N :={z+n:n e N}.

In addition, one can “shrink” (or — less relevant in applications — “enlarge”)
neighborhoods of the origin (and hence of arbitrary points in X) as much as needed
by multiplication with an arbitrary parameter A > 0. Indeed, a set N C X is a
neighborhood of 0 if and only if AN is, where we set AN := {An:n € N}. |

Ezample 1.5 (Normed spaces). Every normed space is a topological vector space.
However, we are mainly interested in topologies that are not normable, possibly not
even metrizable (like weak topologies on Banach spaces, see later). |

In order to define “local convexity” of a TVS, we need the following concept.

Definition 1.6 (Seminorm). Let X be a vector space. A function p: X — R is
called a seminorm if

a. p(Ax) = |\ p(x) for every A € R and every x € X and
b. p(z +y) < p(x) + ply) for every x,y € X.

Every seminorm p on X satisfies p(0) = 0 and p(x) = p(—x) for every z € X.
Note that every norm on X is a seminorm, but we do not require seminorms to only
vanish at 0 (for instance, the map sending all of X to 0 is clearly a seminorm).

The reason why we will speak about “locally convex” topologies in Definition 1.12
is because its generating sets from (1.1) below are convex (cf. Definition 1.16). In
turn, this follows from the following simple observation.

Lemma 1.7 (Convexity). Every seminorm p on a vector space X 1is convex.
Proof. Given any z,y € X and any A € [0, 1], simply note
P((1 =Mz + Ay) < p((1 = Nz) +p(Ay) = (1 = A) p(x) + Ap(y). O

Vector spaces equipped with given families of seminorms are naturally endowed
with an associated topology.

Definition 1.8 (Seminorm topology). Let X be a vector space and let P := {p; :
1 € I} be a family of seminorms on X. Let us define T, the topology induced by
P on X, as follows: a subset U C X belongs to T if and only if for every x € U
there exist a finite set J C I and € > 0 such that B. j(x) C U, where

B, j(z) ={ye X : pi(y —z) <e for every i € J}. (1.1)
In other words, the above seminorm topology 7 on X is characterized by the
requirement that, for every point « € X, the set {B. j(z) : e >0, J C I finite} is a

basis of neighborhoods of x.
Since B, (;3(z) = {pi(x — -) < e} for every i € I, (1.1) equivalently becomes

BE,J(I) = m Ba,{z}(l') (1.2)
e
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Remark 1.9 (Seminorms vs. semimetrics). Definition 1.8 should be compared to
the topology induced by a semimetric. Indeed, given i € I define d;: X? — R by
di(z,y) := pi(x — y). Tt is straightforward to check d; is a semimetric (and a metric
if and only if p; is a norm). Thus, B, ;3(z) is nothing but the open e-ball with
center x € X with respect to d;. In turn, by (1.2) a basis of neighborhoods of x is
given by the family of all finite intersections of such semimetric balls with a fixed
yet arbitrary radius. |

Lemma 1.10 (Seminorm topology yields TVS). In the framework of Definition 1.8,
the space (X,T) is a TVS.

Proof. Exercise 2.1. O

Example 1.11 (Continuous functions). A TVS with infinitely many seminorms is
given by C'(R) with the family {p, : n € N}, where
pn(f) = sup ]If(w)l- u

re[—n,n
We are in a position to state the first central notion of this course.

Definition 1.12 (Locally convex topological vector space). We call a vector space
X equipped with the topology induced by a family P := {p; : i € I} of seminorms a
locally convex topological vector space, briefly LCTVS, if Xo = {0}, where

Xo:={x € X : p;i(x) =0 for every i € I'}.

Remark 1.13 (About Definition 1.12). The definition of LCTVSs appears rather
restrictive, as it relies on a priori given seminorms. Given a topology 7 on X, it
is hard to identify the right seminorms it should be induced by per se. There is
a more geometric characterization of LCTVSs based on the existence of a convex
neighborhood basis of the origin (and the Hausdorff property). These definitions
are equivalent, but in the lecture we will only prove a partial converse adding
some geometric conditions to convexity, cf. Theorem 1.18. The full equivalence is
established in Exercise 1.3. |

Ezample 1.14 (Continuation of Example 1.11). The topology from Example 1.11 is
easily seen to be locally convex: for every f € C(R)\ {0} there exists n € N such
that p,(f) > 0. [ |

Recall the set X above always contains 0. The point of the condition X, = {0}
defining LCTVSs is the Hausdorffness of their generating topology.

Lemma 1.15 (Hausdorff property). Let 7 be a topology on a vector space X as in
Definition 1.8. Then T is Hausdorff if and only if Xq = {0}.

Proof. We assume first Xy = {0}. To show Hausdorffness of 7, let x,y € X satisfy
x # y. Since x — y # 0, by assumption there exist ¢ € I and a seminorm p; such
that 6 > 0, where 0 := p;(x — y). Then the open sets Bs /2 143(2) and Bs/z (i1(y) are
disjoint; indeed, otherwise a point z € Bs/a (4)(z) N Bs/2,1:y (y) would satisfy

pilz —y) <pi(x —2) +pi(z —y) = pi(z —z) + pi(z — y) <,
which contradicts the choice of 4.

On the other hand, suppose 7 is Hausdorff. As noted above, it suffices to show
Xo C {0}. Let x € Xy. If  # 0, by the hypothesized Hausdorfness there exists an
open set U C X containing x such that 0 ¢ U. Since U is open, we find J C I finite
such that B, j(xz) C U. But then 0 ¢ B, j(z), which implies there exists ¢ € J such
that p;(x) = p;(—z) = p;(0 — x) > ¢, contradicting the inclusion x € Xj. O

Definition 1.16 (Minkowski functional). Let X be a vector space. A subset A C X
will be called
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a. absorbing if for every x € X there exists € > 0 such that for everyt € R
with |t] < e we have tx € A,
b. balanced if N\A C A for all X € R with || <1, and
c. convex if (1= ANz + My € A for allz,y € A and X € [0,1].
If A is absorbing, balanced, and conver, we define the associated Minkowski
functional ps: X — Ry by

pa(z) :=inf{t > 0:xz € tA}.

The connection between geometry and seminorms becomes more evident in the
following result. It also clarifies the conditions on the set A in the above definition
used to set up the concept of Minkowski functionals.

Proposition 1.17 (Seminorms from Minkowski functionals). Let X be a vector
space. Assume that A C X is absorbing, balanced, and convex. Then the induced
Minkowski functional pa is a seminorm satisfying

{pa<l}cAcC{pa<i} (1.3)

Conversely, if q is any seminorm on X, then q¢ = pa, with the absorbing, balanced,
and conver set A, := {q < 1}.

Proof. To prove the first claim, first note since A is absorbing, p4 is finite.

To prove homogeneity of p4, note first p4(0) = 0 since A is balanced. Next, fix
A e R\ {0} and z € X. Again since A is balanced, we deduce AA = |A|A and
therefore Az € tA if and only if z € tA/|A|. This entails

pa(Az) =1inf{t > 0: Az € tA}
=inf{t >0:2 € |\ 'tA}
=inf{|A[|A "' >0:2 € |\ 'tA}
= |Ainf{pg > 0:2 € pA}
= [Alpa(x).

Next, we prove subadditivity of p4. Let x,y € X. Since p4 is finite, by definition
for every € > 0 there exist A, 4 > 0 such that

e A <py(x)+eand z € \A as well as

o 1 <pa(y)+eandye pA.
By convexity of A we know AA + pA C (A + p)A, so that z +y € (A + p)A. Hence
by definition and the arbitrariness of € we infer pa(z +vy) < pa(x) + pa(y). This
shows p4 is a seminorm.

Finally, we establish the inclusions (1.3). Since a € 1- A for every a € A, we
obtain pa(a) <1, which shows A C {ps < 1}. Furthermore, given any = € X with
pa(x) < 1 there exists A € [0,1) such that € AA C A, where we used that A is
balanced. Hence {ps < 1} C A.

Now we show the representation of arbitrary seminorms claimed in the second
statement. We start by showing the sublevel set {¢ < 1} is absorbing, balanced,
and convex. If x € X satisfies g(x) = 0, then tz € {¢ < 1} for every t € R by
homogeneity of ¢. If g(x) > 0, then for every e € (0,1/¢(z)) and every t € R with
[t| < e we have q(tx) = |t| ¢(x) < 1 and therefore tx € {q < 1}. This shows {q < 1}
is absorbing. In order to show {¢ < 1} is balanced, let z € {g < 1} and A € R be
such that |[A] < 1. Then g¢(Az) = |A|¢(z) < 1, so that Az € {¢ < 1}. Finally, since
seminorms are convex by Lemma 1.7, the set {g < 1} is convex as the sublevel set
of a convex function.

Moreover, note that every x € X satisfies

pa,(x) =inf{t >0: z €tA,}
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=inf{t >0: t 'z € A}

=inf{t >0: ¢t 'z) < 1}

=inf{t >0: ¢(z) <t}

= q(x)- O

Lecture 2. Now we can formulate the main theorem on the equivalent definitions
of LCTVSs indicated in Remark 1.13.

Theorem 1.18 (Characterization of local convexity). Let X be an LCTVS in the
sense of Definition 1.12. Then 0 has a neighborhood basis consisting of absorbing,
balanced, convex, and open sets.

Conversely, if (X, 1) is a Hausdorff topological vector space such that 0 has a
netghborhood basis consisting of convex sets, then its topology is induced by a family
of seminorms on X according to Definition 1.12.

Note that any absorbing or balanced set contains 0 (see the proof of Proposi-
tion 1.17). In a topological vector space, translations are homeomorphisms. Thus,
the origin plays no special role in the previous theorem from a topological point of
view. Theorem 1.18 can be adapted in that every point z € X has a neighborhood
basis consisting of convex sets that are z-translates of absorbing and balanced sets.

The proof of Theorem 1.18 relies on the following fact.

Lemma 1.19 (Existence of good neighborhoods). Let (X, 1) constitute a TVS.
Then every convex neighborhood of 0 contains an absorbing, balanced, convez, and
open neighborhood of 0.

Proof. Exercise 1.3. (]

Proof of Theorem 1.18. Assume (X, 7) satisfies Definition 1.12. We consider the
following family of sets:

N:={B:,(0): >0, I C I finite}.

We claim N is a neighborhood basis of the origin of absorbing, balanced, convex,
and open sets. Clearly, 0 € B; 1,(0) for every € > 0 and every Iy C I finite. Next we
show every B € N is open with respect to the topology inherited by the seminorms.
Write B = B. 1,(0) and let y € Be ,(0), define 6 := max;ey, pi(y) < €, and choose
2 € Be_5,1,(y). Then

pi(2) <pi(z—y)+pi(y) <(e—d) +d=¢e.

This shows B._s.1,(y) C Be,1,(0) and by definition the set Be 1,(0) is open. In order
to prove the remaining properties, it suffices to note that the function max;cy, p;
is still a seminorm. Then we can repeat the proof of Proposition 1.17 to show
Bc 1,(0) = {max;es, p; < £} is absorbing, balanced and convex. We conclude the
first part of the proof by noting the definition of the seminorm topology implies N
is a neighborhood basis of 0.

Now we prove the converse. Let N’ be a family of convex sets that forms a
neighborhood basis of the origin. By Lemma 1.19, there exists a family N of
absorbing, balanced, convex, and open sets that still forms a neighborhood basis
of the origin. Given any U € N, consider the Minkowski functional py: X — R4
from Definition 1.16, which defines a seminorm by Proposition 1.17.

We first claim U = {py < 1}. We already know from Proposition 1.17 that
{pv <1} C U. Now let = € U. Since the scalar multiplication is continuous from
R x X to X and 1-x € U, there exists s > 1 such that sz € U. In particular, this
gives py(z) < 1/s < 1. Hence x € {py < 1}, which shows U C {py < 1}.
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Next, let us consider the topology induced by the seminorms {py : U € N"}
according to Definition 1.8. Since {py < ¢} = e{py < 1} for every ¢ > 0, by
continuity of the scalar multiplication the set {py < €} is open. Moreover, given
any x € X, continuity of the addition implies

{pv(-—2)<et={z+zeX:py(z)<et=z+{puv<e}ler.

As open sets are stable under finite intersections, we conclude By 1, (x) € T for every
€ > 0 and every Iy C I finite. This means the topology induced by the seminorms
is coarser than 7. Conversely let O € T be open. Since addition is continuous, we
know z + N defines a neighborhood basis for any x € X. Hence, we can write

0=+ =@+ <1 = Ul -2 <1}
z€0 z€0 z€0
with U, € N”. Hence O is an open set also with respect to the topology induced by
the above seminorms.

We finally need to show the Hausdorff property implies that if an element of X
vanishes on all seminorms, it has to be zero. Assume z € X \ {0}. Since (X, 7) is
Hausdorff, there exists U € N” such that ¢ U. Then the above reasoning implies
pu(z) > 1, which entails the claim. O

Given an LCTVS, from now on we can choose between a representation of the
topology with seminorms or a convex neighborhood basis of the origin.

1.2. Metrization and normability. Given an LCTVS endowed with a family of
seminorms P := {p; : ¢ € I'}, it is a natural question to understand which conditions
prevent the topology from being compatible with a metric or a norm. In this section
we characterize these two notions. To this aim, we first need to discuss if one can
get rid of some of the seminorms p; while keeping the same induced topology 7 —
as we shall see, an LCTVS is metrizable if and only if the topology is induced by a
countable family of seminorms.

Definition 1.20 (Seminorm basis). Let X be a vector space. Let P be a family of
seminorms on X. A subfamily Q C P is called a basis of seminorms for P if for
every p € P there exist s > 0 and g € P such that p(z) < sq(x) for every z € X.

You should compare this to the Lipschitz continuity of a norm || - ||; with respect
to another norm || - ||2 on X. Suppose there is C' > 0 with ||z|; < C||z||s. What
does this entail about the respectively induced topologies on X?

The following shows no topological information is lost when restricting ourselves
to the topology induced by a basis of seminorms.

Lemma 1.21 (Reduction lemma). Let X be a vector space endowed with a family
P of seminorms inducing the seminorm topology 7. Then any basis Q of seminorms
for P induces the same topology.

Proof. For clarity, we write 7p := 7. Let 7o denote the topology induced by Q.

By the inclusion Q C P, we obtain 79 C 7.

Conversely, let U € 79 be given. By definition of 79, given any = € U there exist
p1,--.,pn € P and e > 0 such that N}, {p;(- —z) < e} C U. Since Q is a basis
of seminorms for P, given any ¢ € {1...,n} there exist ¢; € Q and s; > 0 such
that p; < s;¢;. Since we are dealing with finitely many seminorms, replacing s; by
s :=max{s1,...,Sp}, we may and will assume the constants do not depend on the
index i. By the consequential inequality p; < sg¢; for every i € {1,...,n},

n n
ﬂ{qz( —x)<s e} C ﬂ{pi(- —z)<e}CU
i=1

i=1
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This shows U € 1g to conclude the inclusion 7p D 7q. O

Ezample 1.22 (Continuation of Example 1.11). In the framework of Example 1.11,
given any sequence (ny)ren diverging to oo, Q :={p,, : k € N} is a basis for P.
Note the family Q is countable. In view of the upcoming Theorem 1.23, this implies
the seminorm topology on C'(R) induced by P is metrizable. |

Recall a topological space (X, 7) is metrizable if there exists a metric d on X
that induces 7, viz. 7 = 79.

Theorem 1.23 (When is an LCTVS metrizable?). Let X be an LCTVS with a
topology T induced by a family of seminorms {p; : i € I'}. Then (X,T) is metrizable

if and only if there exists a countable set I' C I such that {p; : i € I'} induces 7°.

In particular, a metrizable LCTVS has some useful properties that all metric
spaces have. For instance, it is second-countable, paracompact, Lindel6f, normal,
and completely regular. We will not enter details as we do not need these properties
and refer the interested reader to any standard textbook on topology.

Proof of Theorem 1.23. Suppose there exists a countable subfamily {p, : n € N}
of seminorms generating 7. Define d,: X2 — R, by

dr(mvy) = Z 27" pn(x — y)

2 TenG- )

As shown in Exercise 2.4, d is a metric generating 7. (A similar construction works
if the subfamily is merely finite).

Conversely, assume 7 is generated by a metric d. Then there exists a countable
neighborhood basis of the origin given by the balls {B;,,(0) : n € N}. From the
definition of the topology 7, we infer for every n € N there exists €, > 0 and Ij C I
finite with the property

Be, 17 (0) C Bi/,(0). (1.4)
Define the countable set
I = U 1.
neN

Since the family {B;/,(0) : n € N} of metric balls is a neighborhood basis of the
origin, (1.4) implies the seminorms {p; : ¢ € I'} induce a finer topology than 7.
Since I’ C I, these topologies actually agree. O

Recall a topological space (X, 7) is normable if there exists a norm on X whose
induced metric d obeys 7 = 79. A normable topological space is clearly metrizable,
but the converse is not true (the discrete metric is not induced by a norm). Hence,
normability of a topology is strictly stronger than metrizability. It is therefore no
surprise that compared to Theorem 1.23, normability of locally convex topologies
deals with a more restrictive realm than countable families of seminorms.

Proposition 1.24 (When is an LCTVS normable?). Let X be an LCTVS with a
topology T induced by a family {p; : i € I} of seminorms. Then (X, T) is normable
if and only if there exists a finite set I' C I such that {p; : i € I'} induces 7.

30ne would be tempted to claim (X, 7) is metrizable if and only if there exists a countable
basis for the family of seminorms {p; : ¢ € I'}. However, this is not true. For a counterexample
suggested by Matthias Ruf, consider X := C([0, 1]) with the seminorms po(f) := supgeo,1/2) |f(2)]
and py/2(f) == supqy2,1] | f(x)]. Moreover, given any point = € (0,1/2) consider the seminorm
pe(f) :=|f(z)| +|f(x + 1/2)|. Then the space is even normable because max{p1,p2} generates
the uniform convergence. However, by construction the family of seminorms {p; : € [0,1/2]}
does not contain a countable base.
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Proof. Assume {p; : i € I'} induces 7, where I’ C I is finite. Define the seminorm
lz]|- = max;ey pi(x), which becomes a norm when the seminorms separate points
in the sense of Definition 1.12. Is not difficult to show that this norm induces the
same topology as 7%.

To prove the converse, assume || - || is a norm on X that generates 7. Then there

exist €,0 > 0 and Iy C [ finite such that the induced balls satisfy
Bs(0) C {z € X : pi(z) < ¢ for every i € Iy} C B1(0).

This shows the seminorms max;cy, p; and || - || are equivalent, which implies they
generate the same topology. In particular, {p; : ¢ € Iy} is a finite subfamily of
seminorms inducing the topology on X. O

Remark 1.25 (Comments on Theorems 1.18 and 1.23). The proofs of Theorems 1.18
and 1.23 reveal a LCTVS is metrizable if and only if there exists a countable convex
neighborhood basis of the origin. |

Lecture 3. This remark provides an intrinsic, more geometric characterization of
metrizability for LCTVS which does not rely on seminorms. Similarly, normability
can be characterized by a more geometric condition.

Definition 1.26 (Boundedness). Let (X,7) be a TVS. A subset E C X is called
bounded if for every neighborhood V' of 0 there exists s > 0 such that E C sV.

Theorem 1.27 (Kolmogorov’s criterion). Let X be a LCTVS. Then X is normable
if and only if the origin has a bounded neighborhood.

Proof. Tf || - || is a norm on X that generates the reference topology 7, the induced
open unit ball is a bounded neighborhood of the origin since every neighborhood of
the origin contains a set of the form Bj(0) for some § > 0.

Conversely, we let U be a bounded neighborhood of the origin and denote by
{p; : i € I'} a family of seminorms generating 7. By definition, there exist € > 0 and
Iy C I finite such that {p < e} C U, where p := max;ey, p;- Fix any other seminorm
p; with ¢ € I. Since {p; < R} = R{p; < 1} for every R > 0 by homogeneity and
{p; < 1} is a neighborhood of the origin, the boundedness of U implies that exists
s > 0 such that

elp<l}={p<elcUcip<st = {p<l}cip<e’tsh (1.5)
We claim (1.5) implies that
i < %p- (1.6)
Once (1.6) is shown, since the argument works for any p;, we conclude p induces
the topology 7 by arguing as in the proof of Lemma 1.21. Furthermore, since p is
a seminorm inducing an Hausdorff topology, it must hold p(x) = 0 if and only if
x = 0, implying p is the desired norm.

It remains to prove (1.6). Fix € X and let us assume first p(z) # 0; then by

homogeneity and (1.5), we have

T 1 z pi(r) s 2s
L S R [—]: <> = piz) < =pa).
p[Qp(a:)} 2 b 2p(x) 2p(z) e pilz) € p()
If p(x) = 0, by homogeneity and (1.5), for every ¢ > 0 we have
)
plr)<d = zcdp<lycoipi<eltst = pia) <§;
by the arbitrariness of §, this implies p;(x) = 0. Therefore we have verified (1.6),
which concludes the proof. ([

4In fact, given any = € X and any € > 0 one has B, p(x) ={ll - —zll+ <e}.
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On TVS there exists a notion of Cauchy sequences — in fact, a related definition
of Cauchy sequences makes sense in arbitrary topological spaces, not necessarily
endowed with a metric.

Definition 1.28 (Cauchy sequence). Let X be a TVS. A sequence (x,)neN s called
a Cauchy sequence if for every neighborhood U of the origin there exists ng € N
such that for every n,m € N with n,m > ng, we have z,, —x, € U.

Remark 1.29 (About Definition 1.28). If there exists a translation-invariant metric
d that generates the topology on X, then Definition 1.28 coincides with the metric
definition of Cauchy sequences, since d(z,y) = d(x — y,0) for every z,y € X. In
particular, this is the case for a LCTVS (X, 7) with the metric induced by countably
many seminorms (cf. the construction from Theorem 1.23).

However, translation-invariance is crucial, otherwise these two notions do not
coincide. This can be shown for example by endowing R with the metric d given by
d(x,y) := |arctan(x) — arctan(y)|; d still induces the Euclidean topology on R, but
(R, d) is not sequentially complete, since the sequence (z,)nen given by z,, :=n is
a nonconvergent Cauchy sequence. |

Definition 1.30 (Fréchet space). A metric space (X, d) is sequentially complete
if every Cauchy sequence (x,)neN converges.

A LCTVS (X,7) is called a Fréchet space if 7 is induced by a translation-
invariant metric d which is sequentially complete.

1.3. Linear maps and the dual space. In what follows, we let (X, 7) and (Y, p)
be Hausdorff TVS. Let £(X,Y") denote the space of all continuous linear mappings
from X to Y. Since Y is a TVS, £(X,Y) is itself a vector space by the usual
addition and scalar multiplication for maps between vector spaces. A particular case
is given by the choice Y = R equipped as usual with the Euclidean topology. In this
case, we use the shorter notation X’ = £(X,R), which is called the (topological)
dual space of X. Before discussing the continuity of linear maps, we collect a
similar result concerning the continuity of seminorms.

Lemma 1.31 (Continuity of seminorms). Let X be an LCTVS with seminorms
{p:i : i € I} generating the reference topology. Consider another seminorm q on X.
Then the following are equivalent.

(i) The seminorm q is continuous.

(ii) There exist ¢ > 0 and Iy C I finite such that

qgsc Z}?i-
i€l

Proof. Exercise 3.3. (]

Proposition 1.32 (Characterization of continuous linear maps). Let (X, 7) and
(Y, p) be locally convex topological vector spaces. Let P :={p;, : i € I} and Q := {g¢; :
j € J} two families of seminorms generating T and p, respectively. Let T: X —Y
be linear. Then the following are equivalent.

(i) T € L(X,Y).

(ii) T is continuous at zero. That is, for any V € p containing 0, T~*(V) € 7.

(iii) For all j € J there exist ¢c; > 0 and I; C I finite such that the seminorm

Pj = max;ey, p; satisfies
q; © T S Cij.

In particular, for every f € X' there exist ¢ > 0 and Iy C I finite such that

fl<ed b

i€lp
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Proof. We will show (ii) = (i), (i) = (iii), and (iii) = (ii).

(ii) = (i). Let V C Y be open and x € T~1(V). Then the translation V — T'(z)
is a neighborhood of 0 in Y. By the hypothesized continuity of 7" in 0, there exists
a neighborhood U of 0 in X such that T(U) C V — T(z). The set  + U forms a
neighborhood of z, and for all z € x + U one has

Tz)CT()+TU)CT(x)+V -T(x)=V.

Thus z + U € T~1(V) implying openness of T~ (V), verifying the continuity of 7.

(i) = (iii). By Lemma 1.31, ¢; is continuous on Y. This implies continuity of
the composition g; o T. On the other hand, since g; is a seminorm and 7 is linear,
gj o T is a continuous seminorm. Applying Lemma 1.31 again, we deduce there exist
C; > 0 and I; C I finite such that

gjoT <Cj Zpi < Cj#l; A ;-
i€l

(iii) = (ii). It suffices to show that for any neighborhood of V of 0, T~1(V)
is also a neighborhood of 0. Given such V, we can find ¢ > 0 and Jy C J finite
such that 0 € B; 5,(0) C V. For all j € Jy, by assumption there exist ¢; and a
seminorm P; — which is continuous by Lemma 1.31 — with ¢; o T' < ¢; P;. Since
P; is continuous in 0, we can find an open neighborhood W; C X of the origin
such that P;(W;) < ¢/c;. Defining W := (.. ; W;, by construction W is an open
neighborhood of the origin satisfying

j€Jo

quTSCij<E.

Hence T(W) C U and 0 € W C T~}(U). Since W € 7, this shows T-1(U) is a
neighborhood of 0, implying continuity of 7" in 0. (|

Next we will discuss the finite-dimensional case, which is quite special in that
continuity becomes a redundant assumption.

As usual, we equip Euclidean space with the usual Euclidean topology. We note
that the second statement below does not simply follow from the first and basic
linear algebra, since Y — albeit being a vector space as the image of a linear map
comes with its own subspace topology.

Proposition 1.33 (Continuity redundancy). Let X constitute a Hausdorff TVS
andY C X.
(i) If f: R" — X is linear, then [ is continuous.
(i) If f: R™ = Y is linear and bijective, then f=*: Y — R™ is continuous.
(iii) If Y is a subspace of finite dimension, then 'Y is closed.

Proof. (i) Let {eq,...,e,} denote the canonical basis of R". Then for every z € R",

flz)= f{ixiez} = izif(ei)'

Since f(e1),..., f(en) are fixed vectors in X and all coordinate projections are
continuous, the continuity of f follows from the hypothesized continuity of the
vector space operations.

(ii) As f is bijective and linear, the map f=': Y — R" is well-defined and linear.
By Proposition 1.32, to verify its continuity it suffices to do so at 0. That is, we
need to show for any neighborhood U of 0 on R", there exists a neighborhood W of
0 onY with (f~')(y) € U for every y € W. In other words, since {B.(0) : € > 0} is
a neighborhood basis of 0 on R", and the open sets on Y are defined by intersecting
open sets of X with Y, we must verify the following: given any € > 0, there is a
neighborhood W of 0 in X such that ||f~1(y)|| <eforally e WNY.



14 MATHIAS BRAUN

To this end, set S := {z € R": ||z|| = 1}. Since S is compact, the continuity of
f implied by (i) yields f(S) C X is compact. Since f(0) = 0, the bijectivity of f
implies 0 ¢ f(.5). Since X is a Hausdorfl space, compact sets are closed and their
complements are open. Therefore, there exists an open neighborhood V' of 0 such
that V' N f(S) = 0; by Exercise 1.3, we can take V to be balanced.

Define E := f~1(V). We claim E C B;(0). Suppose by contradiction there exists
xz € R" with ||z|| > 1 and € E; then z/||z| € S and the balancedness of V' implies
the relations

x f(zx) 1 1
) = ot € o/ ® <
which is a contradiction. Hence ||y|| < 1 for all y € f~1(V). In particular, given any
e >0, the set W =V NY is a neighborhood of the origin in Y. Since Y is a linear
subspace and f~! is linear,

R evnY)=fHe(VNY)) =cfH(VNY)=¢cE C eB1(0) = B.(0).

Vcv,

Hence f~! is continuous in 0.

(iii) Take y € Y. Set d := dim Y, then by standard results from linear algebra
there exists a bijective, linear map f: R? — Y. Let V C X be constructed as in
(ii) and E = f~1(V). As V is an open neighborhood of the origin, it is absorbing,
therefore there exists s > 0 such that y € sV. We claim that openness of sV and
the inclusion y € Y imply y € Y N sV. To see this, we use the characterization of
the closure by neighborhoods, viz. y € Y N sV if and only if, for any neighborhood
W of y, we have W N (Y NsV) # 0.

Since sV is open, W N sV is a neighborhood of y; since y € Y, applying again
the aforementioned characterization (for W = W N sV), we must have

WNnYnsV)=WnsV)NY =WwnY #0§.

Since this holds for any W, we deduce y € Y NsV.
Next, the homogeneity and bijectivity of f from R to Y’ (and the fact sY =Y)
imply Y N sV = f(sE). Hence we have the inclusions

yeYnsV C f(sE) C f(Bs(0)) = f(Bs(0)) CY,

where we used that since B;(0) is compact, so is f(Bs(0)), which is therefore also
closed since X is Hausdorff. Thus Y =Y, which concludes the proof. O

Remark 1.34 (Consequences). The above result has several key implications.

o If (X, 7) is a finite-dimensional Hausdorff TVS we can construct a linear
isomorphism f: X — RY™X | the latter being endowed with the Fuclidean
topology. In particular, f is continuous with continuous inverse, i.e. a
linear homeomorphism. This yields open sets on X and on RY™X are in a
one-to-one correspondence.

e Consider now R? with locally convex topologies 7 and 75 induced by two
norms || - ||; and || - || respectively. Then the identity map from (R, 1) to
(R, 75) is a homeomorphism, whence 71 = 7. Since ||-||; and ||-||2 induce the
same topology, applying Lemma 1.31 twice they must be equivalent norms
(in the usual sense). In other words, there exists only one topology on R?
which makes it a Hausdorff TVS, which is the Euclidean one. As a byproduct,
we have shown the basic fact that all norms on R? are equivalent. By
(i), similar considerations apply to any other finite dimensional Hausdorff
TVS (X, 7).

e Let (X,7) be a Hausdorff TVS. Then it can be shown the origin has a
neighborhood basis of precompact sets if and only if X is finite-dimensional.
For one implication, apply (i) above. The other will studied in Exercise 4.4.



MATH-404 FUNCTIONAL ANALYSIS II 15

In particular, on infinite-dimensional normed spaces, the closed unit ball
B1(0) is never compact — a fact that is usually already shown in a first
course on functional analysis. |

Lecture 4. One of the most important properties of locally convex topological
vector spaces is the presence of a Hahn—Banach theorem, which we state below
without proof. There exist more versions that distinguish whether X is a real or
complex vector space, cf. e.g. [10, §3].

Theorem 1.35 (Hahn—-Banach theorem, analytical version). Let X constitute a
vector space and let p: X — Ry be a seminorm. Suppose M C X is a linear
subspace and f: M — R is a linear functional such that |f(x)| < p(x) for every
x € M. Then f can be extended to a (nonrelabeled) linear functional f: X — R
satisfying the property | f(x)| < p(z) for all x € X.

Theorem 1.36 (Hahn-Banach theorem, geometric version). Let (X, 1) be a LCTVS
and let A, B C X be convex sets such that A is compact and B closed. If ANB =10,
then there exist x' € X' and o, 8 € R such that for every x € A and every y € B,

¥(r) <a< B <2(y).

From these theorems, we deduce in particular that the dual space of a locally
convex topological vector space separates points.

Corollary 1.37 (Point separation in the dual space). Let (X,7) be a LCTVS and
x € X \ {0}. Then there exists ' € X' such that 2'(x) # 0.

Proof. Apply Theorem 1.36 to the compact sets {0} and {z}, which are closed as
(X, 7) is Hausdorff. Clearly 2’(0) = 0 for every ' € X', so that z'(x) # 0. O

Definition 1.38 (Weak topology). Let (X, 7) be a LCTVS. We define the weak
topology on X as the coarsest topology T, such that all elements ' € X' are
continuous with respect to T,,.

Corollary 1.39 (Local convexity). If (X,7) is a LCTVS, so is (X, Ty).
Proof. Thanks to Corollary 1.37, the proof is identical to Exercise 2.1. (]

Similarly to the weak topology and in analogy to the case of Banach spaces, we
define the so-called weak* topology on X'.

Definition 1.40 (Weak* topology). Let (X,7) be a TVS with dual X’'. The weak*
topology on X' is the coarsest topology such that the mappings x' — z'(x) are
continuous on X' for every v € X.

In the above situation, X’ always becomes a LCTVS when equipped with the
weak™ topology. We will study this and further elementary properties in the exercises.
One could fill a whole course with locally convex spaces, but we shall stop here with
the abstract considerations as they suffice for the next chapter. The interested reader
should consult [10, §§1-3] for a complete treatment about basic linear functional
analysis on topological vector spaces. See also §A for more details about weak and
weak™ topologies on LCTVS.

2. TEST FUNCTIONS AND DISTRIBUTIONS

We start by introducing a locally convex topology on the function space C*(Q)®

of functions on € which are differentiable infinitely often, where Q ¢ R? is open.

5In all function spaces, unless stated otherwise the target domain will be R. The theory that
we develop also holds for C-valued functions; in that case, note however that differentiability does
never refer to complex differentiability.
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Remark 2.1 (Disclaimer). This space and its topology discussed below are not going
to be the usual ones used in the theory of distributions! Those will appear later in
Definition 2.10. The relevant space will be the set C2°(€Q2) of compactly supported
elements of C*°(Q), cf. Definition 2.2 below. To avoid confusion of these two spaces,
we will write D(€) in place of C°(Q). |
Definition 2.2 (Test functions). Let @ C R? be open and ¢ € C().

a. The support of ¢ is defined by

d
spto:={reQ: @(m)#O}Q:{xEQ: @(x);éO}R NnaQ.
b. We define the set of test functions by
D(Q) := {p € C°(R?) : spty is a compact subset of Q}.

c. Given a compact set K € R%, we further define the space
D ={p e C®RY) : sptyo C K}.

Remark 2.3 (Basic observations). Since spt(f + g) C spt f Usptg and spt(Af) =
suppf for every continuous functions f and g and every A € R\ {0}, the spaces
D(Q) and Dk are vector spaces with respcect to the usual pointwise addition and
scalar multiplication of functions.

Moreover, as shown in the exercises, the function f: R — R given by

_/ .
f(t):{e Ut if ¢t >0,

0 otherwise

lies in C*°(R). By the chain rule, the function

2 .
o) = el/Ulzl"=1) 4 lz|| <1,
0 otherwise,

belongs to C*°(R?) and satisfies spt ¢ = B1(0). Given any zq € R? and any € > 0,
the function ¢,, .: R? — R defined through ¢, - () := ¢((x — 20)/¢) belongs to
C>=(R%) with spt ¢n, . = Be()®. In particular, D(2) # {0}; the same holds for
D if K has non-empty interior’. Since both spaces are stable under multiplication
with smooth functions, it follows that both spaces are infinite dimensional (again
when K has nonempty interior). ]

In Definition 2.4 below, we construct a locally convex topology on C*°(2); this
induces a similar topology on Dy, which is a linear subspace of C*°(Q2) provided
K C Q is compact. Later in Definition 2.10, we will see a different locally convex
topology on D(Q) that induces the same relative topology on D

We recall some basic notation from vector calculus. A multiindex is an element
of N¢. The norm of a multiindex o € N¢ is defined by || := a;+- - -+a,. Moreover,
for such an a we define the differential operator (the “o’th partial derivative”)

D = {ir‘l {i} d
0x1 Oxg
where the above powers mean so-and-so-fold application of the respective partial
derivative. It will always act on smooth functions, so by Schwarz’ theorem, we can
group the partial derivatives by directions and not worry about their order.

6The flock of functions thus defined is a very useful tool to regularize functions in the study of
PDEs often called (standard) mollifier (up to a dimensional “normalization”). We refer to [6, §C]
for details.

"When K has empty interior, we have D = {0}.
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Definition 2.4 (A seminorm topology on C*(Q2)). Let Q C R? be open and
(Kp)nen be a sequence of compact sets with K, C int K,,11 for every n € N and
Q =U,en Kn® For N € N, we define the seminorm py: C*°(2) — Ry by

pn (@) = max{|D%(z)| : a € Ng, la] < N,z € Kn}.

Let p denote the induced seminorm topology.
Let 7x denote the relative topology induced by the family of seminorms {pn :
N € N} on the space Dk whenever K C Q is compact.

Definition 2.5 (Heine-Borel property). We say a TVS (X, 7) has the Heine—Borel
property if every bounded and closed subset of X is compact.

Of course, this terminology stems from the Heine-Borel theorem, which states
R has the Heine-Borel property.

Proposition 2.6 (Fundamental properties). The LCTVS (C*>(Q), p) is a Fréchet
space and has the Heine—Borel property.
Moreover, if K C § is compact, then Dk is a closed subset of C*(Q).

Proof. The separation property from Definition 1.12 is satisfied, implying the
seminorms {py : N € N} induce a locally convex topology.

By construction, this family of seminorms is countable, implying metrizability
of the space in question by Theorem 1.23. By the proof of that theorem, the
metric inducing the seminorm topology in question may and will be chosen to be
translation-invariant. To be a Fréchet space, we are left to show completeness. Let
(¢n)nen be a Cauchy sequence in C°°(£2). This means that for every e > 0 and
every N € N there exists M € N such that

sup |[D%pn(z) — D% ()] <€

rzeK N
for all multiindices o € N with || < N and every n,m > M. In particular, for any
fixed such « and a fixed compact set K C Q the sequence (D%, ),en is a Cauchy
sequence with respect to the uniform topology on K. Since the latter is complete,
(D%pp)nen converges uniformly on K to a continuous function g,: K — R. Since
the sets (K,), exhaust €, the limit g, does not depend on K, D%p, (x) = go(z) as
n — oo for every x € Q, and (D%p,,)nen converges locally uniformly (i.e. uniformly
on each compact subset of ) to the function g,. By standard results from analysis,
we obtain D%gy(x) = gq(x) for every z € Q, so that go € C*°(2). Moreover, by
construction ¢, — go as n — oo with respect to the topology of C>° (), as the
convergence reduces to the uniform convergence on compact subsets for any partial
derivative. This shows the claimed completeness.

We turn to the Heine-Borel property. Let E C C*°(£2) be bounded and closed.
Since the topology in question is metrizable, it suffices to prove sequential com-
pactness of E. This will be a consequence of the Arzela—Ascoli Theorem 2.7 below
(applied to each partial derivative), whose hypotheses we now verify. By Exercise
3.1, boundedness of E implies for every N € N there exists My > 0 such that
sup{pn(¢) : ¢ € E} < My. Note that the inequality sup,cr, |[D%p(z)| < My
whenever |a| < N implies the sequence (D%, ),en is equicontinuous — in fact,
equi-Lipschitz, i.e. Lipschitz continuous with uniformly bounded Lipschitz constants
— on Ky_1 whenever || < N — 1. Indeed, since Ky_; C int K, compactness im-
plies ry = dist(Ky_1,0Kx) > 0. Hence for any « € Ky_; one has B, (z) C Ky;
the mean value theorem implies for every y € B, (x) that

[D%p(y) = DPp(z)| < sup  |[VDp(2)lly — 2| < dpn(p) ly — =l.

2€B;y (x

8In this case, we say the sequence (Kn)nen exhausts Q. For an explicit construction, one
can take Ky :={z € Q: |z| < n, d(z,09Q) > 1/n}; cf. Exercise 4.2.
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This yields the desired equi-Lipschitz continuity. For equiboundedness, note that
SUpe ey, [DPo(x)| < pn(p) < My. Therefore, the Arzela~Ascoli theorem applies
which, together with a classical diagonal argument, implies for every sequence
(¢pn)nen in E there exists a subsequence that converges in C*°(2). As E is closed,
this limit belongs to F.

Finally, we show closedness of D in C°(2). Note that for every x € Q the
function d,: C=(Q) — RY defined by 6,(¢) := ¢(z) is linear and continuous, so
that its kernel is closed. Since ¢ € Dk if and only if ¢ € C*°(2) and 6, (¢) = 0 for
every x € O\ K (noting K is closed), the set D is closed as the intersection of
closed sets. ]

The following result, used to show the Heine—Borel property in the above proof
and repeated for the convenience of the reader, forms the central characteristic of
(pre)compactness result in spaces of continuous functions.

To formulate it, given a compact metric space (K,d), let C(K) denote the space
of real-valued continuous functions defined on K. When endowed with the uniform
topology (i.e. the topology induced by the usual supremum norm on K), this becomes
a Banach space. Lastly, recall a subset of a Hausdorff topological space is called
precompact if its closure is compact.

Theorem 2.7 (Arzela—Ascoli theorem). Let (K, d) be a compact metric space. Then
a set F C C(K) is precompact with respect to the uniform topology if and only if the
following two conditions hold simultaneously.

(i) Uniform equicontinuity. For every ¢ > 0 there exists 6 > 0 such that for
every x € K, we have the implication

dlz,y) <6 = sup|f(y)— f(z)| <e.
fex

(ii) Pointwise boundedness. For every x € K, the subset {f(z): f € F} isa
bounded subset of R.

Uniform equicontinuity might seem like an odd condition at first glance. We
hope the following example (that you might want to comprehend as an instructive
exercise) clarifies the two conditions above in a more practical way.

Ezample 2.8 (Lipschitz functions). Let (K, d) be a compact metric space. A function
f: K — R is called Lipschitz continuous if there exists a constant L > 0 such that
|f(y) — f(z)| < Ld(z,y) for every x,y € K. The smallest possible choice of L with
this property is denoted Lip f and called Lipschitz constant of f.

Let J be any given set of functions with sup ;s Lip f < co. Then J is a subset
of C(K); it is in fact precompact therein. [ ]

Remark 2.9 (Further considerations). We have the following

e Since Dy is closed in C*(£2), D is a Fréchet space as well. It also has the
Heine—Borel property: bounded sets in Dy are also bounded in C*°(£2).

e The above topology on C'*°(Q) does not depend on the sequence (K, )neN
of compact sets exhausting 2. Conversely, note that a neighborhood basis
of the origin in (D, 7k ) is given by the sets

Ven = {¢ € D : sup |D¥(z)| < € whenever |a| < N},
reK

so that the topology 7k of D does not depend on the ambient open set
Q containing K. In fact, 7k is induced by the family {fxy : N € N} of

9Later and in the literature, this is called Dirac d-distribution.
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seminorms given as follows for every ¢ € D
pn(p) == max{|D%(z)| : x € K, a € N, |a| < N}. (2.1)

e In light of Proposition 2.6, C°°(£2) might seem like a great space to work
with. However, it has the problem that an element ¢ € C*°() might
behave badly as it approaches the boundary of 2. As a practical example,
consider 2 := (0, +00) and ¢ € C*°() defined by ¢(x) := sin(1/x). This
function has no limit as z — 0+; even worse, all its derivatives explode near
zero. The spaces D and D(2) do not have this problem.

e One could try to equip the space D(2) with the relative topology of C*°(2).
In this way we would produce a metrizable, locally convex topology. However,
this space fails to be complete! Intuitively, this is clear: the limit of a
sequence (¢, )nen in D(Q) may fail to have compact support in €2, since
the supports spt ¢,, can reach the boundary as n — co. See Exercise 5.3 for
a counterexample. [ |

Lecture 5.

2.1. A locally convex topology on D(Q2). Let us heuristically discuss what we
have seen thus far. Let Q ¢ R? open. On one hand, given any compact K C €, we
have the Fréchet spaces (Dg, Tk ). On the other, we have (C*°(Q), p), which is also
a Fréchet space, but allows for functions with pathological behavior at the boundary.
The space D(Q) lies somewhat in between: given an exhaustion (K, ),en of €,

D cDQ) = |J Dk, c C=(9Q).
neN

We would like to endow D(2) with an appropriate topology. However, by Remark 2.9,
the topology inherited from its inclusion into C'*°(Q2) does not appear right. Ideally,
the topology 7 we are looking for should satisfy the following.

e It should turn (D(Q2),7) into a LCTVS. In this way, we have the Hahn—
Banach theorems at our disposal and we can turn its dual space D'(Q),
endowed with the weak™ topology, into a LCTVS as well, cf. the discussion
right after Definition 1.40.

e It should “respect” the inclusion D C D(Q), where K C  is compact.
Namely, the topology induced by 7 on D as a subspace of D(Q) should
coincide exactly with 7. We would then hope (D(2), 7) inherits some of
the nice topological properties of (D, 7k).

e The topology 7 should be as large as possible. In this way, “many” linear

operators will become continuous, and we can expect a rich structure for
the dual D’().

We are now in a position to introduce a topology on D() that fullfills the above
requirements. The price we pay is we lose metrizability of D(Q) (see Corollary 2.15
below). On the other hand, we gain many useful properties inherited from the
spaces D, coming from the exhaustion sequence (K, )nen (see Theorem 2.14).

Definition 2.10 (Topology on D(Q)). Let @ € R? be open. We set
N(Q) :={U Cc D(Q) : U balanced and convez,
UNDg € 1k for every compact K C Q}.

We define a collection T of subsets of D(Q) as follows. We say E € T if and only
if it can be written as the (possibly empty) union of sets of the form ¢ + U, where
v € D) and U € N(Q).
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Definition 2.10 is rather abstract, but we will gradually see in the next results
why it is the right choice. If it does not appear intuitive, this is because indeed it is
not. Historically, Schwartz'? actually first defined the notion of convergence in D()
(see Theorem 2.14), which in practical applications to PDEs is often enough, and
only later understood how to construct the topology 7 inducing this convergence.

We first have to show 7 actually defines a locally convex topology.

Proposition 2.11 (Local convexity). Consider the class T from Definition 2.10.
Then (D(Q),7) is a LCTVS and N(Q2) defines a neighborhood basis of the origin.

Before entering the proof, we notice N(2) is stable under finite intersections and
multiplication by nonzero scalars. The first fact can be verified using the intersection
of balanced and convex sets is still balanced and convex, and 7x is stable under
finite intersection; the second one is similar.

Proof. We start by showing 7 defines a topology. By definition, §, D(Q2) € 7 and
T is stable under arbitrary unions. To show 7 is closed under finite intersections,
by induction it suffices to show that if V;, V5 € 7 then V; NV, € 7. To this end, it
suffices to show that for any ¢ € V4 N V4, there exists U € N(Q) such that

<p+UCVlﬂV2. (22)

Once (2.2) is shown, we can conclude 7 is a topology. Since V1, Va € 7, there exist
1,02 € D(Q) and Uy, Uy € N(Q) with ¢ € ¢p1+U; C Vi and ¢ € ¢o+Us C V. Next,
let K C Q be compact such that ¢, ¢1,¢2 € Dg. Note Uy N D, UsNDk € 7. By
continuity of the scalar multiplication there exists § > 0 such that ¢ — ¢y € (1 —-98)U;
and ¢ — @3 € (1 — §)Us. By convexity of Uy and Us, for every i € {1,2},

Hence, setting U = 60Uy N dUs3, we deduce that for all ¢ as above,
€P+UCQD+6U1C¢Z+UZ cV.

Therefore ¢ + U C Vi N V4, which proves the first claim since the intersection of
balanced and convex sets remains balanced and convex.

The claim that N(£2) defines a neighborhood basis of 0 follows immediately from
the definition of N().

It remains to show the local convexity of the topology. By Theorem 1.18, it suffices
to show D(Q) is a Hausdorff topological vector space with a convex neighborhood
basis of the origin (which in this case is naturally chosen to be N(£2), which is
already made of convex sets by definition).

We start with the Hausdorff property. Fix distinct 1, o2 € D(Q2) and set

W={p € D(Q) : 2[lpllo < llor — w2l } (2.3)

where || - ||oo is the usual supremum norm. We claim W € N(Q2). Indeed, since it
is a ball with respect to a norm, W is balanced and convex. Moreover, for every
compact K C €,

WﬂDK:{goEDK:quEWJ(xH < ||<p1—np2||oo}, (2.4)

€

which belongs to 7x by Remark 2.9. This shows W € N(Q2). Therefore, the sets

W, := p; + W are open and contain ¢;, where ¢ € {1,2}. Moreover, if ¢ € W7 NWa,
o1 = @2lloe < [le1 = @lloc + llp = @2lloo < ll1 = P2llo0,

which yields a contradiction. Hence 7 has the Hausdorff property.

10Laurent Schwartz (1915-2002), French mathematician, received a Fields Medal in 1950 for his
invention of the theory of distributions.
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We turn to continuity of the vector space operations. To this aim, we shall
systematically use that sets of the form 1 + N(Q) form a basis of the topology. Let
01, p2 € D(Q) and W € N(Q). By convexity of W,

1 1
301+§W+§02+5WC(901+QD2)+W7

which implies continuity, since W/2 € N(Q). To treat the scalar multiplication, fix
Xo € R, po € D(N2), and W € N(Q2). It suffices to show there exist U € N(2) and
d > 0 such that for every A € (Ag — 9, Ao + ) and every ¢ € po+ U,

Ap € Xopo + W. (2.5)

We first claim for W € N(Q) there exists 6 > 0 such that doy € W/2. Indeed,
there exists K C  compact such that ¢ € Dg. Then by continuity of the scalar
multiplication in Dy, there exists 6 > 0 such that dgpy € W/2N D, as the latter
set is an open neighborhood of 0 in Dg. Given such § > 0, fix ¢ > 0 such that
2¢(|Ao| +9) = 1 and set U := ¢W. By balancedness and convexity of W, for all
A€ R with |A— X < d and ¢ € o+ U = pg + cW we obtain

1 1
Ap = Aowo = Mg = ¢o) + (A= Ao)po C W+ W C W
which proves the desired relation (2.5). O

Remark 2.12 (Explicit generating seminorms'!). It is not immediate to find an
explicit form of the seminorms generating the topology. We know from Theorem 1.18
that we can take the Minkowski functionals pyy, where U € N(Q). With some effort,
one can show a neighborhood basis of the origin is given by sets of the form

Vae :={p € D) : |D%(z)| < e(x) for every z € Q, |o| < A(x)},

where £ : 2 — (0,00) and A: Q — (0, 00) are continuous functions. Equivalently, a
corresponding seminorm is given by

pac(p) = sup{le™' (2) Dp(x)| : @ € Q, |a| < A(2)}.

As we will not use these seminorms, we leave the proof — partitions of unity are
helpful — to the motivated reader. |

Remark 2.13 (Algebraic considerations'?). For the readers familiar with categories,
(D(£2), 7) is the locally convex direct inductive limit of the Fréchet spaces (D, , 7k, ),
for any sequence (K, )nen of compacts exhausting . In particular, (D(2),7) is a
so-called LF-space.

Alternatively, the topology 7 can be characterized as the largest topology such

that for every n € N, the inclusion ¢, : (D, , Tk, ) = (D(2),7) is continuous. M

In what follows, we tacitly endow D(Q) with the topology 7 given in Defini-
tion 2.10. All topological results refer to this topology, unless explicitly stated
otherwise.

Theorem 2.14 below provides many important structural properties of 7. Before
stating and proving it, we need to recall some basic facts.

e Given a LCTVS (X, 7x) and a closed linear subspace ¥ C X, endowing
Y with the subspace topology 7y, many properties of 7y and 7x are in a
one-to-one correspondence, cf. Exercise 6.1.

HThis remark is not examinable.
12This remark is not examinable.
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e If X is a LCTVS with topology induced by a family of seminorms {p; : i € I},
then a sequence (2, )nen in X is a Cauchy sequence if and only if, for every
i € I and for every € > 0, there exists no € N such that p;(z, — x,,) < € for
every n, m > ng. The same property can be schematically stated as follows:
for every i € I,
lim p;(z, — zm) =0. (2.6)
n,Mm—00
The proof relating Cauchy sequences to (2.6) is similar to Exercise 3.1 and
is left to the reader.

Theorem 2.14 (Fundamental properties of 7). The following statements hold.

(i) A convex and balanced set U C D(Q) is open if and only if U € N(Q).

(ii) For every compact K C Q, Dk is a closed linear subspace of D().

(iil) Given any compact set K C Q, the topology i of Dk coincides with the
subspace topology inherited from D(Q).

(iv) If E C D(Q) is bounded, there exists K C ) compact such that E C Dy
and for every N € N there exists My > 0 such that for every ¢ € E and
every a € N with |a] < N,

sup | D% (x)| < My. (2.7
reK

(v) The class D(Q) has the Heine—Borel property from Definition 2.5.

(vi) If (on)nen s a Cauchy sequence, then there exists K C Q compact such
that @, € D for every n € N and for every a € Ng,

lim  sup |[D%p,(z) — D%pm(x)] = 0.
n,m—-4oco €K

(vil) A sequence (@n)nen in D(2) converges to ¢ € D(Q) if and only if there is
K C Q compact such that spt g, C K for everyn € N and D%p,, — D%p
uniformly in K as n — oo for every a € Ng.

(viii) The space D(Q) is sequentially complete. That is, every Cauchy sequence in
D(Q) converges in that space.

The main “thumb rule” takeaways of this theorem are the following.

e Convergence effectively takes place in compact subsets of €.

e Cauchy sequences in the space D(Q) are characterized by all derivatives of
the function sequence in question being a Cauchy sequence with respect to
uniform convergence on the above compact subset.

e Convergence in D() is characterized by uniform convergence of all deriva-
tives of the function sequence in question on the above compact subset.

Proof of Theorem 2.14. (i) Given any U € 7, we claim U N Dg € 7 for every
compact K C Q. Let ¢ € UNDg. By Proposition 2.11, there exists V' € N(2) such
that ¢ +V C U. Since p € Dk,

0+ (VNDg)=(p+V)NDg CcUNDk.

Since ¢ + (V N D) is a neighborhood of ¢ in 7g, it follows Dx NU € 7. If in
addition U is balanced and convex, it follows from Definition 2.10 that U € N(Q).
The converse implication is trivial since N(Q2) C 7.
(ii) Fix K C Q compact. It is clear that D is a linear subspace. Thus, we only
need to check it is closed. Note that ¢ € D(2) belongs to D if and only if p(z) =0
for all z € Q\ K. In other words, setting Z, := {¢ € D(Q) : p(x) = 0}, we have

D = ﬂ Zy;
zeQ\K



MATH-404 FUNCTIONAL ANALYSIS II 23

in order to show D is closed, it suffices to show the subsets Z, are closed for every
x € Q. Fix x € Q and let ¢ ¢ Z,;, which means |¢(x)| > 0. Define

Wy :={2€D(Q) : 2[4 — ¢lloo < lp(2)]}-

Going through similar arguments to those developed for W in (2.3) and (2.4), one
checks W, — ¢ € N(2), so that W, € 7. Moreover, by the triangle inequality, given
any @ € W, we have |p(z)| > |¢o(z)| — |¢(z)]|/2 > 0, which means W, C ZS. As the
argument holds for any ¢ € Z¢, we deduce Z¢ is open in 7, thus Z, is closed.

(iii) The proof of the first part of (i) shows the subspace topology Dy inherits
from D() is contained in 7x.

Hence, it suffices to show the converse inclusion. Namely, given any E € 7x, we
need to show there exists U € 7 with £ = D NU. By Remark 2.9, given any
¢ € E we can find N, € N and 6, > 0 such that

{¢ € Dk : sup [D*¢(z) — D*p(x)| < d, whenever |a| < N,} C E.
reK

Now we define

Uy := {4 € D(Q) : sup [D*(x)| < &, whenever |a| < N, }.
e

Going through the same argument we developed for W in (2.3) and (2.4), one
checks U, € N(€2), therefore ¢ + U, € 7. Hence U :={J,cp(p + Uy) € 7 and by
construction £ = D NU.

(iv) Let E C D(2) be bounded and assume by contradiction E \ Dg # 0 for
all compact sets K C Q. Then there exists a sequence (z,)nen in  that has no
accumulation point in Q and ¢,, € D() N E for every n € N such that ¢, (x,) #0
for every n € N. Now we define

W= {p € D(Q) : n|p(xn)| < |on(x,)| for every n € N}.

Given any compact set K C €2, the number of n € N such that x,, € K is finite. Since
the evaluation mapping ¢ to ¢(z,) is continuous on Dy, it follows W N Dk € 7.
Since W is also balanced and convex, we deduce W € N(£2). Noting ¢,, ¢ sW for
all s < n, we deduce there exists no finite s > 0 such that £ C sW, which yields a
contradiction.

Therefore, if E is bounded, there exists a compact set K C Q such that £ C Dg.
By (iii), the set F is also bounded in Dg. Property (2.7) then follows from the
topology Tk being induced by the seminorms (2.1) and Exercise 3.1.

(v) By Remark 2.9, the space D has the Heine-Borel property. Hence the claim
follows from properties (iii) and (iv). Indeed, by (iv) we know if E C D(Q) is
bounded and closed, then E C Dy for some compact set K C Q. Then (iii) implies
E is also bounded and closed in Dy and therefore compact in D g by Remark 2.9,
which together with (iii) implies compactness in D().

(vi) Let (pn)nen be a Cauchy sequence in D(£2). By Exercise 3.1, the sequence
constitutes a bounded set in D(), hence by (iv) there exists K C ) compact such
that ¢, € Dk for every n € N. By (iii), (¢n)nen is also a Cauchy sequence in
Dk, whose topology is induced by the seminorms from (2.1) by Remark 2.9. The
conclusion then follows from (2.6).

(vii) If ¢, = @ in D(Q) as n — oo, then (p,)nen is a Cauchy sequence in D(Q),
which implies the conclusion by (vi).

For the converse implication, observe by assumption ¢ € D, and by Remark 2.9
— e.g. using the seminorms (2.1) — we have ¢,, — ¢ with respect to 7x as n — co.
By (iii), we have ¢,, — ¢ with respect to 7 as n — occ.

(viii) This is now a consequence of (vi), completeness of Dy, and (vii). O
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Lecture 6.
Corollary 2.15 (Nonmetrizability). The space D(Q) is not metrizable.
Proof. Exercise 6.3. ]

In the next subsection we will study the dual space of D(2). To this aim, we
formulate a very useful characterization of continuous linear maps defined on the
space of test functions.

Proposition 2.16 (Characterizations of continuity). Let Y be an LCTVS and
T:D(Q) =Y be linear. Then the following properties are equivalent.

(i) T is continuous.
(i) If (¢n)nen converges to 0 in D(Q), then (Tpn)nen converges to 0 in Y2
(iii) The restriction of T to D is continuous for every compact K C €.

Proof. (i) = (ii). This is trivial.

(ii) = (iii). Since D is metrizable and T is linear, sequential continuity in 0
with respect to 7x is equivalent to continuity of T. Now let (¢, )nen be a sequence
in Dg which converges to zero in Dg. By Theorem 2.14, this convergence also
happens in D(Q), which by (ii) and the above implies the continuity of T

(iii) = (i). Let V C Y be a balanced and convex neighborhood of 0 and set
U :=T~1(V). Since T is linear, the set U is also balanced and convex. By (iii), the
set U N D is open in 7 for every compact set K C 2, which implies U is open in
D(Q) by Definition 2.10. This proves the continuity of T in 0; the linearity of T'
implies its continuity by Proposition 1.32. O

Corollary 2.17 (Some continuous maps on D(Q2)). The following maps are contin-
uous from D(Q) to D(Q).
(i) The derivative assignment v — D%y, where « € Ng is given.
(ii) The multiplication assignment @ — 1 @, where v € C*°(Q) is given.
(iii) For Q = R® the affine transformation assignment o — p(\ - —z), where
A€ R\ {0} and z € R? are fized.

Proof. Exercise 6.2. O

2.2. Distributions from a topological point of view. Next we study the dual
space of D(€2). Observe that since the convergence on D(Q?) is quite strong, one
might expect many linear functionals to be continuous with respect to the topology
of D(Q), so that its topological dual should be quite large.

Definition 2.18 (Distributions). Let Q@ C R? be open and let D(Q) be the space of
test functions introduced in Definition 2.2. We denote by D'(Q) the topological dual
space of D(Q).

FElements of D'(Q2) are called distributions.

Ezample 2.19 (Concrete distributions). The following are examples of distributions
T € D'(RY).
e Dirac delta distribution. The assignment T'¢ := ©(0). This distribution
is often denoted by dp. Analogously d,, for the Dirac delta distribution at
an arbitrary point xzg € R
e Evaluation of derivatives. The assignment T := D%p(z() for some
fixed multiindex o € N¢ and some fixed zo € R®. In short, T = d,, o D*.

13By Corollary 2.15, the space D(2) is not metrizable, so a priori continuity is not equivalent
to sequential continuity. Nevertheless, Proposition 2.16 guarantees that for linear functionals on
D(2), this is actually the case!



MATH-404 FUNCTIONAL ANALYSIS T 25
e Integration. The assignment 7' (¢p fRd pdL?, where f € LIOC(Rd,Ld);
the latter means f is integrable on every compact subset K € R%;
e Integration of derivatives. The assignment Ty := fRd fD“go dg? for
some fixed multiindex o € N and f as above.
¢ Borel measures. The assignment T¢ := [p. ¢ dp, where p is a locally
finite Borel measure'* on R,

All these examples are special cases of Exercise 6.2, so we omit the proofs. |

Remark 2.20 (Towards fundamental lemmata of distribution theory). In the case
f €Ll (Q,£9), the distribution Ty defined in the previous Example 2.19 uniquely
determines f £%-a.e'®. In this manner, we can regard Ll (Q,£%) as a “subset” of
distributions on . One often informally says that a distribution T is (represented
by) a function if there exists f € Li (€2, £%) such that Ty = [, f ¢ dL? for every
v € D(Q2) and one tacitly identifies T with f.

Similarly one says a distribution is (represented by) a Radon measure in the
sense of Example 2.19 above. There are quite general representation results for
distributions by measures which do not even require to work with smooth functions,
cf. e.g. the Riesz—Markov—Kakutani representation theorem. We do not state
it rigorously here, but informally it says a distribution which remains nonnegative
when evaluated at a nonnegative function is necessarily given by a measure. |

We have the following characterization of distributions.

Lemma 2.21 (Distributions by seminorms). Let 2 C R open. Given any N € N
and K C Q compact, define a seminorm py kg on D(Q) by

. (9) = max{| D% (z)| : @ € Nj, |a| < N, z € K}.

Let T: D(Q) — R be linear. Then T € D'(Q) if and only if for every compact set
K C Q there exist Cx > 0 and Nk € Ny such that for every ¢ € Dy,

ITo| < Ck PNy k() (2.8)

Proof. By Proposition 2.16 continuity of T is equivalent to continuity of the restric-
tion T| for every compact set K C 2. Since the seminorms py g are increasing
in NV, the statement follows from Proposition 1.32 and the fact that the given family
{pMK : N € Ny} generates the topology 7k, cf. Remark 2.9. O

Definition 2.22 (Order of distributions). If there exists a common number N € N
such that inequality (2.8) holds true for all compact sets K C ) — but possibly with
a varying constant Cx —, we say the distribution T has finite order.
In this case, its order is the smallest number N € No with this property.
Otherwise, the distribution is said to have infinite order.

Remark 2.23 (About Example 2.19). All distributions appearing in Example 2.19
have finite order (try to compute it).
As specified in the exercise sheets, an example in D’(R) of infinite order is the

following assignment:
Ty = Z D"p(n)
neN

lMRecall a Borel measure on a topological space is a measure defined on the Borel o-algebra
of that topological space, i.e. the smallest o-algebra containing all open sets. Such a measure is
called locally finite if it is finite on each compact set.

15T his is actually a quite important result, usually referred to as the fundamental lemma of
the calculus of variations, cf. Lemma 2.28 later. This insight is also a basis for the definition of
Sobolev spaces in PDE theory.
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2.3. A short introduction to distributional calculus. On distributions, one
can define many operations by duality, that is, by “moving the operation on the
argument ¢ € D(Q)”. This is a commonly used method that in PDE theory, one
usually sees in action when “sufficiently many derivatives are moved to the test
function in question in an integration by parts formula”.

In functional analytic terms, whenever we have a continuous linear functional
A: D(Q) — D(Q), we may define its adjoint'® A* : D'(Q) — D'(Q) by the following
formula for every ¢ € D(Q):

(A"T)(p) = T(Ap).
One can then verify that, given any T' € D’(Q2), A*T is again an element of D’(2)

and that A* is continuous with respect to the weak* topology of D’(Q).
In the next definition, we present three important examples of this procedure.

Definition 2.24 (Differential calculus on distributions). Let @ C R? be open and
let T € D'(Q) be a distribution.

a. Given any a € Ng, the partial derivative D of T is defined by
(DT)(p) := (=1)I*I T(D).
b. Given any i € C*>(Q), the product of T with 1 is defined by
W T)(p) =T ().

c. If Q=R and ¢ € C(R?), the convolution of ¢ with T is a function
defined by the assignment

(¢ T)(x) :=T(W(x—))
Remark 2.25 (About Definition 2.24). By Corollary 2.17, for a distribution 7" the
partial derivatives D*T and the product 7T with a smooth function are again
distributions. Instead, ¢ * T is a C*-function on R%.

The idea behind these definitions is they coincide with the classical definitions
in the situation when 7T is replaced by T from Example 2.19. For instance, when
f e C™R?) with m € N, then for any multiindex o € N& such that || < m, by
integration by parts'” we have

(D°Ty)(p) = (=)l /R I Dpde! = /R (D fpdL? =Tpes(p).

Similarly, we obtain ¥ Ty = Tyy and ¥ x Ty = 9 * f.

Studying PDEs often leads to considering distributional derivatives of integrable
functions (e.g. by considering Sobolev spaces, cf. Remark 2.20). This means exactly
the quantity DT, which makes sense even when the function f in question is not
classically diﬁerentiable For instance, consider the Heaviside function f = 1r, .
Then for any ¢ € D(R

/fso ac! = /Octp’dﬁ:w(o):éo(w%

where we used ¢ has compact support. This means the distributional derivative of
f is the Dirac delta centered in 0; this is often stated as “f’ = §y in the sense of
distributions”. Observe that f is differentiable at every € R\ {0} with f/'(z) =0,
so that in particular f’ = 0 £%a.e. However, its distributional derivative is not the
function identically equal to 0!'® Some care must taken when trying to identify

16T hink of the pairing T of a linear map T' € D’(Q) and ¢ € D() as a “scalar product” (T, o);
in this notation, the adjoint of A satisfies (T, Ap) = (A*T, ).

1"No boundary terms appear since ¢ has compact support.

18Yet, intuitively this recovers the “correct” derivative of the Heaviside function f. Indeed,
while f/ = 0 outside zero, f makes a jump of height 1 at zero. In comparison, note T of = =2dp.
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derivatives defined a.e. point with distributional derivatives, in general they might
not coincide.

To be more precise, in the above example the distributional derivative of the
Heaviside step function is a measure with Lebesgue decomposition 0 - £ + 6p'Y.
Informally, this explains what is going on here: even when a function has vanishing
derivative £l-a.e. (which would contribute to the L£!-absolutely continuous part
of the distributional derivative), its distributional derivative may still have an £1!-
singular part. As a disclaimer, we note that not all distributional derivatives are
measures, hence the above analogy should be taken with care; the class of functions
for which this is the case (in an appropriate sense) are termed to have bounded
variation. ]

We can also speak about the convergence of distributions.

Definition 2.26 (Convergence). Let Q C R? be open and (T,)nen be a sequence
in D'(Q). We say it converges to T € D'(Q) if T, — T¢ for every ¢ € D(Q).

This is exactly the convergence in the weak*-topology, cf. Definition 1.40. We
interchangeably use the notations T,, =* T'as n — oo or T,, — T as n — oo.
The following result shows why calculus with distributions is often very simple.

Lemma 2.27 (Convergence vs. partial derivatives). Let @ C R® be open and let
(T )nen be a sequence in D'(Q) converging to T € D'(Q). Then for all a € NI, the
sequence (D*Ty,)nen converges to D*T. In other words, partial derivatives respect
convergence in D' (Q).

Proof. Fix ¢ € D(Q). Then D%p € D(2) as well and therefore the convergence of
T, implies

Jim (D°T3) () = (~1)/*! lim T,(D"p) = (=1)*I (D) = (D°T)(¢).
This terminates the proof. O

Using convolutions, it can be shown for every T' € D'(Q) there exists a sequence
of functions (f,)nen in D(Q) such that Ty, — T as n — oco. Roughly speaking,
this means D(Q) is sequentially dense in D’(Q), with respect to the weak* topology,
up to identifying f € D(Q) with Ty € D'(§2) with a slight abuse of notation.

Lecture 7. In Example 2.19 we have introduced examples of distributions 7" €
D’ (Rd). The example in its third bullet point is particularly interesting since, as
written in Remark 2.20, the distribution T associated to an L (£, £?) function
uniquely determines f £%a.e. This is a highly nontrivial statement, implying the

injectivity of 7 on Li (£, £?). The statement is the following.

loc

Lemma 2.28 (Fundamental lemma of calculus of variations). Let @ C R? be open
and let f € LL (9, L%). If every ¢ € D(Q) satisfies

loc
[ foazt=o,
Q

then f =0 L%-a.e.

For an application of this lemma that justifies its name, see Exercise 7.4.

The result is trivial if f € D(), since it would be enough to take ¢ = f to
conclude the proof. The key point in the naive ansatz ¢ = f is that we are choosing
a test function that is able to ‘detect’ the sign of f. Looking at the sign of f is
a much less restrictive property which does not require any smoothness. We only

19Here7 6o denotes the Dirac mass at zero.
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need to sample the values of f on some set. This is the key idea on which we will
build the proof by contradiction.

In the proof below, we assume the reader knows the inner and outer regularity
properties of the Lebesgue measure.

Proof of Lemma 2.28. We first explain the proof strategy. If the conclusion of the
lemma fails, then f # 0 on a set of positive measure. Hence, there are positive
measure sets where f > 0 or f < 0. We then need to construct suitable test functions
supported on either set depending on the situation. However, this is nontrivial
because the positivity and negativity sets can be complicated. For instance, they
could be a Cantor set; per se, they neither need to be closed nor open.

We divide the proof into the following six steps.

1. For every ball B,(z¢) € R? there exists a cutoff function g € C,(R?) with
values in [0, 1] such that g = 1 on B, (x¢) and spt g C Ba,(x0).

2. Given any compact set K C R? and any open set U C R containing K,
there exists g € C.(R%) which takes values in [0,1] such that g =1 on K
and sptg C U.

3. Let A € R? be a measurable set with finite measure. Then there exists
a sequence (gn)nen in Co(R?) with values in [0,1] such that g, — 14 in
LY(R%) as n — oco. Moreover, if A C V for some open set V # R?, the
above sequence can be constructed to satisfy spt g, C V for every n € N.

4. Upgrade Step 3 from continuous to smooth functions, i.e. ensure g, € D(V)
for every n € N.

5. Take A to be an appropriate subset of {f > 0} or {f < 0} to achieve the
desired contradiction.

Step 1. We define g(x) := max{1 — 2ds(z, B(x¢))/r, 0}, where z € R®. Here
da(+, B-(zg)) denotes the customary distance function to B,.(xg) induced by the
Euclidean norm on R?.

Step 2. Set r := ds(K,0U)/3. By compactness of K and since 0U N K = (), we
have r > 0. Cover K by finitely many balls B,.(z1), ..., By(xy) with 21, ..., 2, € K.
Then Bsy,.(x;) C U for all i € {1,...,m} by our choice of r. Let g1,...,gm be as
constructed in Step 1 and set g = g1 + -+ + g as well as ¢ = min{1,g}. Then g
satisfies all the claimed properties thanks to the inclusions spt g; C Ba,.(2;) C U for
every i € {1,...,m}.

Step 3. Since the Lebesgue measure is regular®’ and A has finite measure, for
every n € N there exists a compact set K,, C A and an open set U,, D A such
that LU, \ K,] < 1/n. Applying Step 2 we find a sequence (g,)nen in Ce(R%)
with values in [0, 1] such that g, = 1 on K,, and g, = 0 outside U,,. In particular,
gn =14 on K, U(R*\ U,) and |g,, — 14| <1 on U, \ K,,. Hence

1
/ lgn — 14| dC¢ < LU, \ K,] < —.
R4 n

Therefore, g, — 14 in L*(R%, £%) as n — oo. Finally, if A C V for some open set
V', we can always replace the set U,, above by the open set U, NV and hence the
claim follows from the properties of the sequence (g, )nen from Step 2.

Step 4. Let A € R? be a set of finite measure and V € R? be an open set
containing A. We will regularize the sequence (g, )nen in C.(V) found in Step 3 by

20This means that £¢ is simultaneously

e inner regular, i.e. L[A] = sup{L?[K]: K C A compact} for every measurable A C £?,
e outer regular, i.e. L¢[A] = inf{£?[U]: U D A open} for every measurable A C £¢.
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convolution, a standard method to regularize functions. Define n € D(Rd) by

n() = Cet/UelP =1 if ||| < 1,
0 otherwise,

where C' > 0 is chosen such that 7 integrates up to one. Furthermore, given any
e > 0 define . € D(R?) by n.(x) := n(x/e)/e?. Observe sptn. C B.(0) as well as
fRd n.dL% = 1. These functions are often referred to as standard mollifiers. We
then define the convolution

gorn@) = [ gle—p)n) dy= [ gule—y)n) d.
R4 B.(0)
It is a classical result from analysis that g, 7. € C®°(R%), cf. e.g. [6, §C] for details.
Moreover, by general properties of the convolution we have

spt gn, * 0= C spt gp + sptne C spt g, + B:(0). (2.9)

Since g, has compact support, it follows that g,, x n. € @(Rd). Moreover, for € small
enough (depending on n) we can ensure spt g, + B<(0) C V, so that g, xn. € D(V).
With n fixed, the uniform continuity of g,, and the fact that the standard mollifiers
integrate up to one imply g, 7. — g, uniformly on R and in L'(R%, £%) as € — 0
due to (2.9). Choose &, > 0 such that |[gn * 7., — gnllL1(re,cay < 1/n. Then by the
triangle inequality g, x7., — 14 in Ll(Rd, L£4) as n — oo. Finally, 0 < g, 1. < 1
since 7). is non-negative and has integral one, and g,, takes values in [0, 1].

Step 5. We are in a position to prove the statement of the lemma. Assume to
the contrary that f # 0 on a set of positive £L%measure. Without loss of generality
(up to switching the sign of f) we may and will assume L4[{f > 0}] > 0. Using
an exhaustion of 2 by compact subsets and Levi’s monotone convergence theorem,
we find A C  L%-measurable such that £[A] € (0,00), f > 0 on A, and A has
compact closure in ). Again by monotone convergence and possibly shrinking A,
we may and will assume there exists 6 > 0 such that f > § on A.

Since A has compact closure in €2, there exists an open, bounded set V' such
that V C Q and A C V. By Step 4, there exists a sequence (on)nen in D(V) with
values in [0, 1] such that ¢, — 14 in L'(Q,£%) as n — co. Choose a nonrelabeled
subsequence such that ¢, — 14 L£L%a.e. as n — o002, Then clearly f ¢, — f1a
Lé-a.e. and |f o, < 1y |f| on R?, which is integrable since V' is bounded. Hence
by assumption and Lebesgue’s dominated convergence theorem,

0= lim fondld = fladcd >sLe [A],
n— oo JO . Ru’
which is a contradiction. O

2.4. The Schwartz space and tempered distributions. In our short introduc-
tion of distributions, we have seen some examples and basic elements of distributional
calculus. As both distributions and the Fourier transform are important in the
theory of PDEs, there is a final natural question we address: can we also define the
Fourier transform acting on distributions?

Again our ansatz is by duality, extending the standard Fourier transform acting
on integrable functions. As an example, let us try to define the Fourier transform
of the distribution associated to T} with f € L'(R®, £%). Following the paradigm

21L1—convergence implies subsequential a.e. convergence.



30 MATHIAS BRAUN

from Definition 2.24, the Fourier transform of T’ should be given by T[], where &
denotes the usual Fourier transform on R%. Using Fubini’s theorem, we compute

Trigle) = [ et T ak

_ / (k) /R e () drdh

/ 1) Fl¢l(2) da
= Ty(Flg)).

Is the last term on the right-hand side a well defined object? Can we extend it

to any distribution? The answer is no, since the Fourier transform of a nontrivial

D(Rd)—function never has compact support (cf. Exercise 6.4), which suggests that

pairing it with a distribution is not defined in general. To overcome this issue, one

needs to slightly enlarge the space of test functions and therefore we introduce the

Schwartz space?’.

Definition 2.29 (Schwartz space). The Schwartz space S(R?) is defined as
S(RY) := {f € C®(R%C) : sup |z® DP f(x)| < oo for every a, B € NI},

zeR

where = x{" -z

We endow this Schwartz space by the locally convex topology given by the countable
family of seminorms {pa.s : o, 8 € N3} given by

Pas(f) = sup [z D" f(z)|.
reR?

Clearly, the LCTVS $(RY) is metrizable, cf. Theorem 1.23.

Roughly speaking, Schwartz functions are smooth functions that decay rapidly
at infinity, as quantified by the previous definition?3. More precisely, by definition
all derivatives of a Schwartz functions decay superpolynomialle at infinity.

For instance, the function f: RY — R given by f(z):=e™® A% where A € R4*d
is symmetric and positive definite, belongs to S(Rd) yet has noncompact support.
In the next lemma we collect some elementary properties of S(Rd) whose proof is
left to the interested reader.

Lemma 2.30 (Involutions of Schwartz space). Let f,g € S(RY) and o € N¢. Then
the following functions belong also to S(Rd).
(i) The complex conjugation z — f(x).
(ii) The product x — f(x) g(x).
(iii) The product with arbitrary monomials x — z® f(x).
(iv) The derivative map x — D® f(x).

We also recall less obvious properties of the Schwartz space without proof.

Proposition 2.31 (Basic properties of Schwartz space). The following properties
hold true.

(i) The space D(R?) is densely contained in S(R?).

22The space is named after Laurent Schwartz, who pioneered the theory of distributions and his
work was awarded with a Fields medal in the 1950. See his biography at

23Since our aim is to study the Fourier transform (and antitransform) of functions, it makes
sense in the following to always take them C-valued. In particular, ?(x) will denote the complex
conjugate of f(z). Recall that all results from the previous lectures on C°°(2) seemlessy transfer
to C°°(Q; C) (e.g. by splitting f into its real and imaginary parts) and that by differentiability we
always mean real differentiability, not complex differentiability.


https://mathshistory.st-andrews.ac.uk/Biographies/Schwartz/
https://mathshistory.st-andrews.ac.uk/Biographies/Schwartz/
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(ii) We have $(R?) ¢ LP(R%, £%) for every p € [1, oc].
(iii) 8(R?) is complete and has the Heine-Borel property.
(iv) The Fourier transform F: $(R?) — S(R?) defined by

FfI(k) = o flx)e ™ da

is a linear homeomorphism.

Let us briefly explain the last property. As known from classical Fourier analysis,
the decay of a function and its derivatives at infinity is related to the smoothness of
its Fourier transform, while its smoothness is related to the decay of the Fourier
transform at infinity. For this reason, the seminorms from Definition 2.29 encode
both decay at infinity and smoothness and it is natural to expect that the Fourier
transform inherits these properties. The mathematical proof of (iv) is merely a
rigorous formulation of the above thoughts.

By the above proposition the Fourier transform maps D(R?) into S(R%). Hence
we could define the Fourier transform on “distributions” that are defined on S(R?).
Since D(R?) ¢ §(R?), this means those are special family of distributions.

Definition 2.32 (Tempered distribution). A tempered distribution is a linear func-
tional T': S(Rd) — C that is continuous with respect to the convergence introduced
in Definition 2.29, symbolically T € 8'(R?).

Note every tempered distribution is a “classical” distribution on R since the
convergence on D(Rd) implies the convergence in S(Rd). Moreover, every LP-
function can be interpreted as tempered distribution in the sense of Example 2.19.
However, not all cases in Example 2.19 define tempered distributions. For instance,
the function f € L} (R, L) given by f(x):=e” grows so quickly such that its
product with the Schwartz function 1/f has no finite integral on R. With some
small restrictions the operations on distributions also make sense for tempered
distributions®.

Theorem 2.33 (Fourier transform on tempered distributions). Given T' € &' (R,
we define its Fourier transform T € 8'(R®) by T(¢) = T(F[@]). This Fourier trans-

form. is a linear bijective map from 8'(R?) to 8'(R%).

Proof. First we show T is again a tempered distribution. First of all, we know
Flp] € S(R?) for every ¢ € S(R?), meaning T is well-defined. Linearity follows
from linearity of the Fourier transform and linearity of 7. Thus, it remains to show
the Fourier transform defined above is continuous. By linearity, it suffices to prove if
(¢n)nen is a sequence in 8(R?) converging to zero, then T(g,) — 0 as n — oco. By
definition and continuity of 7' this reduces to prove Flp,] — 0 in $(R%) as n — oo.
This is the last item of Proposition 2.31.

To conclude the proof, we need to show the Fourier transform is bijective. We
first prove injectivity. By linearity it suffices to prove T'= 0 implies T = 0. Let
¢ € $(RY) be given. Then T[] € §(R?) by the Fourier inversion theorem on the
Schwartz space. This yields

0=T(F ') = T(FF ¢l = T(p).

Since ¢ € S(Rd) was arbitrary, the above identity implies T' = 0. To prove surjec-
tivity, let T € 8'(R%) and define a tempered distribution S € 8/(R%) by the formula
S(p) :=T(F[p]). Again this is a tempered distribution since the inverse Fourier

240ne has to be careful with the definition of the product with smooth functions. The product
of a Schwartz function with ¢ € C°(R?) is not a Schwartz function in general. However, it suffices
to require ¢ is smooth and 1 and all its derivatives grow at most polynomially.
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transform is also linear and continuous with respect to the convergence in S(Rd) by
Proposition 2.31. The definition entails

S(p) = S(Fp)) = T(F[Fe]]) = T(e).
This terminates the proof. O

In the previous proof, we obtained the formula T-1=ToF 1. In particular,
it is elementary to verify the Fourier transform and its inverse are sequentially
weakly*-continuous on 8'(R%). (The weak*-continuity is true as well, but the proof
is slightly more involved.)

This concludes our concise survey on (tempered) distributions.

Lecture 8.

3. CALCULUS ON BANACH SPACES

If not specified otherwise, in this section X, Y, and Z always denote Banach
spaces over a field K equal to R or C. We introduce basic calculus for maps
F: X — Y and deduce several properties well-known from the finite-dimensional
case. Since many proofs hardly differ from the case of maps from R™ to R™, where
n,m € N, we often just sketch them.

3.1. Basic definitions and elementary results. In a basic undergraduate course
in analysis, one defines the “derivative” of a given map F': R" — R™, where
n,m € N, at a point 7o € R" in two related yet different ways.
e If there exists a linear map A € L(R",R™) such that
F o + h) —F To) — Ah
PG+ h) — Flay) — B

=0
h—0 |h|

then this map is unique, termed the (total) derivative of F' at x(, and
denoted by DF(x).
e If for a given v € R", the limit
. F(xg+ev)— F(x
lim (o ) (o)

e—0 g

exists in R™, it is (clearly) unique, termed the directional derivative of
F at xg in the direction of v, and denoted by D, F'(xg).
Recall a differentiable map is differentiable in every direction, but the converse is not
true in general. Hence, the first notion is stronger, while in applications directional
derivatives are frequently easier to compute.
We will generalize both notions to Banach spaces. The results to follow valid
when we replace Banach spaces by general normed spaces.
The first element of calculus on such spaces is an appropriate notion of (total)
derivative. It is defined in complete analogy to the finite-dimensional case that has
already been treated in an undergraduate analysis course.

Definition 3.1 (Fréchet differentiability). Let F': X — Y and let U C X be open.
We say F is Fréchet differentiable (or simply differentiable) at a point xqg € U
if there exists a bounded linear map A € L(X,Y) such that
o WG+ 1) = F(zo) — Ablly
h—0 Il x
We say F is Fréchet differentiable (or simply differentiable) on U if it is differ-
entiable at every point xg € U.

=0.
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The operator A above is easily seen to be unique if it exists. Depending on the
context, we will thus write F'(z¢) := A or DF(x¢) := A.

Note that a differentiable function is in particular continuous (understood in the
evident way, since we are dealing with normed spaces).

If amap F: U — Y is differentiable on some open set U C X, then the map
F': U — L(X,Y) is also a map with values in a Banach space. By iterating this
observation?®, we can define higher order derivatives as follows.

To simplify the notation, given any n € N we inductively introduce the target
space T,, of the n-th derivative of the map F' in question by 77 := £(X,Y) and
Tn+1 = L(X, Tn)

Definition 3.2 (Higher order derivatives). Let U C X be open and F: U — Y.
Fiz n € N. Inductively, if F' is n-times differentiable in a neighborhood V' of x¢
and its n-th Fréchet derivative F™) :V — T, is differentiable at xo, we say that F
is (n + 1)-times differentiable at x.

We say F is (n + 1)-times differentiable in U if it is (n + 1)-times differentiable
at every xg € U.

Finally, we define

C"(U;Y)={F:U =Y : F is n-times differentiable in U
and F™ is continuous on U}.
Ezample 3.3 (Fréchet differentiable maps). e Every bounded linear map is
Fréchet differentiable with constant derivative. Indeed, if A € L(X,Y)
then we have A’(z) = A for every z € X. This follows from the simple

observation A(z 4+ h) — Az — Ah =0 for every z,h € X.
o Let X := L?([0,1],£') and Y := R. Define F': X — Y by

1
F(u) :/ lu|? dC?.
0
Then F is differentiable and
1
F'(u)v = 2/ uvdll.
0

This is a consequence of the following more abstract result. Let H be a real
Hilbert space with scalar product (-,-). Then the map F: X — R defined
by F(z) := (z,z) is differentiable with F'(z)y = 2 (z,y) for every z,y € H.
Indeed, by bilinearity we easily see
<1’ +h,x+ h> - <x,x> -2 <x7 h> = Hh”%{v
for every h € H, implying
. |F(z+h) = F(z) —2(x, h)|

lim
h—0 1)l e

= lim ||h||g = 0. |
h—0

‘We now turn to extensions of classical calculus rules.

Lemma 3.4 (Chain rule). Let U C X and V C Y be open. Let F: U — Y and
G:V — Z. Assume both F is differentiable at a point xo € U with F(xg) € V and
G is differentiable at F(xg). Then G o F: U — Z is differentiable at xoy and

(Go F)(z0) = G'(F(x0))F' (o).
Proof. Exercise 9.1. O

25Note that, for instance, F”: U —» L(X,L(X,Y)). Compare this with the customary Hessian
of maps between finite-dimensional vector spaces.
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Be careful with the notation in the lemma above, in the sense that we are not
taking products of derivatives, but compositions. More precisely, F’(xq) constitutes
a bounded linear map sending x € X to F'(x¢)x € Y, after which the bounded
linear map G'(F'(z)) sends y := F'(zg)z € Y to G'(F(x0))y.

Another important tool in analysis is the mean value theorem. First, we recall
the classical example of the circle f: [0,27] — R? given by f(t) := (cos(t),sin(t))
for which the equality f(z) — f(y) = f'(§)(x — y) — that one proves for real-valued
functions in a first analysis course — cannot hold for any & € [z,y] (take e.g.
x = 27 and y = 0). In other words, whenever the target domain of f has more
than one dimension we cannot expect to extend the standard mean value theorem.
The natural partial generalization to higher dimensions (which is often enough in
applications) is the inequality |f(x) — f(y)] < |f/(&)]|x — y| for some & € [z,y]. This
is what we are going to generalize on Banach spaces.

To simplify the notation, in what follows we do not specify the norms whenever
confusion is excluded. If x € X then ||z|| refers to its norm in X, while terms like
|E'(z)|| refer to the operator-norm of F'(z) in £L(X,Y).

Lemma 3.5 (Mean value inequality). Let [a,b] C R be an interval and let the map
F: [a,b] = X be continuous on all of [a,b] and differentiable on (a,b). Then there
is & € (a,b) such that

[1F(b) = F(a)ll < [F"(E)IIb— al.

Proof. Without loss of generality, we may and will assume F'(a) # F(b), otherwise
the claim is clear. Then by the Hahn—-Banach theorem, we know there is g € X’
such that ||g|| = 1 and g(F(b) — F(a)) = ||F(b) — F(a)||*°. We intend to apply the
standard mean value theorem®’ to the mapping g o F. In particular, we know there
exists £ € [a,b] such that

(go F)(b) = (go F)(a) = (go F)'(§)(b—a).

Using the chain rule and linearity of g,

(go F)'()(b—a) =g (F()(F ()b —a)) =g(F' (&) —a)).
We finally get

|1F(b) — F(a)|| = g(F(b) — F(a))
= g(F'(§)(b—a))
< gl IF" (I b — al
=[IF"] 16— al.
This terminates the proof. O

The above lemma allows us to prove local Lipschitz continuity of differentiable
functions whose derivatives are locally?® uniformly bounded. Indeed, it suffices to
consider the restriction to one-dimensional segments.

We also have the following version of the Schwarz theorem on the symmetry of
second derivatives.

26The Hahn-Banach theorem has the following consequence: for each non-zero xg € X there
exists g € X’ such that g(xzo) = ||zo||. To prove this, consider the subspace M spanned by zo and
define g(Azo) = Al|zo|| where g € M’ and ||g|| = 1. Then apply the Hahn—-Banach theorem to
extend g to all of X’. Note that this is another proof of Corollary 1.37.

2"We can assume g is real-valued since we can always interpret X as a vector space over R.

28Attention: in infinite dimensions “locally” has to be understood on open neighborhoods
instead of compact subsets.
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Lemma 3.6 (Schwarz theorem). Let U C X be open. Assume that F: U =Y is
two-times differentiable on U. Then for every x € U and every v,w € X,

(F"(z)v)w = (F" (x)w)v.

Proof. Fix e > 0 and v, w € X with ||v||, |[w| < n, where n > 0 is sufficiently small
such that for every s € [0, 1],

IF (2 4 v + sw) = F'(z) = F"(z)(v + sw)ll e x,y) < e (ol + sllwl)),

|F' (2 + sw) = F'(z) = F'(x)swll ¢ x,y) < & sllw].
By the triangle inequality and the definition of the operator norm,
IF(z 4+ v+ swjw = F'(z + swyw — (F"(z)v)wlly < e (o] +2sllwl]) [w],

We define g: [0,1] — Y through ¢(s) = F(x + v + sw) — F(z + sw) — s(F"(z)v)w.
Then the mean value inequality implies

|Flx+v+w)— F(z+w)— F(z+v)+ F(z) — (F"(x)v)w||

S sup (|7-g(s
s€(0,1) ds

< sg)pl) |F'(z 4+ v+ sw)w — F'(z + sw)w — (F"(z)v)w|y
s€(0,
<e(l[oll + 2fwll) 1wl
Exchanging the roles of v and w we conclude
[F(z+v+w) = Flz +w) = Flz+v) + Fz) = (F"(z)w)v] <& @llv]l + [[w]]) [Jv].
This entails
I(F" (z)o)w — (F"(@)w)oll < 2e(|fvl] + [lw]])?

Since both sides are positively homogeneous of degree two, the above restriction on
the norm of ||v|| and ||w|| can be dropped. Sending ¢ — 0 yields the claim. O

We have defined a notion of differentiability. Next, we will introduce directional
derivatives. They have several advantages. For instance, they are somewhat easier to
compute. Moreover, differentiability is a very strong property in infinite dimensions®’
and one often needs to use weaker notions of differentiability. This is motivated by
the following example.

Example 3.7 (A nowhere differentiable map). Let X := L?((0,1),£!') and define
F: X — X as F(u) := cosou. Then F is not differentiable at 0. Indeed, assume F
is differentiable at 0. Then for every v € D((0,1)) with unit L*norm,
F — F(0) — F' F - F
F/(0)v = F'(0) + limg L&V = FO) = F'Qev_ ) Flev) — F(O),

e—0 g e—0 g

where the limits are understood in L2((0,1),£'). We compute

— 2 —
H sﬂoé: / |cos(ev(z)) — 1] dz = 0,

where the latter equality follows from the global bound |cos(z) — 1| < |#|?/2 for every
x € Ry, which can be seen by Taylor expansion, and the boundedness of v. This
implies F’(0)v = 0 for every v € D((0,1)); by density of D((0,1)) in L?((0,1), L),
we deduce F’(0) = 0. Hence for every h € L*((0,1),£1),

1
/0 lcos(h(x)) — 17 dz = o [[1]}?).

6%0 H

29Roughly speaking, in finite dimensions one only needs to control finitely many directions to
control the entire derivative.
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Now choose h = 1jg o with £ € (0,1). The above estimate implies

elcos(1) — 112 = o(e?).
Dividing by €, we obtain a contradiction since the left-hand side is different from
zero. With more effort one can show F' is in fact nowhere differentiable. |

Lecture 9. Now we turn to the analog of directional differentiation.

Definition 3.8 (Géateaux differentiability). Let U C X be open and F: U — Y.
We say F is Gateaux differentiable at a point xg € U if there exists A € L(X,Y)
such that for every v € X,

Ao = Tim F(xzo+ev) — F(Io).
e—0 g

We say F is Gateauz differentiable in U if it is Gateaux differentiable at every
zg € U.

In other words, we require the above limit to exist and to constitute a bounded
linear map from X to Y.

In the above case, we write dF(zg) := A (which is trivially unique if existent) to
distinguish the Gateaux derivative from the Fréchet derivative.

Note that in contrast to the classical definition of differentiability, in the above
limit the convergence can be nonuniform with respect to the direction v. The
relationship between the two concepts is similar to the finite-dimensional case.
Hence we omit the proof of the lemma below.

Lemma 3.9 (Géateaux vs. Fréchet differentiation). Let U C X be open and F': U —
Y. If F is differentiable at xo € U, it is Gateauz differentiable and §F(x¢) = F'(zo).

Conversely, if F is Gateaux differentiable in a neighborhood V' of xog and the
Gateaux derivative 6F: V — L(X,Y) is continuous, then F is differentiable at x
with 6F (z9) = F'(x0).

As customary in the Euclidean case, the Gateaux derivative provides a useful
necessary condition for optimization problems.

Lemma 3.10 (Necessary conditions for extremizers). Let U C X be open and
F:U —R. Ifxg € U is a local extremizer of F and F is Gdteaux differentiable at
xo, then 0F (zg) = 0.

Proof. By replacing F' with —F', it suffices to establish the claim when zq is a local
minimizer. Given any v € X, the small perturbation zg + ev lies in U for every
sufficiently small € > 0. Given any such ¢, local minimality of F' at zy implies
F(x9) < F(xg + €v). Therefore,

F(zo+ev) — F(xo)

= 1 > 0.
OF (xg)v sli%i 5 >0
Replacing v by —v we deduce 6 F(xg)v = 0. O

Similar to the finite-dimensional situation one can also derive necessary and
sufficient conditions for the second derivatives in optimization problems. We will
briefly discuss them in the exercises.

3.2. Partial derivatives and the implicit function theorem. Now we consider
functions defined on Cartesian products of Banach spaces, i.e., we assume that
given any n € N, Xy,..., X,, are Banach spaces. We equip X; X ... x X,, with the
complete maximum norm given by [|(z1,...,z,)| = max{||z;|x, : i € {1,...,n}}.
IfU C Xy x---x X, isan open set and F': U — Y is a map, then for a fixed vector
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(@1, By, Tp) € Xp X oo x Xy X --+ x X,,%" we can consider the restriction
i — F(x1,. .., %21, %4, Tix1, - .-, T,) defined on the open set

Uz':{JL‘iEXi: (xl,...,xi,...,zn)EU},

where i € {1,...,n}. The i-th partial derivative 9;F: U — £(X;,Y) is defined as
the derivative of this restriction (always intended in the sense of Fréchet).

The following result shows partial derivatives enable us to recover the entire
derivative provided f is differentiable on the product space.

Lemma 3.11 (Partial vs. total derivative). Let U C X1 X --- x X,, be open and let
F:U — Y. If F is differentiable, then all its partial derivatives exist and satisfy
the following for every (x1,...,z,) € U and every (hi,...,hy) € X1 X -+ x Xy

Fl(ay, ) (b, he) =Y 05F (21, )by, (3.1)
j=1

Moreover, if F € C*(U;Y), then 0;F € C(U; £L(X;,Y)) for every j € {1,...,n}.
Conversely, if all partial derivatives exist and obey 0;F € C(U; L(X;,Y)), then
F € CHU;Y) and its derivative computes as (3.1).

Proof. The argument for the first two claims is left as an exercise to the reader.
The last statement is shown in Exercise 10.1. O

Now let us address the implicit function theorem. We first collect some conse-
quences of Banach’s fixed point theorem. Note that the first statement below is a
nonlinear, abstract version of the Neumann series.

Lemma 3.12 (Contractions). (i) Let T: X — X. If there exists 6 € (0,1)
such that | T(x) — T(y)|| < 0 ||x — yl|| for every z,y € X, thenId —T is a
homeomorphism from X to X.

(ii) Let S: Bs(0) — X, where B;s(0) denotes the closed 5-ball in X for 6 > 0,
and assume there exists 0 € (0,1) such that ||S(z) — S(y)|| < 8|z —y| for
every x,y € Bs(0). If ||S(0)|| < 8(1 — ) then the map Id + S has a unique
zero. Moreover, setting p := (1 — 0)§ — ||S(0)|| we have

B,(0) C (Id + S)(B5(0)).
Proof. Exercise 10.2. O

As we will see, the second part of the above lemma is tailor-made for the proof
of the implicit function theorem.

Theorem 3.13 (Implicit function theorem). Let zo € X and yo € Y. Let U C X

and V. C 'Y be open meighborhoods of xo and yg, respectively. Assume F : U X

V — Z is continuous, partially differentiable in its second component, and that

WF :U XV — L(Y,Z) is continuous. Suppose F(xo,yo) = 0. If the linear map

O F(0,v0) is invertible, there exist closed balls B, (x¢) C U and Bs(yo) C V and

ezactly one map T: B,(xo) — Bs(yo) such that F(z,T(z)) =0 for all x € B,(xo).
Moreover, the map T is continuous and satisfies T (xzo) = yo.

As usual, the implicit function theorem gives a local parametrization of a subset
of the zero level set of F around (x¢, o) by the first component.

Proof of Theorem 3.13. Up to a translation (which does not cost generality), we
may and will assume zg = 0 and yo = 01. We set L := 92F(0,0). Since for given
x € U and y € V the equation F(x,y) = 0 holds if and only if y+ L~ F(z,y) —y = 0
by the hypothesized invertibility of L, we verify the assumptions of the second part

30We use the usual hat notation from multilinear algebra to indicate the i-th slot is omitted.
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of Lemma 3.12 for S(z,-) := L='F(x,-) — Idy, where Idy denotes the identity on
Y. Indeed, a zero of Idy + S(z, ) will depend on = and we use this zero to construct
the desidered map 7.

Since 32.5(0,0) = 0 and 355 is continuous on U x V', given any 6 € (0,1) there
exists > 0 such that ||025(z,y)|| < 6 on Bs(0) x Bs(0). The mean value theorem
on the convex set Bs(0) C Y implies

15(2,y1) = Sz, y2) || < Ollyr — all-

Moreover, the continuity in the first variable implies that for some r € (0,4), we
have [|S(-,0)|] < (1 — #) on B,(0). Hence the second statement of Lemma 3.12
yields there exists a unique zero T'(z) € B;(0) of the map y + y + S(z,y) for every
r € B,(0). By uniqueness, we have T'(0) = 0.

In order to prove continuity of 7', note that for every x,zg € B,.(0) we have

1T () = T(xo)ll = [|S(2, T (2)) — S(wo, T (20))]|
< [I5(z, T(x)) = Sz, T(@o)) | + [15(2, T (w0)) = S(zo, T(x0))|
<O|T(x) = T(xo)ll + 1S(2, T(x0)) — S(xo, T(x0))l|

Absorbing the #-dependent term in the left-hand side, the continuity follows from
the continuity of S in the first variable. (]

Next we prove the inverse function theorem on Banach spaces.

Theorem 3.14 (Inverse function theorem). Let Uy C X be open and F € C*(Up;Y).
Let xg € Uy be such that F'(xq) is invertible. Then there exists an open neighbor-
hood U C Uy of xo such that F|U: U — F(U) is a homeomorphism onto the open
neighborhood F(U) of yo := F(xo).

Moreover, there is a possibly smaller open neighborhood V- C U of x¢ such that
F‘;l € CY(F(V); X), and the following identity holds for every x € V :

(F, ) () = F(a) ™.

Proof. We apply the implicit function theorem to the assignment defined by
H(z,y) == F(z) —y with Z =Y and the roles of X and Y reversed. We thus find
W = B,(yo) and Bs(x) C Uy and a unique continuous map 7 : W — Bs(x¢)>!
such that T'(yo) = o and H(T'(y),y) = 0, that is, F(T(y)) =y for every y € W. In
particular, W is in the image of F and the set U := F~1(W) N Bs(zo) containing
Zo is open in X and F(U) = W is an open neighborhood of yg. Moreover, F has
to be injective on U (otherwise there are at least two possibilities to construct the
map 7). Note that T(W) C F~Y(W)N Bs(xg) = U. Hence T: W — U, but we still
need to show that T'(F(x)) = x for every x € U. Clearly F': U — W is bijective
(by injectivity and since W = F(U)). Hence as a general fact left and right inverse
agree and we found F ‘; =T, so that F' is indeed a homeomorphism.

It remains to show the differentiability properties of T'. As the set of invertible
linear maps is open®?, for some possibly smaller open neighborhood Wy, C W the
bounded, linear operator F'(T(y)) is still invertible. Set V = F~1(Wy) N Bs(xo).
Let us show that T is differentiable at y € Wy = F(V) with derivative F'(T(y))~!.
Observe that

IT(y + ) — T(y) — F'(T(y)) Al
< |F(TW) e IF (T@)T(y+ h) — F(T(y)T(y) - hl|

3176 obtain the open ball in the image, it suffices to decrease the radius.

32This is a well-known consequence of the von Neumann series when Y = X. In the general
case, given Lo invertible, write L = Lo(I + Lal(L — Lp)) and then L is invertible whenever
I+ Lal(L — Lo) is invertible. The latter operator is again an operator from X to X and hence it
is invertible when the operator norm ||L — Lg|| is small enough.
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=c||F'(z)(z, — x) — (F(zp) — F(z))],

where © := T(y), zp, := T(y + h), and c:= |F'(T(y)) |l ¢(v,x)- Note that by
the continuity of T it follows that x, — x as h — 0. Hence, given ¢ > 0, the
differentiability of F' at « implies that for ||h| small enough,

IT(y + 1) = T(y) — F'(T(y) "0l < cellon — x| = ce|T(y +h) = Ty).

In particular, for € small enough we conclude ||T(y + h) — T(y)|| < ¢(1 —ec)7H|A||.
Inserting this bound into the estimate above we obtain

IT(y +h) = T(y) = F'(T(y)) " hll < cellon —all = ¢ (1 — )7 |l],

which shows T is differentiable in Wy with T (y) = F/(T(y))~!. Since T and F’ are
continuous, we obtain 7' € C'(Wp; X). O

Remark 3.15 (Smoothness). One can show that the local inverse function inherits
the smoothness of F, that is, if ' € C™(Up,Y") for some m € N U {oco}, then
F‘;l € C™(F(V); X) as well. A detailed proof of this fact is quite technical. Here
is a sketch of the argument. Using 7"(y) = F'(T(y))~! and the fact that taking the
inverse of a bounded, linear operator is a smooth function, it suffices to show that
the composition of smooth functions and C™~!-functions belongs to C™~!, which
follows essentially from the chain rule. A similar statement holds for the function
given by the implicit function theorem. |

Lecture 10. As a further application of the implicit function theorem we discuss
global diffeomorphisms®?. Recall a diffeomorphism between two Banach spaces is a
smooth bijective map with smooth inverse.

Corollary 3.16 (Sufficient criterion for diffeomorphy). Let F' € C1(X;Y) be such
that F'(x) is invertible for all x € X. If there exists a constant ¢ > 0 such that
|F'(x)7Y| < cllz|| + ¢ for every x € X, then F is a diffeomorphism from X to'Y.

Proof. By the inverse function theorem, it suffices to show F' is bijective. We

first show F is surjective. Fix y € Y and g € X. Define H: R x X — Y by

H(t,z) = F(x) —ty — (1 —t)F (o). Then H(0,29) = 0 and 92 H(0,29) = F'(x0) is

invertible. By the implicit function theorem there exists x: [0,0] — X such that
F(z(t)) =ty + (1 — t)F(zo).

If 6 > 1 we know y = F(2(1)). To this end, we derive an ODE satisfied by x.

We use the following trick to obtain the desired ODE by applying the inverse func-
tion theorem. Consider G: Rx X — Rx X defined by G(t,z) = (¢, F'(zo) "' H(t,z)).
Then G € CH(R x X, R x X) and G'(0,x¢)(t,h) = (t,h—yt + F(z0)t), a map which
is clearly invertible. Since G71(¢,0) = (t,z(t)), we deduce z is indeed differentiable
in an open interval around 0 and then the chain rule yields that

@' (t) = F'(x(1)) "' (y — F(wo)).

Let T denote the maximal interval of the form [0,T) where this differential equation
can be solved with initial value 2(0) = zo. If T'< 1 then

o)1 < ol + [ |F'(a() " (0 = Fiao))| ds
<ol + [ [ela(s)] +] Iy = Flao)] ds

t
—cite [ fal)ds
0

33The proof of this result was skipped in the lecture. The proof is not examinable.
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for some appropriate constant C' > 0. Gronwall’s inequality then yields ||z (¢)| <
Cexp(Ct) < C' for all t € [0,T). In turn, using the ODE the quantity ||«’| is
uniformly bounded on [0, 7). In particular, the limit lim;_,7 z(¢) exists (here we use
that X is complete). Denote the limit by x7. Then we repeat the above argument
with zg replaced by z7 and obtain a contradiction to the maximality of 1. This
shows T' > 1 — actually T' = oco! — and therefore I is surjective.

For proving injectivity, assume F(x1) = F(x2) = y yet x1 # xo. Without loss of
generality we may and will assume y = 0. We will construct a continuous function
¢:[0,1)2 — X such that F(p(t,s)) = —sF(tz1 + (1 — t)xq) for every s,t € [0, 1].
Then F(p(t,0)) =0 for all ¢ € [0, 1], which contradicts the local invertibility of F.
To find ¢, define Cy([0,1]; X) = {u € C([0,1]; X) : #(0) = 2(1) = 0} (space of X-
valued continuous functions on [0, 1] with Dirichlet boundary conditions) equipped
with the maximum norm || - ||. Define H: C§([0,1]; X) — C([0,1];Y) by

H(u)(t) :== F(u(t) + tzy + (1 — t)z2).
(

Note that H(u)(0) = H(u)(1) = 0, so that H(u) € C3([0,1];Y)). Moreover, one
can show H € C1(Cy[0,1]; X); C([0,1];Y)) with derivative

(H'(u)h)(t) = F'(u(t) + tzy + (1 — t)z2)h(t).
In particular,
(H'(w)"1y)(8) = F'(u(t) + tar + (1 = )a2) " y(2).

Hence |H'(u) || < C||u|| s+ C for some constant C' > 0. Repeating the first part of
the proof with F' replaced by H and xzo =0 € Cy([0,1],X) and y =0 € C([0,1];Y)
to find a differentiable function v : [0, 1] — Cy([0, 1]; X') such that v(0) = 0 and

v'(s) = —H'(v(s)) " H(0).
Setting p(t,s) = txy + (1 — t)ze + v(s)(t) we get
F(p(t, s)) = H(v(s))(t)
- [ oo war
~ —sH(O)0)
= —sF(tx1 + (1 — t)x2).
This terminates the proof. O

3.3. Taylor expansion on Banach spaces. For function f : R — R the Taylor
expansion around a point z € R reads

f ()

n!

flx+h)=fx)+ ff(x)h+...+ ™ +o(|h]™),

provided f is n-times differentiable, where n € IN. In case one has more information,
one can express the remainder o(|h|")?* either as an integral or an evaluation of
a term involving the (n + 1)-st derivative. We already know from the mean value
theorem that the latter possibility cannot be expected for functions with target
domain not being a subset of the real line.

Before we prove any formulation of the Taylor expansion in Banach spaces, we
need to understand the structure of higher order derivatives. It will be convenient
to identify them with bounded, multilinear maps.

34Here is a little reminder on Landau notation. We will write f € o(h) as  — a provided
limsup,,_,, | f(z)/h(z)| = 0. Equivalently, for every e > 0 there exists § > 0 such that for every
x € Bs(a), we have |f(z)| < e |h(z)|. Whenever we write f = g+ o(h) as £ — a we intend to say
f—ge€o(h)asz— a.
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Recall &,, denotes the group of permutations of {1,...,n}, i.e. the set of all
bijective maps o: {1,...,n} — {1,...,n}, where n € N.

Definition 3.17 (Multilinear maps). Given any n € N, let M"(X,Y") denote the
set of multilinear, bounded maps from X™ to Y, i.e., functions m: X™ — Y that
are linear in each variable and such that the following quantity is finite:
lm|aen(x,v) = sup{|[m(z1,...,z0)|ly : [|zillx <1 for everyi e {1,...,n}}.
We call m € M™(X,Y) symmetric if for every permutation o € &, and every
('rla" '7xn) € Xn}
M(To(1); - To(n)) = M(T1,- .-, Tn)

Remark 3.18 (Functional analytic properties). The space M™(X,Y’) with the above
norm becomes a Banach space. Additionally, the space of symmetric maps is a
closed subspace of it. [ |

The identification of higher order derivatives derivative with an appropriate
symmetric, bounded, multilinear map is justified in the next lemma.

Lemma 3.19 (Generalized Schwarz theorem). Let U C X be open. Let F: U — Y
be N-times differentiable, where N € N. Then for every n € {1,...,N}, every
permutation o € &, and every x € U,

F™ (@) (hi,... hy) = F™(@)(ho(ys - s ho(ny)- (3.2)
Moreover, given any x € U, we have F™ (z) € M*(X,Y) and
IF™ @) = [F™ @) llven (x,v)-

Recall the terms in (3.2) are understood as iterated applications. For instance,

e if n =2 we have F'(x)(h1, he) = (F"(x)h1)he,
e if n =3 we have F"'(x)(h1, ha, hg) = ((F"(x)h1)he)hs,

and so on.

Proof of Lemma 3.19. We first prove symmetry by induction on n, starting with
n = 2. In this case the statement is exactly Schwarz theorem, cf. Lemma 3.6.

To prove the general case, assume for the moment that o is a permutation
such that o(1) = 1. The hypothesized differentiability of F(™) implies for every
hi,...,hn € X the map  — F™(z)(hq,..., hy) from U to Y is differentiable with

[FO (b, ha)] (@) h = FOFD (@) (hy by, hy)
for every h € X. By our induction hypothesis,
FOY (@) (ha, o b)) = [F™ O (hay -y b)) () ha
= [F™ () (hogzys- - hotnin)] @) oy
= FU (@) (ho (1), - s ho(ni)

Next, we consider o € &,, such that o(1) = 2 and 0(2) = 1 yet o(k) = k for every
k€ {3,...,n+ 1}. Then the statement follows from Schwarz’s theorem applied
to the assignment z — F("_l)(hg, .oyhny1). The general case follows from the
fact that any permutation can be written as a composition of the permutations
considered above®®.

35Given any o € Gy, consider first a permutation that exchanges (1) and 2 (first type when
(1) # 1 or second type when o(1) = 1). Then exchange the first and second element (second
type). The remaining permutation will be of the first type.
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Using the symmetry proven in the preceding part, it suffices to prove linearity in
the first component. This directly follows from the definition of the n-th derivative
and the linearity of point evaluations f(z) in f.

To show boundedness, let hi,..., h, € X with ||h;|| <1 forall j € {1,...,n}.
Iterating the boundedness of the n-th derivative,

EO) 0y < @) eyl
< HF(W (h17 . '7hn72)HL(X7L(X,Y)) Hh’ﬂfln ||hn||
< F @) [l ol

This proves F(™(z) € M™(X,Y) and ||[F™ (2)||xen(x,vy < |[F™ (2)]|. To prove the
reverse inequality, note that by definition

[F™ (@) = sup --- sup [F™(@)(h,... 0|y
hi1€X, hn€X,
[[R1]|<1 lhnll<1

< sup{||F™ (x)(hy,... hy) : ||hj] <1 for every j € {1,...,n}}
= [|[F (@) aern (x,v)-

This terminates the proof. ]

Armed with the multilinearity of the n-th-derivative, the Taylor expansion is an
easy consequence of the mean value theorem combined with an induction argument.

Theorem 3.20 (Taylor expansion without quantitative remainder estimate). Let
U C X be open. Let F: U =Y be n-times differentiable, where n € N. Then for
every xg € U,

"1
F(zo+h) :Zk—F(k) z0) (hy ..., h)+o(|h|") ash— 0,

k times

with the usual convention F©O) = F.

Proof. We prove the statement by induction on n. For n = 1 it reduces to the
definition of Fréchet-differentiability.

Now assume F' is (n + 1)-times differentiable. Note that the Taylor expansion is
exact for h = 0. Hence by the mean value theorem applied to the assignment

n+1

1
G(t) == F(zo+th) = > EFW(@«O)(m, ..., th)
k=0
n+1
= F(zo+th) —t* > F® (o) (h,...,h)
k=0
and an index shift we obtain
n+1 1
HF(a:o )= > = F P o), h)H
k=0
n+1 1
< sup ||F'(zo+th)h — F®) (20)(th, ..., th h
temH (zo +th) I;(k_m (o) )H

n

1
< sup |[Fao+th) =37 SFC @o)(th, . tn)| ]
k

T tef0,1] — k! L(X,Y)
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n 1 k)
= sup HF’ xog +th) — —(F"Y®) () (th, ... H
S ( 1?:1 i ) th) x, Y)H |
Applying the induction hypothesis for F”,

HF(mo +h)— % %F(’“) (z0)(h, - .-, h)H
k=0

< sup o([[th]|") |h[l = o(||hl|"*") as h — 0,
t€(0,1]

which is the desired asymptotic. O

Next we present one version of the Taylor expansion with a more precise control
of the error assuming higher order differentiability.

Theorem 3.21 (Taylor expansion with remainder estimate). Let U C X be open.
Let F: U — Y be (n+ 1)-times differentiable. Then for every x € U and every
h € X such that the segment [z, + h] is contained in U, there is ¢ € [x,x + h] with

HF(:U +h) -y %F(k)(x)(h, . h)H < (Hl ol |[F@+D ()b, ).
k=0

Proof. By the Hahn—Banach theorem, there exists g € Y’ with [|g|| = 1 and

1
g|P(z+h) - Z F’“) ..,h)]:HF(Hh Z;? h)H
Define the function f: [0,1] = R by
1

[0 ;:g[F(xHh)— =
=1

FO (2)(th, . .. ,th)} :

By the chain rule f € C"*!((a,b)), where (a,b) is an open interval containing [0, 1].
(Recall U is open.) By Taylor’s theorem, there exists tg € [0, 1] such that

]p@+m—§f%ﬂmewme

k=0

The derivatives of f are given by

FO@) =g [F(k)( +th)( i

In particular, for t = 0 we find f(*)(0) = 0. This implies

n

HF(x +h) - kzo %F(k)(x)(h, o h)H
= (n—il— o ()
- i AR DICRD)
< IO

where we have set ¢ := x + tgh. U
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Remark 3.22 (Integral remainders). In the case Y = R, the above proof yields
g € {—1,1} and therefore the Taylor expansion is exact with the intermediate value
¢. Remainder formulas with integral expression require integration theory in Banach
spaces and therefore we omit them in this course. |

Lecture 11.

4. A SELECTION OF FIXED POINT THEOREMS

Fixed point problems occur all over analysis. For instance, solving an equation
of the form G(z) = y, where = and y belong to the same space, can easily be
transformed into the fixed point equation F(z) = z, where F(z) =2 — G(z) — y.
The function F' can be seen as a perturbation of the identity, even though the
perturbation might not be small in any sense.

Another well-known domain where fixed point arguments occur is the theory
of ODEs. Suppose f: Ry x R"™ — R" is a (say) smooth function, where n € N.
Solving the ODE 2'(t) = f(t,z(t)) with £(0) = z¢ directly would amount to looking
for solutions x in a space of C''-functions, which is analytically challenging. Instead,
we transform the ODE by integration into a fixed point equation F(x) = x, where

F(z)(t) := = +/0 f(s,z(s))ds.

Observe we only have to solve this fixed point equation in a space of continuous
functions, which is one derivative better! Indeed, by the fundamental theorem
of calculus a continuous solution x of F(z) = x is automatically continuously
differentiable, hence solves the original ODE.

In this section we study the existence of fixed points of functions F': K — X,
where K C X is an appropriate set.

4.1. Banach-style fixed point theorems. A well-known result is Banach’s fixed
point theorem, which ensures existence and uniqueness whenever F' is a strict
contraction on a complete metric space. Moreover, the fixed points depend Lipschitz
continuously on F.

Theorem 4.1 (Banach). Assume (X,d) is a complete metric space. Moreover, let
F: X — X be a contraction, i.e. there exists A\ € (0,1) such that d(F(x), F(y)) <
Ad(z,y) for every x,y € X. Then F has a unique fixed point.

The restriction on A cannot be dropped if one wants to retain unique existence of
a fixed point. For instance, nontrivial translations in R"™ are 1-Lipschitz continuous
yet do not have any fixed points. Moreover, the identity map on R" is again
1-Lipschitz yet all points are fixed points.

Proof. Define a sequence (z,)neN, by Zn := F™(x0), where zo € X is an arbitrarily
chosen initial point. We claim (z,,)nen converges to the unique fixed point of F.
Uniqueness is trivial. Indeed, if z, 2’ € X are two fixed points of F,

d(z,2") = d(F(z), F(2')) < Ad(z,2"),
which forces d(z,z’) = 0.
To show the claimed convergence, first note for every k € N,
d(zpr1, 2) = d(T(xr), T(@p-1)) < Md(@p, 2p-1) < -+ < A d(z0,21).

Given n,m € N with n < m, the triangle inequality and a geometric sum yield
m—1

d(xmaxn) < Z d(xk+17xk)
k=n



MATH-404 FUNCTIONAL ANALYSIS II 45

m—1
S Z Akd(xﬂvml)
k=n
m—n—1
S )\"d(mo,xl) Z )\k
k=0

n

<
T1-A

d(xo, I ) .
This shows (z,)nen is a Cauchy sequence. Since (X, d) is complete, it has a limit
in X we denote by . Given any n € N, we have

d(z, F(z)) < d(z,z,) + d(z,, F(2)) < d(z,2,) + Ad(zp_1, 2).

Sending n — oo and using convergence of (2, )nen to © shows x = F(z). O

The following simple consequences of the proof of Banach’s fixed point theorem
are left as an exercise for the interested reader.

Corollary 4.2 (Error bounds). Retain the hypotheses and the notation from the
previous Theorem 4.1. Then for every xg € X, the sequence (z)nen defined by
Xy = T"(zg) converges to the unique fixed point x of F.

Moreover, given any n € N we have the a priori estimate

)\TL
d(xnax) S 11—\ d($0,$1)
and the a posteriori estimate
A 2) < 2 Ao, )
Ty, T) > 11—\ Tn—1,Tn)-

However, the strict contraction property might be quite restrictive in applications.
We thus provide a small selection of different fixed point theorems. Let us start
with the following elementary generalization of Banach’s fixed point Theorem 4.1
under the stronger assumption that the domain is compact.

Theorem 4.3 (Edelstein). Let (X,d) be a compact metric space and F: X — X be
such that d(F(x), F(y)) < d(z,y) for every distinct z,y € M. Then F has a unique
fixed point.

Proof. Uniqueness is shown as in the proof of Theorem 4.1.
To show existence, consider the real-valued assignment h(z) := d(z, F(x)). It is
Lipschitz continuous since

d(z, F(x)) ) +d(y, F(z

(z F(x))
(z,y) +d(y, F(y)) +d(F(y), F(x))
d(z,y) +d(y, F'(y)),

which implies h(z) — h(y) < 2d(x,y). Exchanging the roles of z and y then yields
the desired Lipschitz continuity of h. By continuity the image of h(X) is compact
in R. Hence h achieves its minimum on M. Let zy denote such a minimizer. If
xo = F(x0), we are done. Otherwise, we would get

d
d
2

ININ TN

h(F(x0)) = d(F(z0), F(F(x0))) < d(z0, F(x0)) = h(xo),

which contradicts the minimality of xg. (I
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4.2. Schauder’s fixed point theorem. In this subsection we prove a quite general
existence theorem for fixed points. Usually the theorem is stated on Banach
spaces, but we show a version for LCTVS. We will need the following auxiliary
result that relies on the Brouwer fixed point theorem, cf. Theorem 4.9 below, that
we will prove later.

Recall given any subset A C X of a vector space X, its convex hull is defined by

oA = {me n €N, 21, e, € A AL A €10,1), YN = 1}.
i=1 i=1

Lemma 4.4 (Nonempty intersections). Let X be a Hausdorff TVS and B C X.
For every x € B let A(z) C X be a closed set such that

n
co{xy,...,xn}t C U A(x;)
i=1
for every finite subset {x1,...,2,} C B. Then for every finite set {y1,...,yr} C B,
the intersection (;_, A(y;) is nonempty.

Proof. Assume to the contrary there exist yi,...,yx € B such that ﬂ?zl A(y;) is
empty. Let W denote the linear span of {yi,...,yx}. By Proposition 1.33, the space
W is closed. Hence, by assumption on the family A, also W N A(z) is closed for
every « € B. In particular, given any z € W, we have z ¢ W N A(y;) if and only if
d(z, W N A(y;)) > 0; here, d is the induced Euclidean norm on W (which generates
the subspace topology of W by Proposition 1.33). Note that ﬂle W nNA(y) =0,
so that for all ¢ € C, where C :=co{yi,...,yr}, we have
k

> d(e, W N A(y;)) > 0.

j=1
Define F': C — C by

E kK
Flo) = [ Y dleWnAy)] Y dle,WnAw))y;.
j=1 j=1
Then F' is continuous since the distance function is continuous. Moreover, C is
compact, convex and nonempty. By Brouwer’s fixed point theorem the map F has
a fixed point ¢g € C. Let I C {1,...,k} denote the set of those indices j such that
d(co, W N A(y;)) > 0. Then by the assumption on the sets A(y;) we have

co = Fleo) € co{y; : j eI} C | Alyy),
JjeI
which yields a contradiction to the definition of the set I. O

Now we can state and prove Schauder’s fixed point theorem on LCTVS, which
was first established by Tychonoff. This theorem is usually presented in Banach
spaces but it is quite interesting to see that it holds on any LCTVS. We refer to
Remark 4.6 for more comments about the version in Banach spaces.

Theorem 4.5 (Schauder—Tychonoff). Let X be an LCTVS and K C X be closed,
convez, and nonempty. Let F: K — K be continuous such that F(K) is compact.
Then F has a fixed point in K.

Proof. Let U be a convex, balanced, and open neighborhood of the origin. Define
S := F(K). Since S is compact, there exists a finite subset {y1,...,y,} C S such
that S C U, (y; + U). For each i € {1,...,n} we set

Aly;) ={x e K: F(x) ¢ y; + U}.
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Since y; + U is open, the set A(y;) is closed. Note that
n n
NAw) ={zek: Fa) ¢ Jwi+0)} =0,
i=1 i=1

Applying the contraposition of Lemma 4.4 to the set B := {y1,...,yn}, we deduce
there exists a subset J C {1,...,n} and zy € co{y; : i € J} with the property
vy ¢ Uy Alyi). Since 2y € K by convexity, this implies F'(zy) € y; + U for every
i € J. In turn, there exists u; € U with F(zy) = y; + u;. Write xp = Y, ; A,
where } .., A; = 1 and all coefficients are nonnegative. By convexity of U,
Flzy) =Y NF(zv) =Y Xi(yi+w) =2y + Y _ Au; € 2y + U.

i€J = jeJ

Hence, for fixed U there exists xy € K such that F(zy) € xy + U. Thanks to
the compactness of the reference set S, we may and will therefore assume that
net {F(xy) : U balanced, convex, open neighborhood of the origin}*® converges to
some zo in K. But then zy converges to xg. Indeed, let V' be a convex, balanced
neighborhood of the origin. Then eventually (along a subnet) zy € F(zy) + U C
20+ V/24+V/2 C xo+ V. By continuity of F, it follows that F(xq) = xo. O

Remark 4.6 (Banach space version of Theorem 4.5). The Schauder—Tychonoff fixed
point theorem is usually stated in Banach spaces. For the proof presented here, the
only simplification would be that one can replace U with balls of radius 1/m and
directly construct a sequence instead of a net. However, in Banach spaces there is a
simpler proof which avoids the application of Lemma 4.4 and uses Brouwer’s fixed
point theorem in a more direct way. We present this proof in the appendix and we
highlight analogies with the proof on LCTVS discussed here. ]

Next, we present an interesting application of the Schauder fixed point theorem.

Theorem 4.7 (Peano). Let (to,z9) € R x R" and consider the ODE 2'(t) =
f(t,z(t)) and x(to) = xo. If the function f:[—a+to,a +to] x Br(yo) = R" is
continuous for some a, R > 0, then there exists 6 > 0 such that the above initial
value problem has a solution x: [—6 + to,d + to] — R".

Proof. Exercise 12.3. (]

In general, applying the Schauder—Tychonoff fixed point theorem can be quite
tricky since one needs to find the set K for which F' maps K to K. The following
consequence avoids this problem on Banach spaces.

Theorem 4.8 (Schaefer’s fixed point theorem). Let X be a Banach space and let
F: X — X be continuous such that F(B) is compact for every bounded set B C X.
Assume further that the set {x € X : © = AF(x) for some X € [0,1]} is bounded in
X. Then F has a fixed point.

Proof. Exercise 12.2. O

Lecture 12.

36The family of balanced, convex, open neighborhoods of the origin can be turned into a directed
set with respect to set inclusion. Note that this family is stable under intersections and therefore
the net is well defined. If you have not seen nets, you should imagine that they are natural
generalization of sequences with uncountably many indices.
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4.3. Brouwer’s fixed point theorem. Here we prove Brouwer’s fixed point
theorem in the general version we used to show the Schauder—Tychonoff fixed point
theorem. There are several proofs, which use quite difficult approaches. We use
here an analytical one which only requires a change of variables for the occurring
integrals. Let us first state the theorem.

Theorem 4.9 (Brouwer). Let K C R", where n € N, be convex, compact, and
nonempty. Moreover, let f: K — K be continuous. Then [ has a fized point in K.

Remark 4.10 (From Euclidean space to finite dimensions). In the proof of Lemma 4.4
we used the above theorem in a finite-dimensional subspace of a Hausdorff TVS.
By Proposition 1.33, such spaces are linearly homeomorphic to R" for some n € N.
All these identifications preserve convexity and compactness, so that the restriction
to maps defined on subsets of R™ imposes no restriction. |

We will prove Theorem 4.9 in several stages. First we reduce the analysis to the
case when K is the closed unit ball B;(0).

Lemma 4.11 (Reduction lemma). Let us assume that every continuous function
f: B1(0) — B1(0) has a fized point. Then the statement from Theorem 4.9 holds.

Proof. First note the assumption implies every continuous map f: Br(0) — Bgr(0)
has a fixed point, where R > 0 is arbitrary. Indeed, given such an f, consider the
map fr: B1(0) — B1(0) defined by fr(z) := f(Rx)/R, which has a fixed point
xo € B1(0) by assumption. Then Rz is clearly a fixed point of f.

Now consider a convex, compact, and nonempty set K C R" and a continuous
function f: K — K. Take a finite or countable dense subset {a; : i € I} C K.
Given any i € I, define the continuous cutoffs ¢;: R" \ K — [0, 1] by

¢i(z) = max {2 - LQE;;?J,O}

We then define f: R" — R" by

N f(x) ifxe K,
fla) = [Z 2=, (x)} S 27%p;(x) f(a:) otherwise
el iel

Clearly, fextends f- Moreover, fis continuous on the open set R™ \ K. We claim
it is also continuous at every given x € K. To this aim, it suffices to consider a
sequence (&, )nen in R™\ K converging to x. Given € > 0, the continuity of f on K
implies there exists 0 > 0 such that |f(z) — f(a;)| < € for all ¢ € I with |z —a;| < 0.
Clearly ¢;(zy) = 0 whenever |z, — a;| > 2d(z,, K). Since last term tends to 0 as
n — oo, for n € N large enough we only need to consider those i € I such that
|z — a;| < §. For those, an elementary estimate shows |f(z,) — f(z)| < e, which
proves continuity. In total, this shows f is a continuous extension of f. Finally, we
note that since K is closed and convex, by the definition of the extension we get

FR™) C co(f(K)) C K.

Consider now a closed ball @3(0) that contains K. Then by the first part of the
proof, f has a fixed point in Br(0). But we know this fixed point has to belong to
K. Hence f has a fixed point as well. O

Remark 4.12 (Alternative proof of Lemma 4.11). One could alternatively try to
find a homeomorphism g: B1(0) — K. Indeed, assume such a map exists. Then
F:=g 1o fog: B1(0) = B1(0) is continuous and therefore there exists a fixed
point g of F by assumption. This easily implies g(zg) € K is a fixed point for f.
Note when K = Bg(0) we have g(z) = Rz, as shown during the above proof.
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To construct the map g, we need an extra assumption on K. This is because
K can be a lower dimensional object in general. For instance, we cannot hope
to construct a homeomorphism from the circle (which is intrinsically convex and
compact) to the unit disk. Therefore, let us assume there exist zp € R™ and § > 0
such that Bs(zg) C K. Up to translation, we can may and will assume zy = 0.
Then, set p(z) := inf{t > 0 : ta ¢ K} and p(0) := 0 (note the similarity to the
Minkowski functional). Since K is convex, it is not hard to show p is a norm and K
is the unit ball in this norm. Now, define h: K — B;(0) by

plx) .
—x ifx#0,
hz) =< |z
0 otherwise,
where | - | is the Euclidean norm. This map can have problems of continuity at the

origin per se. However, since all norms in R" are equivalent, h is indeed continuous
at 0. (The continuity at other points follows by continuity of the involved norms.)
Consequently, we also know h is a homeomorphism and we define g := h™1. |

Having reduced the proof to the unit ball, we now formulate an equivalent
statement. We will only prove that this theorem implies Brouwer’s fixed point
theorem. The reverse implication will be part of the exercises.

Lemma 4.13 (Sufficient condition for Lemma 4.11). Assume there exists no con-
tinuous map R: B1(0) — 0B1(0) such that R(z) = z for every x € 0B1(0). Then
every continuous map f: B1(0) — B1(0) has a fized point.

Proof. Assume by contradiction there exists f: B1(0) — B1(0) such that f(z) # z
for every # € B1(0). Set g(x) := x — f(z) and h,(t) := |z +tg(x)|?> — 1 for x € B1(0)
and t € R. Note h,;(0) < 0 and lim;_,o hy () = 00 since g(z) # 0. Hence there
exists t; > 0 such that h,(t;) = 0. Since ¢t — h,(t) is a second order polynomial,
the number ¢, can be calculated explicitly in terms of 2 and g(z) (in particular
it is unique) and one can show the dependency of t,, on x € B1(0) is continuous.
Define then the continuous assignment R(x) := x +t,g(z), where x € B1(0). By
construction, |R| = 1 everywhere, so that R: B;(0) — dB1(0). Moreover, for any
x € 0B1(0) we have h;(0) = 0, so that uniqueness of ¢, implies t, = 0. Hence

R(x) = 2 on 0B1(0), which gives a contradiction. O

A map R as in the previous lemma is often called a retraction. We are thus left
to show that there exists no retraction from B;(0) to its boundary. We first prove
there exists no C'-retraction.

Lemma 4.14 (C-retraction theorem). There exists no function f: B1(0) — 9B1(0)
that is continuously differentiable on a neighborhood of B1(0) which obeys f(x) = x
for every x € 9B1(0).

Proof. We argue again by contradiction and assume such a map f exists. For
t€[0,1] set f; = (1 —¢)Id +¢ f. By compactness of B1(0), the function f —1Id is
Lipschitz continuous on B 1(0) with Lipschitz constant ¢ > 1. As a consequence,
given any x,y € B1(0) this shows

|fe(z) = fe(W)] = |z =y = ¢|(f = 1d)(z) = (f = 1d)(y)| = (1 —ct)[z —y|.
In particular, for every ¢ € [0,1/c) the map f; is injective and the inverse function
is Lipschitz continuous as well. Moreover, the assignment (t,x) — detD, fi(x)

is continuous and equal to one for ¢ = 0. Hence there exists ¢ > 0 such that
for all (¢,2) € [0,¢] x B1(0), we have det D, f;(x) > 0°7. By the inverse function

37A priori, for every @ € B1(0) there exists a neighborhood of the form [0, e4] X Bs(x) such that
the statement holds on this set. The sets Bs(x) form an open cover of B1(0). By compactness, we

find a finite subcover and thence a common ¢ > 0 that works for all z € B1(0).
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theorem, we conclude for all ¢ € [0, ] the image f,(B1(0)) is open and moreover, by
convexity, it is a subset of By(0). Let us prove f;(B1(0)) = B1(0) for sufficiently
small ¢ > 0. By the arguments hitherto, we know f;(B1(0)) C B;(0). Note that
f:(0B1(0)) = 9B1(0), which implies

B1(0)\ fi(B1(0)) = B1(0) \ fi(B1(0)).
By continuity of f;, the set f;(B1(0)) is compact and in particular closed. We
conclude B1(0) \ f:(B1(0)) is also open. Therefore, this enables us to decompose
B1(0) = f+(B1(0)) U (B1(0) \ f+(B1(0))) which is the union of two open and disjoint
sets. Since B1(0) is connected, we deduce B1(0) \ f:(B1(0)) has to be empty; and
indeed, ft(Bl (0)) = B1 (0)
Lastly, given any ¢ € [0, 1] we consider the assignment

v(t) := /Bl(o) det D, fi(z) dx

The change of variables formula implies v(t) = £™[f;(B1(0))] = £"[B1(0)] for all
t € [0,min{e, 1/c}). Since v(t) is a polynomial, we know v(t) equals a positive
constant on [0, 1]. However, for t = 1 we have f; = f and since |f(z)|?> = 1 for all
x € B1(0), we know D f(z) f(z) = 0. This means Df(z) has a nontrivial kernel. In
particular, det Df(z) = 0 for all 2 € B;(0), a contradiction. O

Finally, we remove the smoothness assumption by an approximation argument.

Theorem 4.15 (Retraction theorem). There ezists no continuous function f: B1(0) —
0B1(0) such that f(x) =z for every x € 0B1(0).

Proof. Again we argue by contradiction and construct a Cl-retraction, which is
absurd in view of the previous lemma. First extend the given retraction to R" by
setting f(x) := = whenever |z| > 1. This extension is continuous. By a convolution
argument, we find a sequence (f)ren of functions in C*°(R", R") such that f; — f
locally uniformly on R™ as k — oo. Let h € C°((—1,1);[0,1]) such that A(0) =1
and define hy: R™ — R by hi(z) := h(k|z|* — k). Then we have hi(x) = 1 for
every © € 0B1(0), while hy(z) — 0 as k — oo whenever |z| # 1. Define then

gi(@) := hi(z) x + (1 — he(2)) fi(@).
Note that g € C*°(R",R"). Moreover, the above construction yields gx(x) = «
for x € 9B1(0) since hy = 1 on the unit sphere. The idea now is to normalize g by
considering g /|gk|- To this end, we show that for every sufficiently large k € N, we
have |gx| > ¢ on B1(0). Clearly this condition allows us to normalize gy also in a
(k-dependent) neighborhood of B;(0) and then we are done.

Assume by contradiction there is a subsequence (k;);jen with ming o) lgx;| — 0
as j — oo. There exists a sequence () en in B1(0) with g, (x;) — 0 as j — oo
and — up to a further subsequence — hy, (z;) — t € [0,1] and x; — 20 € B1(0).
By locally uniform convergence of (f)ren to f, we get 0 = tzg+ (1 —t)f (o). Note
that |z| = 1 is impossible since otherwise f(z¢) = o and therefore xy = 0, which
is absurd. But if || < 1, then for j € N large enough we have hy, (z;) = 0, which
implies ¢ = 0 and then f(z¢) = 0, which gives again a contradiction. Hence for
k € N large enough, the map gx/|gi| is a well-defined retraction that is regular in a
neighborhood of B(0). This contradicts the previous lemma. O

5. GRADIENT FLOWS IN HILBERT SPACES

Recall that the gradient flow in R"™, where n € N, of a (say) smooth potential
V:R" — R starting at o € R" is a continuous curve z: Ry — R™ which is
differentiable in (0, 00) and which obeys z; = —VV () for every ¢t > 0 and xo = o.
The following brief survey provides an introduction into gradient flows on general
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Hilbert spaces. It was introduced by Brézis [2]. Although you will find all relevant
results that are used to date in this book, overall it is rather outdated; for a
modern account on gradient flows in general metric spaces, we refer to the book of
Ambrosio-Gigli-Savaré [1].

Gradient flows have many simple properties (good solution theory, quantitative
estimates, equilibrium points, etc.) that make them interesting. They arise in nu-
merous geometries and are a ubiquitous tool in modern analysis and its applications
to probability theory, geometry, machine learning, artificial intelligence, etc. One
particularly rich area where they have become central is optimal transport. This
trend started from the papers of Jordan—Kinderlehrer—-Otto and Otto. As a toy
example, consider a parabolic PDE of the form d;u; = Lu; on R™, where L is usually
an elliptic second-order differential operator acting spatially (e.g. the Laplacian).
By endowing the space P(R"™) of probability measures over R"™ with a certain
optimal transport geometry, [7,8] were able to show this PDE can be interpreted
as a gradient flow O,y = —VE(p,) on P(R™) (understood appropriately), where
E is an entropy functional. The correspondence is given by u; = us £L™. The point
of this identification is that one can trade a PDE on a finite-dimensional space for
an ODE (which are often simpler to study than PDEs) on an infinite-dimensional
space. This is no Hilbert space theory, but working on Hilbert spaces is simpler and
conveys many of the key ideas used in this metric context as well.

In the first part, we will clarify the meaning of the “gradient” of a functional
in a Hilbert space. This happens by means of convex analysis, for basics of which
we refer to Rockafellar [9]. In the second part, we outline the general theory of
existence, uniqueness, and fundamental properties.

5.1. Convexity and subdifferentials. Let H be a real Hilbert space. Let (-, -)
denote the inherent scalar product and | - || := +/(-,) the induced norm. Let
E: H— Ry U{oo} be an “energy” functional which we assume to be
e convex, i.e. B((1 —t)x +ty) < (1 —t)E(x) + tE(y) for every x,y € H and
every t € [0, 1] and
e lower semicontinuous, i.e. whenever (z,),eNn converges to z € H,

E(z) < liminf E(z,,).
n—0o0

For more on lower semicontinuity, we refer to Definition B.7 et seq.

Let D(E) := {z € H : E(x) € R} denote the convex domain of E. To create a
nonpathological theory, we will assume D(FE) is nonempty.

Remark 5.1 (Euclidean Dirichlet energy). The basic example we will be interested in
is the following. On H := L*(R", L") we consider the functional E: L?(R", L") —
R U{oo} defined through

1
E(u) 5/ |Vu2dL™  if u € WH2(R™),
u) = n

00 otherwise.

It is clearly convex. Lower semicontinuity with respect to L?-convergence is straight-
forward and left as an exercise. You may want to use Corollary B.8. ]

The following is a general notion from convex analysis generalizing the concept
of a “differential” for a convex function, even though a convex function is in general
not differentiable everywhere®.

38However, convex functions on R" enjoy good regularity properties. They are in fact twice
differentiable L£L™-a.e. and locally Lipschitz continuous on the interior of their domain. On R, the
latter fact can easily be derived from the monotonicity of difference quotients implied by convexity.
An analogous principle holds in R™; compare with Proposition 5.4.
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Definition 5.2 (Subdifferential). The subdifferential of E at a point z € D(E)
is the set 0~ E(x) of all x* € H such that for everyy € H,

(z*,y — ) < E(y) — E().
We also set 0~ E(x) := 0 provided x ¢ D(E).
We write D(9~ E) for the set of all x € H such that - E(z) # 0. In particular,
by the above convention we have D(0~FE) C D(E).
By definition, given any « € D(E) we have 0 € 9~ E(x) if and only if E attains
its minimum at .

In more pictorial words, the subdifferential of E at z € D(FE) is the set of all
slopes of tangents that touch the graph of F from below at x.

Ezample 5.3 (Absolute value). On the elementary Hilbert space H := R consider
the convex and continuous function E: R — R given by E(x) := |z|. Check as an
exercise that its subdifferentials have the following form for every x € R:

{1} if x>0,
0" E(z)=q[-1,1] ifz=0, |
{—1} otherwise.

Proposition 5.4 (Properties of the subdifferential). The following hold.
(i) Monotonicity. The multivalued map 0~ E: H — 2 constitutes a mono-

tone operator®. That is, for every x,y € H, every * € 0~ E(z), and every
y* €07 E(y),

(y —x,y" — ) >0.

(ii) Strong-weak closure. The graph of 0~ E is strongly-weakly closed in H>.
That is, assume (Tn)neN 1S a sequence in H converging to x € H. Let
(x})nen be a sequence of elements x} € 0~ E(x,,) which converges weakly
in H tox* € H. Then z* € 07 E(x).

Proof. Exercise 13.4. (]
Lecture 13.

5.2. Existence, uniqueness, and properties of gradient flows. After having
clarified how the quantity “VE” of the targeted gradient flow equation should be
understood in general Hilbert spaces, we now turn to the precise definition of the
gradient flow equation itself.

As a first step, we clarify the targeted regularity in time. For more details on
absolutely continuous H-valued functions, we refer to §E.

Definition 5.5 (Local absolute continuity). We will call a curve z: (0,00) — H
locally absolutely continuous if its restriction to every compact subset of (0, 00) is
1-absolutely continuous according to Definition E.5. Equivalently, for every compact
interval I C (0,00), there is fr € L*(I,L') such that for every s,t € I with s <t,

|=(t) — x(s)|| < / Fr(r)dr.

Remark 5.6 (Fundamental theorem of calculus). Combining Proposition E.6 and
Theorem E.7, for every locally absolutely continuous function z: (0,00) — H and
Ll-a.e. t > 0, the following derivative exists:

z(t + h) —z(t)

! N
x'(t) == %13%) —

39Historically, this fact embeds the theory of gradient flows for convex and lower semicontinuous
functionals into the theory of gradient flows for maximal monotone operators by Brézis [2].
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It belongs to L*(I; L!) for every compact interval I C (0, 00).
Moreover, for every s,t € [0,1] with s < ¢, we have

(t) — a(s) = /: /() dr

in the sense of Bochner integration, cf. §E. Moreover, the map z’ in this formula is
uniquely determined up to modifications on £!-null sets. |

Definition 5.7 (Gradient flow trajectory). A gradient flow trajectory of E is
a continuous curve x: Ry — H which is locally absolutely continuous on (0,00),
obeys x(t) € D(O™E) for every t > 0, and satisfies the following for Ll-a.e. t > 0:

—2'(t) € 07 E(x(t)). (5.1)

For now, the gradient flow equation on Hilbert spaces holds only for a.e. time and
is defined by a differential inclusion rather than a genuine identity. Both properties
can be improved, as stated in Theorem 5.12 below.

Typically, solving the gradient flow equation with gradient flow trajectory is
coupled with fixing an initial condition o € H, i.e. requiring x(0) = o.

5.2.1. Euxistence. The goal of this part is Theorem 5.11. It states general existence
of gradient flows in Hilbert spaces.

To this aim, we prepare some material. Existence will be based on a numerical
scheme called minimizing movement scheme, which was introduced by the Italian
mathematician De Giorgi. Given any z € H and a step size 7 > 0, we define the
convex and lower semicontinuous functional Fy ,: H — R4 U {oco} by

2
ORI el
2T
We will then generate a sequence (x(k)) keN, as follows. Define z{, := o, the given
initial point. Inductively, given x(Tk) for k € Ny, we choose a point

Tty € argmin{Fm(Tk),T(y) rye H}. (5.2)

We interpret x7,, as the point interpolated by a piecewise affine curve z™: Ry — H
at t = k7. Observe that formally — and rigorously if e.g. H = R" for some n € N
and E is continuously differentiable —, (5.2) implies

Zle+1) ~ %)
T
for every k € N. This is why we hope and expect 7 converges to a gradient flow
trajectory of £ as 7 — 0 in a sense yet to be specified.
The subsequent lemma makes the second identity of (5.3) rigorous in general
Hilbert spaces (in terms of subdifferentials).

0=VFy (27s1) = VE@{s) + (5.3)

Lemma 5.8 (Correspondence of subdifferentials). For every x € H and every
7> 0, we have D(O™F, ;) = D(0™E), and for every y € H,

_ _ —x
0 Forly) =0 By) + .
Proof. Exercise 14.1. O

Now we show the scheme (5.2) is well-defined.

Proposition 5.9 (Existence of minimizers). Given any x € H and any 7 > 0, there
exists a unique minimizer xr € H of the functional F ;.
Moreover, we have x € D(0™E) and

T, —

€ 0" E(z,).

T
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Proof. To show uniqueness, assume y,y’ € H are two different minimizers of F .
Since D(E) is nonempty, we necessarily have y,y’ € D(E). Moreover, note that
the squared norm on a Hilbert space is strictly convex. Setting y” :=y/2 +y'/2,
together with convexity of F these observations imply

1

ly — I
* 2

Fa:,‘r(y//) < % |:E(y) 2T i| +
=min{F, .(2) : 2 € H},

/ 2
E / Hy _x”
[ W)+ 27

which is of course absurd.

Existence is a standard application of the so-called direct method of calculus
of variations. Since D(FE) is nonempty and F,, . is positive, the minimum of Fy ;
is a real number. Hence, there exists a sequence (z,),en with the property that
lim,, o0 Fy - (xn) = min{F(z) : z € H}. We claim the existence of R > 0 such that

{n :n € N} C Br(0). Indeed, along a suitable subsequence, (||zn,||)jen would
otherwise diverge to infinity. The triangle inequality yields

liminf ||2,,; — || > liminf ||z, || — [z|| = occ.
j—o00 j—00

By definition of I, ; and nonnegativity of E, we get lim; o I 7 (7,,) = 00, in
contradiction to the finiteness of this limit. Thus, by the Banach—Alaoglu-Bourbaki
Theorem C.1, there exists m € Br(0) such that (z,,),en converges weakly to m,
up to a subsequence we will not relabel. We finally claim m is a minimizer of F.
Indeed, recall from Corollary B.8 that F, ; is sequentially lower semicontinuous
with respect to the weak topology. The same applies to the norm (and hence its
square) by basic properties of weak convergence. Hence,

min{F(z):z€ H} < F, ;(m) < lilniioréf F, -(z,) =min{F(z): z € H}.

This forces equality to hold throughout.
Finally, since m minimizes F, ., we have m € D(0~ F, ;) and 0 € 9~ (Fy ;). By
Lemma 5.8, this translates into m € D(0~ F) and
m—x

O

0€ 0 E(m)+

u

Remark 5.10 (Minimal norms). With a similar procedure by minimizing the strictly
convex norm || - || combined with Proposition 5.4, one can prove the following. If
x € D(0™E), there exists a unique element z* € 0~ E(x) whose norm is minimal
among all elements in 0~ E(x). |

Theorem 5.11 (Existence of gradient flow trajectories). Let o € D(FE) be given.
Then there exists a gradient flow trajectory of E starting at o.

Proof. We will present the proof for o € D(FE). The more general case o € D(E)
will be addressed in Exercise 14.3.

Given any 7 > 0, let (27,,)ren be the minimizing movement sequence with step
size T constructed by (5.2) with initial datum 27, := o. Here, the (unique) existence
of a minimizer from (5.2) is provided by Proposition 5.9. We define 2™: Ry — H
by a7 (k7) := a7}, with affine interpolation on (k7, (k 4+ 1)7), where k € No. More
precisely, it is explicitly given by the formula

xat/TJ+1)T+ CE(TLt/'rJ)} {t —r {;H .

2(t) = 2 1/rp) + [

The affine interpolation ensures that for every such k and every t € (kr, (k + 1)7),

x7 — 7
(a7) (1) = (5.4)
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By the minimizing property from (5.2),

2
7, — 7
b= l” _ e

In particular, by a telescopic sum and since o € D(E), we observe

T _ T 2
%/ ey ®)2a=Y It =l pycoo 59
0

2T
k€ENg

E(l’(kﬂ)) =+

Now we claim there exists a continuous curve z: Ry — H which is the uniform
limit of ™ as 7 — 0. Since the space of H-valued continuous maps on R endowed
with the supremum norm is complete, it suffices to show

lim sup |27 (t) —2"(t)|| = 0. (5.6)
Ry

Let 7,1 > 0 be fixed. Let ¢t € ((k—1)7,k7)N((k" —1)n, k'n), where k, k' € N. Then

d |Jam(t) — a7 (t)|)?

AT (@ @) - @) (0,07 ) - 2"(0)
(@)'(t) = (@) (), 2 ( 7) —a"(k'n))
+ (@) (t) = (2")(t), (27 (t) — 27 (k7))
= (@) (t) = (") (t), (2"(t) — 2" (K'n))).
Here we used the standard differentiation formula for the squared norm on Hilbert

spaces and a simple zero addition. Combining (5.4) with the second part of Propo-
sition 5.9 and Proposition 5.4, we infer

(@7)'(t) = (@")'(t), 27 (k1) — 2" (K'n)) < 0.

For the remaining terms, the Cauchy—Schwarz inequality and (5.4) again yield

A= OF ey + ey ol e @] + o eyl

=7 [[@Y @ +nlle @l
+(m @O | Ol

- 2 T+n 2 T+n
< || @) [7’+ 5 ] + | (=)' (@®)]] [n+ — ]
In the last step, we used Young’s inequality. Integrating the preceding estimate over
[0,T], where T > 0 is fixed, and employing (5.5) leads to

T _xT] 2
OO <5 po) 4.

Since the right-hand side does not depend on T', this shows (5.6).

Next, we upgrade the regularity of the curve x: R, — H thus obtained. Since
the estimate (5.6) is independent of 7, the set {(z7)" : 7 > 0} is norm bounded in
the Hilbert space L?(R; H), cf. Definition E.3. By the Banach—Alaoglu-Bourbaki
Theorem C.1, there are v € L2(R; H) and a sequence (7, )N in (0, 00) decreasing
to zero such that (™) — v in L?(R,; H) as n — oo. Let s,t € (0,00) with s < .
By pairing the integral in question against an arbitrary vector from H, it is not
difficult to prove that, with respect to the weak topology of H,

t

lim ’(mT")'(r)dr:/ v(r) dr.

n—oo s
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On the other hand, by the above paragraph and the construction of our piecewise
affine interpolants we know

lim [ (z™)(r)dr = lim [27(t) — 2™ (s)] = x(t) — z(s).

n—oo s n—00

Uniqueness of weak limits implies

z(t) —x(s) = /St v(r) dr.

Using (E.2), this implies x is locally absolutely continuous on (0,00) — in fact, it
belongs to ACQ(RJ” H) according to Definition E.5. In particular, by Remark 5.6
the map x is differentiable £!-a.e. with 2/(t) = v(t) for Ll-a.e. t > 0.
It remains to prove = obeys the differential inclusion (5.1). We claim for every
y € H and every tg,t1 € Ry with ¢y < t1, we have
t1
E( dt+ <£C >dt<E( )(1—t0).
to
Note that this is an 1nteg1"ated version of the claim. First, since F o x is a piecewise
convex and nonnegative function and as z € AC*(Ry, H ), both integrals on the
left-hand side are well-defined and finite. Without restriction, we may and will
assume y € D(F). Using lower semicontinuity and Fatou’s lemma,

ty

E(z(t))dt + / 1 (2 (1), z(t) —y) dt

to

ghminf/ E(x dt+/t1 <($T)’(t),xT(t)—y>dt}

T—0 to

T—0

< liminf | / E(xf(wltj +1)dr
0

< 7t +1) — >dt}

t1
< | Ed

to

= E(y) (t1 — to)-

This shows the claim. The desired differential inclusion now follows by differentiating
this integral inequality at every ¢ > 0 which is a Lebesgue point of both F o x and
2. This set is notably independent of y. O

Lecture 14.

5.2.2. Uniqueness, fundamental properties, and infinitesimal generator.
Theorem 5.12 (Uniqueness and properties of gradient flow trajectories). Let
x: Ry — H be a gradient flow trajectory of E. Then the following properties hold.
(i) Contraction. Given any other gradient flow trajectory y: Ry — H, every
t € Ry satisfies the inequality
|(8) = y(®)[] < [Jz(0) = y(0)]].

In particular, gradient flow trajectories with fized initial points are unique.
(ii) Energy dissipation. The assignment t — FE(x(t)) is nondecreasing on R4
and locally Lipschitz continuous on (0, 00).
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(iii) A priori estimate. For every z € H and every t > 0,

2
=)
2t '
(iv) Laplacian. For every t > 0, the right derivative

g i EEHR) —a(t)
Z () '7h1i>%1+ h

E(z) < E(2)

exists in H. It is equal to minus the unique element of minimal norm in
0~ E(x+), cf. Remark 5.10. The same holds at zero if x(0) € D(0~E).

Proof. Exercises 14.2 and 14.4. O
The last item from the previous theorem motivates the following definition.

Definition 5.13 (Infinitesimal generator). We define the domain of the infinitesi-
mal generator L of E as D(L) := D(0™E).

Given any x € D(L), we define Lx € H as minus the unique element of minimal
norm in 0~ E(z), c¢f. Remark 5.10.

In particular, given a gradient flow trajectory z: Ry — H of E, the last claim of
Theorem 5.12 implies for every ¢ > 0, we have

2 (1) = La(t). (5.7)

This looks much like the classical Euclidean heat equation. This correspondence is
not coincidental; making it rigorous is the objective of this lecture. This is a very
functional analytic approach to the heat equation, which extends to many other
settings without essential changes. The reader interested in the heat equation from
the PDE point of view is invited to consult Evans’ book [6]*".

5.3. Euclidean heat equation as gradient flow of the Dirichlet energy. We
will now devote our entire attention to the setting of Remark 5.1. That is, we take
H := L*(R", L"), where n € N, and we consider the Dirichlet energy E defined
there. We denote the standard Euclidean scalar product on R" by -.

Definition 5.14 (Laplacian). We say a function u € L?*(R"™,L™) belongs to the
domain of the Laplacian, symbolically u € D(A), if u € WH2(R") and there is a
function g € L?>(R™,L™) such that for every v € WH2(R", L"),

/Vu~VvdL":—/ gvdL™.

In this case, g is uniquely determined and we write Au in place of it.

Remark 5.15 (Symmetry). The Laplacian defined above is a symmetric operator, in
the sense that for every u,v € D(A),

/uAvdL":/ v AudL"”.

This is a straightforward consequence of its definition. |
Proposition 5.16 (Laplacian vs. infinitesimal generator). We have the identity
D(A) =D(O™E).

Moreover, if u € L>(R"™,L™) belongs to either set, the subdifferential 0~ E(u) is
single-valued and contains —Au as its only element.

40WWe recommend this resource for complementary reading. As Evans points out in his introduc-
tion, the theory of PDEs should not be regarded as a subbranch of functional analysis, but as a
domain in its own right.
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Proof. As a preparation, we observe two simple facts given any u,v € W12(R").
First, convexity of E implies convexity of the assignment ¢ — E(u+¢ev) on R. And
second, the bilinearity of the Euclidean scalar product easily implies

E(u+ev)— E(u) 1

lim = lim — [/ [[Vul® + 26 Vu - Vo + €% |Vo[?] dL™
e—0 € e—0 2¢ n

- [ 1vapacr] 6.9
-

= Vu - VodLl™.
Rn

We turn to the proof of the first claim. Assume u € D(A), so that u € WH2(R")
by definition. We claim for every v € WH2(R"),

—/ vAudLl" < E(u+v) — E(u), (5.9)

from which the claim follows by noting D(E) = W12(R"). Given any ¢ € (0, 1),
convexity of E readily implies

E(ut+ev)=FE[(1-e)u+te(u+v)] <(1—¢)E(u)+eE(u+w).
Rearranging this inequality, dividing by ¢, and using (5.8) yields

E )
E(u+v) — E(v) > lim (u+tev) (u) =
e—0+ > R"

This shows (5.9) and hence —Aw € 0~ E(u) by Definition 5.14.

Conversely, assume u € D(0~E). Let u* € 0~ E(u). We claim that u* = —Au,
which establishes the desired reverse inclusion and the single-valuedness of 0~ E(u)
simultaneously. Given any € € R and any v € WH2(R"), we have

Vu-VodL".

E/ vu*dL" < E(u+ ev) — E(u).
Dividing this inequality by € > 0 and e < 0, respectively, and using (5.8) twice,

E(u—cv)—E
Vu.Vode" — lim P—ev) = B
R" e—0+4 —&

/ vu*dL"”

lim E(u+ev) — E(u)
e—0+ 5

IN

IN

= Vu-Vodl".
R”

This forces equality to hold throughout and shows u* = —Au, as desired. O

Since the L?-closure of WH2(R") coincides with L?(R"™, £"), by Theorem 5.11
every u € L2(R", L") forms the starting point of a unique gradient flow trajectory
denoted by h.u: Ry — L2(R",£"). For every t € R, this procedure defines an
operator hy: L2(R", L") — L*(R", £™), where hq is simply the identity operator. It
is a semigroup of operators in the sense of Hille-Yosida, i.e. it obeys hy s = hyohy
for every s,t € R4. This elementary consequence of uniqueness of gradient flow
trajectories stipulated in Theorem 5.12 is left as an exercise to the reader.

Definition 5.17 (Heat flow). The above family h. of operators is called heat flow.

The rest of these notes establishes some very basic properties.
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Proposition 5.18 (Basic properties). The operator h; is linear for every t € R.
Also, hy is a contraction for every t € Ry. That is, for every u € L*>(R", L"),
||htuHL2(R",L") < llullz2 e om)-
In particular, the heat operator hy is bounded, hence continuous.
Proof. The first claim is a direct consequence of Proposition 5.16 and the linearity
of the Laplacian A, which is a trivial consequence of its definition.
The second point follows from the first item of Theorem 5.12 and the trivial

observation that the heat flow starting at zero remains stationary. Moreover, linear
operators between Banach spaces are bounded if and only if they are continuous. [

Proposition 5.19 (Commutation). For every u € D(A) and every t € Ry, we
have the identity hyAu = Ahyu.

Proof. This follows from the identities

hy(h.u) — h
Ahju = 1im ehew) —hew
e—0+ £ e—0 £

hou —u

} = hyu.

Here we used (5.7) in the first, Proposition 5.18 in the second, and the last clause
from Theorem 5.12 in conjunction with Proposition 5.16 in the third identity. O

Corollary 5.20 (Symmetry). For every t € R, the heat operator hy is symmetric,
in the sense that for every u,v € L2(R"™, L"),

/uhtvdL":/ vhudl™.

Proof. We are employing a common trick by interpolation and differentiation. Given
any ¢t > 0, define the function F': [0,¢{] — R by

F(s) ::/ hsuhigvdl™.

Since gradient flow trajectories are continuous on R4 with values in L2(R", £™) and
since the scalar product is continuous, F' is easily seen to be continuous. Moreover,
it is easily seen to be continuously differentiable on (0,¢) with derivative

F'(s) = Ahguhi_gvdL™ — / heuhi_svdL™ = 0.

RTL
The last identity follows from Remark 5.15. This, together with continuity on all of
[0,¢], forces F' to be constant; in particular, we have F'(0) = F(¢), as desired. O

n

Theorem 5.21 (Heat flow characterization of the Laplacian). Let u € L?(R"™,L"™).
Then u € D(A) if and only if the limit

. hiu —u

lim
t—0+ t

(5.10)

exists in the strong topology of L*(R", L™); in this case, (5.10) equals Au.

Proof. It u € D(A), existence of the limit (5.10) follows from the last statement of
Theorem 5.12. Moreover, its equality to Au follows from Proposition 5.16.

Conversely, suppose the limit (5.10) — which we call g — exists in L2(R", £™).
We first claim u € WH2(R"). Given any ¢ > 0, Corollary 5.20 yields

/n hougdLl™ = tli\%h- - hou

htu*“dﬁn

he(h.u) — h.
~ i [ o Melhe) e
t—=0+ Jgrn t
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By Proposition 5.19, Corollary 5.20 again, and Definition 5.14,
/ hougdl™ = / u Ah udL™
= / hs/gu Ahe/gu dLn
RTL
2 n
= —/ |Vhejou|™dL™.
Rn

Lower semicontinuity of £ then implies

< Timi
E(u) < léri%rifE(hgu)

1
= fliminf/ |Vheu|” de”
2 =0+ Jrn

1
= fflimsup/ hougdLl™
2 e—0+ n

< Q.

Since the domain of E coincides with W12(R"), the claim is proven.

It remains to show u € D(A). Recall by Theorem 5.12 that E(h.u) < E(u) for
every ¢ € R,. Consequently, the family {h.u : ¢ € Ry} is bounded in W%?(R"™),
hence weakly precompact. However, since h.u — u strongly in L2(R", L"), this
forces hou — u weakly in L2(R",£"). Thus, applying the version of Lebesgue’s
differentiation theorem for continuous functions, every v € W12(R") obeys

/ gvdL™ = lim

t—0+ Jgn t

1
= lim -
t—0+ ¢

hiu —u

vdL"

t
/ AhguvdL™ds
o Jr»

1/t
= — lim f/ Vheu - VodL" ds
t—=0+ 1t Jo Jmrn

Vu-Vodl".
Rn

This is the desired identity. O

APPENDICES™!
APPENDIX A. WEAK TOPOLOGIES INDUCED BY FAMILIES OF FUNCTIONS

The following presentation is loosely based on [3, §§3.1-3.4], to which we refer
for a deeper discussion with more advanced results.

Definition A.1 (Weak topology). Let X be a set, (Y, p) a topological space and
F = {f; : i € I} constitute a collection of maps fi: X — Y. We define the
weak topology on X induced by JF as the coarsest topology 7 on X such that
fir (X, 15) = (Y, p) is continuous for every i € I.

Standard arguments from topology ensure 74 exists and the above definition is
meaningful. Here are some known facts about 74; you may want to try to prove
them by yourself using the definitions.

e If 7 is another topology on X such that f;: (X,7) — (Y, p) is continuous
for every i € I, then 74 C 7.

41The content of these appendices is not examinable. It is only some extra material which we
hope is useful for you to understand weak topologies and their relevance for this course better, but
also their overall importance in functional analysis.
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e For every V € p and every i € I, we have f; (V) € 5.
e A basis of the topology 75 is given by sets of the form (), fi_l(Vi), where
Iy C I is finite and V; € p for every i € Iy. Analogously, a neighborhood
basis of € X is given by sets of the form Nicr, fi_l(VZ-), where Ij is a
finite subset of I and f*(z) € V; € p for every i € I.
e A sequence (Z,)nen in X converges to & with respect to 75 if and only if
for every ¢ € I, the sequence (f;(zn))nen in the target space Y converges
to fi(x) with respect to p.
For simplicity, in the above we took Y to be fixed and independent of i. This
is not necessary, and everything generalizes to the case of varying {Y; : i € I}; a
canonical example of this situation is the following.

Ezample A.2 (Product topology). Given an arbitrary family of topological spaces
(X, 1), recall that in the initial compendium we defined the product topology 7 on
the product space X := [],.; X;. Then 7 is nothing but the weak topology induced
by the family {m; : ¢ € I} of projection maps 7;(z) := x;. Given Iy C I finite and
V; € 1; for i € Iy, we see that

ﬂ N (V) = {z € X : mi(x) €V, for every i € Iy}
i€l
defines an open set; the collection of all such sets constitutes a basis of 7 (and a
neighborhood basis of Z, respectively, if we additionally require V; to contain z;).
A sequence (z")nen in X converges to x € X with respect to 7 if and only if,
for every i € I, (2I")nen converges to x; with respect to 7. [ |

In all the next examples, for simplicity we restrict ourselves to the case where the
target space Y does not depend on ¢ and is given by R with its Euclidean topology
(that we will not specify notationally).

Ezample A.3 (Metric spaces). Let (X, d) be a metric space. Given any z € X, define
a function f,: (X,d) = R by f.(y) := d(x,y). Then the topology 7¢ induced by d
corresponds to the weak topology induced by the family of functions {f, : z € X}.

One can also look at it differently, by rather considering d as acting “globally”
on the product space X?2. Then 79 is equivalent to the coarsest topology 7 on X
such that d: (X?,72) — R is a continuous map. |

Ezample A.4 (LCTVS). Let X be a LCTVS with topology 7 induced by the family
of seminorms {p; : ¢ € I'}. Then 7 is nothing but the weak topology on X induced

the family of maps {p;(z —-):i €I, z € X}.

Having presented these examples which connect the use of weak topologies to
all the relevant examples we have seen in the first lectures, we now discuss what is
truly usually referred to as “weak topologies”.

Given a LCTVS (X, 7), let X’ := L(X,R) denote its topological dual, namely
the collection of all linear, continuous maps z’ : X — R.. Note the definition of X’
actually depends on 7.

Definition A.5 (Weak topology). The weak topology 7, of (X, ) is the weak
topology induced by the family {z' : ' € X'} — compare with Definition 1.38.

Remark A.6 (Basic properties). We can now rephrase several facts about weak
topologies and weak convergence.
e By definition, we always have 7,, C 7. (This justifies the terminology “weak
topology”, as opposed to the strong topology 7.)
e A sequence (z,)nen in X converges weakly to x € X if and only if it
converges with respect to 7,,. That is, z'(2™) — 2/(z) as n — oo as real
numbers for every 2’ € X’.
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e Since 7, C 7, if a sequence (z,)nenN in X converges to z € X with respect
to 7, it also converges weakly to x, namely with respect to 7,,. The converse
in general is not true. (This justifies the terminology “weak convergence”,
as opposed to the strong convergence induced by 7.)

e Given any = € X, a basis of neighborhoods of x are sets of the form

We o (z) :={y € X : |2/(z) — 2'(y)| < & for every 2’ € Jy}
where € > 0 and Jy C X’ is finite; compare with Definition 1.8. ]

We recall (X, 7,) is again a LCTVS by Corollary 1.39.

Consider now the dual space X', which has a natural vector space structure.
For any = € X, we can define the evaluation map ¢, on X’ by ¢, (z') := 2'(z).
Observe that ¢, is a linear map from X’ to R.

Definition A.7 (Weak* topology). The weak* topology 7, of X' is defined as the
weak topology induced by the family {p, : x € X} — compare with Definition 1.40.

It can be shown (X', 7,+) is again a LCTVS, cf. the proof of Corollary 1.39 and
the discussion around Definition 1.40. Thus far, we did not have any other candidate
topology on X'; but the structure of X’ inherited from being the dual of a LCTVS
naturally induces one. In particular, the weak* topology 7, can be regarded as the
topology induced on X’ by the action of its predual X.

Example A.8 (Banach spaces). Suppose now X is a Banach space, with strong
topology Tx induced by a norm || - || x. In this case, we know X’ also has a normed
structure: linear operators are continuous if and only if they are bounded, yielding
I - lx as defined by

2" (@) _

|l x- == sup = sup |2'(z)],
zex\{o} [7llx  zex,
flzllx =1
which turns (X', || - ||x+) into a Banach space. We can then iterate this procedure
and define X" as the topological dual of X', which will also be a Banach space with
norm || - ||x~, and so on. In this situation, several topologies are available.

e We can endow X with either the strong topology 7x or the weak topology
Tw,Xx , Which satisfy 7, x C 7x.

e We can endow X’ with either the strong topology 7x induced by || - || x/,
the weak topology 7, x+ induced by its dual X", or the weak* topology T,
induced by the evaluations maps {¢, : € X}.

We claim that
Tw* C Tw,x' C Tx’. (A1)

In other words, the weak® topology is weaker than the weak topology, which in
turn is weaker than the strong one. A similar statement holds when comparing
notions of convergence. One can produce examples of spaces X and X’ where all
the inclusions appearing in (A.1) are strict.*?

To prove (A.1), first observe that the inclusion 7, x» C 7x follows from the
properties of the weak topology. To prove 7+ C T, x/, note that for any = € X,
the evaluation map ¢, is a bounded linear function on X', since the relation

oz (@) = |2 (2)] < ll2"||x |2l x
valid for every 2’ € X', implies

[eallx < llzlx- (A.2)

42For the interested reader, a basic example is given by X = L' and X’ = L. Time permitting,
we will discuss this deeper in a later version of these notes.
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In particular, {¢, : € X} C X", which implies ¢, is continuous under 7, x+ for
every ¢ € X. Since by definition, 7, is the coarsest topology with this property,
we deduce T+ C Ty, x7- [ |

APPENDIX B. WEAK TOPOLOGIES AND INFINITE DIMENSIONAL BANACH SPACES

We now aim for a better understanding of weak topologies 7,, on Banach spaces
X, their key properties and their relations to the aforementioned 7,,- and 7, x-.
Throughout this section, we will always tacitly assume (X, || - || x) is a Banach space.
We start with some basic facts about X, X’ and X”.

Lemma B.1 (Isometry). Let X be a Banach space and consider the map J: X —
X" given by J(x) := @, where @, is the evaluation map defined before Defini-
tion A.7. Then J is an injective linear isometry from X to a closed subspace of X";
in particular, every x € X satisfies

lpallxr = sup [2'(2)] = ||z]Ix. (B.1)

2’|l xr=1

Proof. Tt is easy to check J is linear. We already showed in (A.2) that ||¢.||x» <
|zl x for every € X, so it remains to prove the reverse estimate. Fix z € X \ {0}
and define a linear functional Z’ on the line Rz by &’'(Az) = A||Z||x. By the analytic
version of the Hahn-Banach Theorem 1.35, we can extend Z’ to a nonrelabeled
linear functional on all of X. For every x € X, it satisfies

|2 ()] < [l x.
This implies ||Z'||x < 1 and Z'(z) = ||Z||x, so that ||Z’||x» = 1. But then
pz(7') = 2'(7) = 2] x = ll2]lx 12|l x;
by the definition of the X”-norm, this implies ||pz|x» > ||Z| x- O

The map J defined in Lemma B.1 is sometimes refereed to as the canonical
injection of X into X".

Corollary B.2 (Invariance of infinite dimensionality). Let X be a Banach space.
Then X is infinite dimensional if and only if X' is infinite dimensional.

Proof. If X is finite-dimensional, then by Remark 1.34 it is isomorphic to R¢ with
equivalent norm. By basic linear algebra, its dual X’ is isomorphic to (R?)" = R?
and thus finite-dimensional.

Now assume X' is finite-dimensional, then so is X" by the above argument. By
Lemma B.1, X" contains an isometric copy J(X) of X, which implies X must be
finite-dimensional as well. O

Similarly to the situation presented in §2, in practical applications the notion
of convergence of sequences in weak topologies is the most useful to use. This is
because weak topologies often have a lot of compact (or sequentially compact) sets,
cf. the Banach—Alaoglu—Bourbaki Theorem C.1. At the same time, one has to be
careful about it: sequentially closed sets need not be closed.

Therefore we aim to better understand properties encoded by weak convergence.

We start with a basic yet useful fact: if a sequence (x,)nen in X converges

weakly to x € X — namely with respect to 7, —, it is bounded with respect to
I - |x. In the following, we will sometimes denote weak convergence by “z, — x”
(contrary to strong convergence with respect to || - || x, denoted by “x,, — z”.

Lemma B.3 (Boundedness). Let (z,,)nen be a sequence in X and x € X such that
ZTn, — 2 asn — 00. Then sup,en ||Zn||x < o0 and

]l x < liminf [l x. (B.2)
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Property (B.2) is often refereed to as the lower semicontinuity of the norm in
question in the weak(*) topology™®.

The proof is based on the Banach—Steinhaus theorem. For its proof (on the Baire
category theorem), we refer to [3, Thm. 2.2].

Theorem B.4 (Banach-Steinhaus theorem viz. uniform boundedness principle).
Let E and F be Banach spaces and let {T; : i € I} be a family of continuous linear
operators from E into F'. Assume that for every x € F,

sup | T;x||p < 0.
iel

Then the family {T; : i € I} is bounded in the operator norm; in other words, there
exists a constant C > 0 such that for every i € I and every x € E,

[Tz < Cllzlle-

This theorem is arguably one of the most surprising yet powerful elements of
functional analysis. It derives uniform boundedness out of pointwise boundedness,
which is per se strictly weaker.

Proof of Lemma B.3. Since z,, — x as n — 00, for any ' € X’ we have ¢, (z') =
x'(z,) = a'(x) as n — oco. Since any convergent sequence in R is bounded, we
deduce that, for any fixed 2’ € X', we have sup,,cn |z, (2")] < 0o. By the uniform
boundedness principle (applied with F = X', F =R, and {T}, : n € N} = {@g, :
n € N} C X”) we deduce

sup ||z, || x = sup H‘:OInHX” <00
neN neN

where the first equality comes from Lemma B.1.

Since x,, — x as n — 0o, the same holds for any subsequence we can extract. In
particular, we may extract (zn, )ken With limg_ o0 ||Zn, || x = Uminf, o ||zn| x. It
follows that, given any z’' € X’ with ||2/||x = 1,

[ (@) = lim_ |2 (2, )] < N {|2"]|x [[2n, [l x = liminf [z, x.
—00 k—o0 n—00

Taking the supremum over 2’ € X’ with ||2'||x» = 1 in this inequality and applying
(B.1), one gets (B.2). O

Remark B.5 (Boundedness in the weak* topology). The same argument gives the
following fact: given a sequence (z),)nen in X’ which converges weakly* to 2’ € X',
we have sup,, o ||z}, || x < o0 and ||z|| x/ < liminf, o |27, || x7. |

The next result gives simple conditions to verify a set £ C X is weakly closed
(thus also weakly sequentially closed).

Lemma B.6 (Closedness). Let E C X be convex. Then E is strongly closed if and
only if it is weakly closed.

Proof. Since T, C Tx, weakly closed sets are always strongly closed. Thus we only
need to show that a convex, strongly closed set F is also weakly closed. Let F
be convex and strongly closed, z € E¢. We apply the geometric version of the
Hahn—Banach Theorem 1.36 to A = {z} and B = FE to find 2’ € X’ such that
' (z) < a< B <2'(y) for all y € E. Observing that the set U, = {z € X : 2/(2) <
a} is open in the weak topology and that « € U, C E€, we conclude E° is open in
Tw and thus F is weakly closed. O

431t is also naturally related to the Fatou property that many function spaces and spaces of
distributions have, which — as the name suggests — is linked to Fatou’s lemma in measure theory,
which asserts lower semicontinuity of the Lebesgue integral.
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The simplest example of a weakly closed set in X is the closed ball B;(0), by
virtue of Lemma B.6. Similarly, the set B, (z¢) is weakly closed for every r > 0 and
every xg € X.

There is another natural class of weakly closed sets, which are of fundamental
importance in the direct method of calculus of variations. To introduce them,
we need to define a class of functionals first.

Definition B.7 (Lower semicontinuous functionals). Let (Y, 7y) designate a topo-
logical space and let F':'Y — R.

a. We call F lower semicontinuous if its sublevel sets are closed. Namely,
given any A € R, Ex:={y €Y : F(y) < A} is closed with respect to Ty .

b. We call F' sequentially lower semi-continuous if for every sequence
(Yn)nen convergent toy € Y with respect to 7y, F(y) < liminf, o F(yn).

It can be shown F' is sequentially lower semicontinuous if and only if its level
sets are sequentially closed. As a consequence, lower semicontinuous functionals are
always sequentially lower semicontinuous, but the converse might not be true. If
the topology Ty is metrizable, then both notions of lower semicontinuity coincide.

Recall F: X — R is convex if for every x,y € X and every A € [0, 1],

F((1=XNz+My) <(1=NF(z)+ AF(y).

By Lemma B.6, we can characterize weakly lower semicontinuous functionals on X
as soon as we additionally impose the geometric constraint of convexity.

Corollary B.8 (Characterizations of lower semicontinuity). Let F: X — R be a
convez functional. Then the following are equivalent.

a. F' is strongly lower semicontinuous, i.e. lower semicontinuous with respect
to || - |lx or equivalently the strong topology Tx .

b. F' is weakly lower semicontinuous, i.e. lower semicontinuous with respect to
the weak topology Ty, .

c. F is weakly sequentially lower semicontinuous with respect to the weak
topology Ty, .

Proof. (i) = (ii). Fix A € R and consider the level set Ey. Since F is convex,
E) is convex. Since F' is strongly lower semicontinuous, E) is strongly closed. By
Lemma B.6, we deduce F) is weakly closed, which shows (ii).

(if) = (iii). This follows from the aforementioned facts.

(iii) = (i). It suffices to show F) is sequentially closed in the strong topology.
Let (zn)nen be a sequence in F) such that ||z, — x| x — 0 as n — oo. This forces
T, — T as n — oo. Since F' is weakly sequentially lower semicontinuous, we deduce
F(z) < liminf,,_, o F(x,) < A. This gives « € E), which terminates the proof. O

We now turn our attention to open sets in weak topologies. They suffer the
pathology of being naturally unbounded.

Lemma B.9 (Unboundedness). Let X be an infinite-dimensional Banach space
and let 7, denote its weak topology. Then every open set U € 1, is unbounded, both
with respect to the weak topology T, and the strong topology Tx .

Proof. As 1, C Tx, it suffices to show unboundedness in 7,. Up to a translation,
we may and will assume 0 € U. Since 0 € U € 7, there must exist z/,... 2], € X’
and € > 0 such that

Be (o),..a,3(0) = {2z € X : |z{(2)| < e forevery i € {1,...,n}} CU.

We claim there exists £ € X \ {0} such that z}(Z) =0 for every i € {1,...,n}.
Suppose to the contrary this claim is false. The continuous linear map ®: X — R"
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given by ®(z) := (2} (z), ...z, (z)) would then be injective. Denoting by ®(X) Cc R"
its range, applying Proposition 1.33 one then deduces ®: X — ®(X) is a linear
isomorphism, contradicting the infinite-dimensionality of X.

Next, given such a point Z, arguing as in Lemma B.1, one can construct z’ € X’
such that Z’'(Z) = 1. Let us define

Vi={re X :|zi(x)] <eforeveryiec{l,...,n}, |7'(z)] <1}.

Clearly, V is open in 7,,. We claim there exists no s > such that U C sV, yielding
unboundedness. Indeed, by construction Az € B (41, 2 1(0) C U for every A € R,
but Az € sV if and only if |\| < s. O

As a byproduct of Lemma B.9, if a set E is strongly bounded, then it cannot be
weakly open! The standard example is the open unit ball By (0).

This contrast between boundedness of convergent sequences and unboundedness
of open sets is the cause of several pathologies concerning weak topologies. In
particular, it implies their lack of metrizability.

Lemma B.10 (Weak metrizability). Let (X, |- |x) be a Banach space. Then the
weak topology Ty, is metrizable if and only if X is finite-dimensional.

Proof. If X is finite-dimensional, it is isomorphic to R? and its weak topology 7.,
coincides with the strong topology induced by || - ||x, which is equivalent to the
FEuclidean one.

Conversely, assume X is infinite-dimensional and assume by contradiction there
exists a metric d inducing 7,,. Consider the sets U, := Bj,(0), where n € N.
By construction, U,, € 7, and hence Lemma B.9 implies it is unbounded in both
the weak and strong topologies. In turn, by Exercise 3.1, for every n € N we can
find x,, € U, such that ||z,||x > n. On the other hand, the sequence (x,)nenN
constructed in this way must converge weakly to 0 since d(z,,0) < 1/n. But by
Lemma B.3, the sequence (z,,)nen is bounded in (X, | - ||x), which contradicts the
property ||z,||x > n coming from the construction. O

The same kind of issue applies to the weak* topology.

Lemma B.11 (Weak* metrizability). Let X be a Banach space with dual space X'.
Then the weak®™ topology T, is metrizable if and only if X is finite-dimensional.

Proof. If X is finite-dimensional, the same argument as in Lemma B.10 applies.

Conversely, assume 7, is metrizable. By Exercise 5.1 X’ admits an at most
countable algebraic base. We claim this implies X’ is finite-dimensional, from which
the conclusion will follow by Corollary B.2.

To see the claim, consider an at most countable algebraic base {y, : n € N} of
X', and define the increasing subspaces Y, := Ry; + - -+ + Ry,. Since Y}, is finite-
dimensional by construction, Proposition 1.33 ensures it is closed in X. Moreover,
since {y, : n € N} is an algebraic base, we have

X'=J Ya (B.3)
neN
Now there are two options, namely

e the set {y, : n € N} is finite, so X' =Y}, for some ny € N, which shows
finite-dimensionality of X', or

e the sequence is countably infinite, in which case Y;, is a proper subspace of
X' for every n € N.

In the second, since proper linear subspaces in a TVS always have empty interior
(prove this as an exercise), by (B.3) it would follow X’ can be written as a countable
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union of closed sets with empty interior. By the Baire category theorem, this would
imply X’ has empty interior, which is a contradiction. U

APPENDIX C. WEAK COMPACTNESS, SEPARABILITY, AND REFLEXIVITY

This section contains some of the most classical results at the heart of functional
analysis. The first one we need to mention is the following.

Theorem C.1 (Banach—Alaoglu—Bourbaki theorem). Let X be a Banach space, X'
its dual. Then the closed unit ball {z’ € X' : ||2'||x < 1} is compact with respect to
the weak® topology.

See [3, Thm. 3.16] for a proof. The compactness of the unit ball is the most
essential property of the weak™ topology, and the main reason for its introduction.
Compare it to Remark 1.34: if X is infinite-dimensional, the same can never be true
in the strong topology induced by || - || x!

Theorem C.1 tells us there are many compact sets in (X, 7+ ). This is useful in
optimization problems: if K is a compact set in (X’ 7,+) and F: (X', 7,+) = R is
a continuous function, then there exists z € K with

. / . / _
Indeed, the set F(K) is compact in R, thus of the form [ming F(z), maxg F(z)].
Compactness therefore yields the existence of minimizers in optimization problems.
There are some adjacent remarks about Theorem C.1:

e Our original space was X, on which we defined the weak topology (X, 7).
So we would like to obtain compactness results in (X, 7).

e In applications, one would often like to construct approximate minimizers
in an algorithmic way. This often results in an approximation sequence
(zn)nen. While compactness is useful, we would like to understand sequential
compactness as well, as to guarantee the sequence (z,)nen in fact converges
to a minimizer.

e By Lemma B.11, the weak* is not metrizable. Therefore, compact sets and
sequentially compact sets might not coincide, possibly heavily limiting the
effect of Theorem C.1. A similar issue applies for the weak topology, in light
of Lemma B.10.

To overcome these issues, we need to introduce some concepts.

Definition C.2 (Reflexivity). A Banach space X is reflexive if the canonical
injection J: X — X" from Lemma B.1 is surjective.

Remark C.3 (Weak vs. weak®™ convergence). Reflexivity allows to link weak conver-
gence in X to weak® convergence in X”. A sequence (z,),eN converges weakly to
z € X if and only if (Jx,)nen converges weakly* to Jx, since for every o’ € X',

Jim (J,) @) = lim a'(r,) = 2'(2) = (Jo) (@)

Similarly, the weak topology on X and the weak* topology on X" coincide. One can
then apply Theorem C.1 (with X" in place of X) we deduce that, if X is reflexive,
the closed unit ball {x € X : ||z||x < 1} is compact in the weak topology! |

In the following, we will not rely on Theorem C.1 or its consequences due to
Remark C.3. Instead, the main goal of this appendix is to provide a sufficiently
self-contained proof of the following fundamental result.

Theorem C.4 (Boundedness implies sequential precompactness). Let X be a
reflexive Banach space. Let (x,)nen be a bounded sequence in X. Then there exists
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a subsequence (T, )ren and a point © € X such that the subsequence converges to
x in the weak topology of X.

In other words, if X is reflexive, then bounded sequences in X are weakly sequen-
tially precompact.

Before delving into the proof, let us briefly mention to other fundamental results
from Functional Analysis which are closed related to Theorem C.4, although we will
not use them.

The Eberlein—Smulian theorem states that, on an arbitrary Banach space X,
weakly compact and sequentially weakly compact sets coincide.

The Kakutani theorem states that the unit ball Bx in X is weakly compact if
and only if X is reflexive. We see in particular that the reflexivity assumption in
Theorem C.4 is actually not just a sufficient condition, but also a necessary one, in
order to guarantee the existence of a weak limit (after extraction of subsequence, as
usual). These theorems also nicely address the third issue from the above list.

To prove Theorem C.4, we need some preparations. We start by collecting some
basic properties of reflexive spaces.

Lemma C.5 (Properties of reflexive spaces). The following hold.

(i) If (X, - llx) is reflexive and M is a closed linear subspace of X, then
(M, - |lx) is reflexive.
(if) X is reflexive if and only if its dual X' is reflexive.

Proof. For detailed proofs, we refer to [3, Prop. 3.20, Cor. 3.21]. Here are the main
ideas in order to get a simple self-contained proof.

(i) Given any =’ € X', we define an element of m’ € M’ by considering its
restriction :c"M to M. Given m” € M", by duality we can define m” € X" by
m/(z') = m/ (/| ,,). By reflexivity of X, this implies the existence of Z € X such
that Jxz = m”. To complete the proof, it remains to show z € M and Jyz = m".

For the first claim, if by contradiction z ¢ M, by the analytic Hahn—Banach
theorem and some additional technical work, one can construct a linear functional
2’ € X such that 2’ =0 on M and z/(Z) = 1. But then by construction

1=4'(z) = (UxT)(2') =m" (') = m"(x’|M) =m"(0) =0,
which is a contradiction.
For the second claim, again by the analytic Hahn—Banach theorem, any m’ € M’
admits an extension ' € X’ such that m’!M =m/, so that
(Juz)(m') = m'(z) = ' (z) = (Jx@)(2') = m"(2") = m" (2] ) = m" (m');

as the identity holds for every m’ € M’, we conclude Jyz = m”.

(ii) Let us show that, if X is reflexive, so is X’. Given ¢ € X", we need to find
x’ € X’ such that ¢ = Jx/2/, i.e. p(z”’) = 2 (2'). By assumption, any z”/ € X" is
of the form Jxz for some x € X, so this is equivalent to constructing ' with the
following property for every =z € X:

o'(z) = (Jxx)(2') = o(Jxx).

Since ¢ and Jx are continuous, we can define z' € X’ by the relation '’ = p o Jy,
which concludes the proof.

By the above, if X' is reflexive, so is X”; but then by part (i) so is X, since we
can identify it with Jx (X) which is a closed linear subspace of X". O

Definition C.6 (Separability). A Banach space X is separable if there exists a
countable D C X which is dense in X with respect to || - ||x.

We recall the not entirely obvious fact that if X is separable and Y C X, then Y
is also separable [3, Prop. 3.25].
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Lemma C.7 (Characterization of separability). X is separable if and only if it
admits a countable linearly dense subset, namely there exists D C X whose linear
span is dense in X.

Proof. Clearly if D is dense, it is also linearly dense.
Conversely, if D is countable and linearly dense, then

E::{Z)\iyi:nGN,inD,)\iGQ}

i=1
is still countable (since we restricted to rational coefficients). Since elements in
span D can be approximated arbitrarily well by E, we get X =spanD C E. (]

The next lemma provides an easy-to-check condition for a set to be linearly dense.

Lemma C.8 (Characterization of linear density). A set D C X is linearly dense
in X if and only if for every ' € X, the following holds. If x' vanishes on all of D
— d.e. 2'(y) =0 for everyy € D — then 2’ = 0.

Proof. One implication is trivial. Suppose D is linearly dense. Since any 2’ € X’ is
linear and continuous, z’ is entirely determined by its values in D. In particular if
2'(y) = 0 for every y € D, it must be 0 everywhere.

Conversely, suppose D is not linearly dense, so that Y := span D is a closed,
proper linear subspace of X. Then there exists a point € X \ Y. By the analytic
Hahn-Banach theorem we can construct ' € X’ such that 2'(y) =0 forally € Y
(in particular for y € D), but 2/(z) = 1, a contradiction. O

Proposition C.9 (A sufficient condition for separability). Let X be a Banach space
such that X' is separable. Then X is separable.

The converse statement is not true. The space Ll(Rd, £4) is separable, but its
dual L=(R%, £%) is not.

Proof of Proposition C.9. Let E = {z!, : n € N} be a dense subset in X’. By
definition of || - ||x/, for each z/,, there exists z,, € X such that ||z,||x = 1 and
b (xy) > || |lx /2. We claim D := {z, : n € N} is linearly dense in X, which
gives the conclusion by Lemma C.7. By Lemma C.8, it suffices to show that, given
any ' € X such that z'(z,) = 0 for all z,, we have 2’ = 0. Given such an z’, by
separability we can find a sequence (z],)men in E such that ||x], — 2'||x» — 0 as
m — 0o0. But then by construction

[l [l x-
2
so that sending m — oo we find 0 > ||2'|| x//2, yielding 2’ = 0. O

o = @l > [ (@m) — @ ()] = [y ()] >

Theorem C.10 (Reflexivity and separability combined). Let X be a Banach space.
Then X is reflexive and separable if and only if X' is reflexive and separable.

Proof. By Lemma C.5 and Proposition C.9, if X is separable and reflexive, so if X’.
By the first implication, if X’ is separable and reflexive, then so is X”'; but if X’ is
reflexive, so is X, meaning J: X — X" is an isometry. Therefore X is separable
since it is isometric to the separable space X". O

Our main interest in separability is due to the following result.

Theorem C.11 (Topological consequences of separability). Let X be a Banach
space with dual X'. Then the following hold.

(i) The closed unit ball Bx: := {2’ € X' : ||2'||x < 1}, endowed with the weak
topology Ty~ , is metrizable if and only if X is separable.
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(ii) If X s separable, then Bx/ is sequentially compact w.r.t. Ty»~.

Remark C.12 (About Theorem C.11). We invite the reader to compare item (i) to
Lemma B.11. Even though (X', 7,~) is not metrizable, the restriction of the topology
to the unit ball (in fact, to any ball of arbitrary but finite radius) is metrizable!
Additionally, we know by Lemma B.3 that, if (2],),en converges weakly* to 2’ € X',
there exists R > 0 large enough such that (z),)nen C {2’ € X' : ||2'|] < R}, a set
on which the topology is metrizable. Thus, if X is separable, the weak* topology is
(roughly speaking) “locally metrizable”. |

Proof of Theorem C.11. We start by showing separately the two implications from
(i), following [3, Thm 3.28].

Assume first X is reflexive and let D = {x,, : n € N} be a countable dense set in
its closed unit ball Bx := {x € X : ||z||x < 1}. Define a metric d on Bx: by

d@,y) ==Y 27" (2’ — ) (wn)l.
neN
The d is well-defined since ||z’ —¢/||x < 2 for every ',y € Bxs and ||z,||x <1 for
every n € N. Moreover, d is translation-invariant by definition.

We claim this metric induces the weak* topology on Bx/. We do not give a full
proof here; let us only show a simpler fact, namely that if d(«],,0) — 0 as m — oo,
then (2),)men converges to 0 in the weak* topology. Indeed, by definition of d, one
readily checks lim,,_, o d(2],,0) = 0 as m — oo if and only if lim,,—, 2}, (2,) =0
for every fixed n € N. Now let z € X \ {0} and set z := z/||z||x. Given any € > 0,
there exists n € N such that ||z, — Z||x < ¢/|z]|x. We deduce

|20 (2)] = [[z]lx [2"(2)]
< lzllx [Jem (@n)] + [25,(Z = 20)]]
< lellx [l2h (@a)] + Nl llx 12 — 2| x]
< lzllx 25, (za)] + €.
Sending m — oo, we find

limsup |z}, (z)] < €.

m—o0
By the arbitrariness of ¢, as the argument holds for any x € X, we conclude that
|l ()] — 0 as m — oo, namely (2},)men converges to 0 in the weak* topology.

We turn to the converse implication from (i). Suppose By is metrizable with

distance d. Given any n € N, consider the set U, := {2’ € Bx: : d(2/,0) < 1/n}.
Since d induces 7,+, there exists a sequence {E,, : n € N} of finite subsets of X —
say B, = {z7,..., 2% } — and a sequence (&, )nen of positive real numbers with

Vo = {2’ € Bx: : |2'(z}')| < &, for every i € {1,...,N,}} C U,.

Define the countable set D := |, cn En-

We claim it is linearly dense, which will terminate the proof. Indeed, let ' € X’
be such that «’(y) = 0 for every y € D. Either ||z'||x, =0, or &’ := 2 /||2’||x € Bx-
and #'(y) = 0 for all y € D; but then by construction &’ € U, for all n € N, i.e.
d(z’,0) = 0, implying &’ = 0, contradiction. We deduce ' = 0, so that D is linearly
dense by Lemma C.8.

(ii) In view of the arguments from (i) — in particular, the construction of D
and the choice of the metric d —, it is enough to show that, given a sequence
(77,)menN in Bx/, there exist a subsequence (7, )ren and z’ € Bxs with the
property limg o0 27, (2,,) = 2'(2,,) for every n € N. This is a classical and general
procedure called Cantor’s diagonal argument. To construct the subsequence, we
will actually inductively define a countable family of subsequences. To make the
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notation more manageable, it is convenient to denote subsequences by (m}(n))neN,
or simply (f(n))nen, for suitable increasing functions f: N — N.

We start by looking at (x],(x1))men. Because |2}, (x1)| < ||z, || x/||z1]|x <1 for
every m € N, the sequence is bounded in R. By the Bolzano—Weierstrafl theorem,
there exist a subsequence f! and ¢; € R such that lim,,_ x}l(m) (1) =c1. We
can now run the same argument by looking at (., (¥2))men. Then we find
a subsequence f2 of f! and ¢; € R such that lim,,_ x’fz(m)(xg) =c¢p. By an
inductive procedure, starting from f7, where j € N, we find a subsequence f/*! and
Cj+1 € R with the property lim,, oo x’fjﬂ(m)(sz) = Cj41- This defines a family
{f?:j € N} of increasing maps from N to N, where fi*! is a subsequence of f7
for every j € N. Finally, we define the sequence

F(m) := f"(m)

which is the diagonalization step. By construction, F' is eventually a subsequence of
f7 for every j € N, therefore the limit of (m};(m) (2j))men exists and coincides with
that of (2';,,)(¢;))men. In other words, every n € N satisfies

n}iinm 3CIF(m) (Tn) = cn.

We now define a linear operator A on span D by

A[nz;/\nxn} = nzi:l)\ncn. (C.1)

Since the functionals =/, belong to By as hypothesized, they are uniformly Lipschitz
continuous with constant 1. This property is inherited by A: for every y € span D,

[A@x = lm |20, @) x < limsup 1y 1 19l x < Nyl x-

By a classical extension theorem, A admits a unique linear and Lipschitz continuous
extension to Span D = X that we will denote by z’. By the same argument, we
have ||2'||x < 1, implying 2’ € Bx/. By (C.1), all in all we have constructed a
subsequence (Ilp(m))meN and 2’ € By such that for every n € N,

i 2y (@) = 2 (2n).

This implies (J:'F(m))meN converges to 7’ in the weak* topology, as desired. O

Remark C.13 (Bounded sets). The second part of Theorem C.11 is stated for Bx,
but one can extend it as follows. Given a bounded set £ C X’ and a sequence
(77,)nen in E, there exists a subsequence (17, )ren Which converges weakly™ to
some point z’ € X. In other words, if X is separable, then bounded sets in z’ are
sequentially precompact with respect to 7,-. This is because, by dilations,
one can immediately show RBx: = {2’ € X' : ||2'||x- < R} is sequentially compact
with respect to 7« for every R > 0. [ |

Proof of Theorem C.4. Let (x,)nen be a bounded sequence in X and let Y denote
the closure of the linear span of that sequence. By construction, Y is a closed linear
subspace of X and (Y,] - ||x) is a separable Banach space. By Lemma C.5, Y is
reflexive. By Theorem C.10, Y/ and Y are separable and reflexive. Let Jy be
the canonical injection from Y to Y. Then the sequence (Jy Z,)nen constitutes
a bounded sequence in Y”. By Theorem C.11, we can extract a subsequence
(Jyp, )ken which converges weakly™ in Y, thus by reflexivity to some Jyy, where
y € Y. This means that, given any 3y’ € Y”,

lim o () = lm Jyzn, (y') = Jryy') =y (y).

s — 00 k— o0

k—
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In other words, the sequence (z,, )ren converges weakly in Y to y € Y. Since any
2" € X' defines an element of Y’ by its restriction y' := 2’|, we conclude (2, )ren
converges to y in the weak topology of X as well. O

Thus far, we have considered the abstract property of reflexivity, but given a
Banach space X it might be quite hard to say whether it is reflexive or not. Many
standard classes however have been extensively studied, cf. [3].

e Every Hilbert space H is reflexive. Indeed, in this case H is even isomorphic
to its dual H' by the Riesz—Fréchet Theorem.

e Let (M, m) be a measure space with m o-finite. Let L?(M, m) denote the
associated Lebesgue space, where p € [1,00]. Then LP(M, m) is reflexive
provided p € (1,00). In this situation, one can identify its dual space with
L1(M,m), where 1/p + 1/q = 1. Applying this identification twice yields
LP(M,m)” = L?(M,m). In the extremal case, L'(M, m) can still be identified
with L>°(M, m), but the converse is not true. Neither space is reflexive in
general. (And L°°(M,m) is not even separable in general.)

o Let © R be an open set, endowed with the Lebesgue measure. Denote
the corresponding Lebesgue spaces by LP(£2, £%), where p € [1,00]. Then
for every p € [1,00), LP(Q2, £L%) is separable and C°(f2) is dense in it (by
convolution).

e Let © C RY be an open and bounded set. Let C(€) denote the Banach
space of continuous functions defined on its closure with the supremum
norm. Then C(f) is separable by the Stone-Weierstrass theorem. Its dual
can be identified with the space of signed Radon measures on . Neither
this set nor C(Q) are reflexive.

Applying the results from this section, one can then deduce the following.

e On Hilbert spaces, closed bounded balls are weakly compact and sequentially
compact. The same applies for Lebesgue spaces with exponents in (1, 00).

e (M, m) is the dual of the separable space L'(M,m), thus closed bounded
balls in L>° (M, m) are sequentially compact in the weak* topology.

e If Q is bounded, the space of signed Radon measures on € is the dual
of the separable space C(Q), thus closed bounded balls in the former are
sequentially compact in the weak® topology.

e On the other hand, in the above situations boundedness is not a sufficient
condition for weak precompactness in L*(M,m) or C(Q). A characterization
of weak compactness in L'(M, m) is given by the celebrated Dunford-Pettis
theorem, cf. [3, Thm. 4.30].

APPENDIX D. SCHAUDER—TYCHONOFF IN BANACH SPACES

As mentioned in Remark 4.6, let us show the proof of Theorem 4.5 when X is a
Banach space. The statement goes as follows.

Theorem D.1 (Schauder—Tychonoff in Banach spaces). Let X be a Banach space
and K C X be closed, convezx, and nonempty. Let F: K — K be continuous such

that F(K) is compact. Then F has a fized point in K.

Proof. Let € > 0. Since S := F(K) is compact, we know there exists a finite subset
{y1,...,yn} C S such that S C |J_; Bc(y;)**. Define the functions gi,...,gn as

_Je—llz—wll ifllz—wll<e
gi(w) = .
0 otherwise.

44The balls are replacing the sets y; + U from the proof of Theorem 4.5. Indeed, Be(y;) =
yi + Be(0) and B:(0) is clearly a convex, balanced and open neighborood of the origin.
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Each g; is continuous, g;(x) > 0 and, since the balls are a covering of S, their sum
is always strictly positive on S%°.
Define C := co{y1,...,yn} and g: S — C by?*®

o@) = [P @] S (D.1)
j=1 i=1

This function is continuous and, since for any x € S we can write

= [ o] Yo

we deduce ||g(x) — z|| < € from the definition of g1, ..., gn.

Consider now the function G :=go F|C: C — C. Since C is a compact and
convex subset of a finite-dimensional space and G is continuous, we can apply
Brouwer’s fixed point theorem to find ¢y € C such that c¢g = G(cg) = g(F(co)).
Hence, by the inequality above, we know that

[F'(co) — coll = 1 F(co) — g(F(co))ll <e.
Replacing ¢ by 1/m, given any m € N there exists ¢,, such that

1
Fm*m<7~
|F(em) = emll < =

Since {F(ci,) : m € N} is a sequence in the compact space S, there is a subsequence
{¢m, : k € N} such that F(cp,,) — o as k — oo for some z¢ € S. Moreover,

1
lems, = @oll < [1F(em,) = em | + 1 (emi) = @oll < -+ [[F(emy ) = woll-

Sending my, — 0o we see ¢, — T since F(cp,, ) — xo. By the continuity of F, we
conclude F(c,, ) — F(xo) and therefore F(xg) = zo. O

APPENDIX E. BOCHNER INTEGRATION ON BANACH SPACES

In this part, we collect some properties of integration of Banach-space valued
functions. For a detailed account, we refer to e.g. the book of Diestel-Uhl [5]. Much
of the material to follow should be strongly reminiscent of integration theory from
measure theory for R U {—00, co}-valued functions, modulo some peculiarities from
the fact that the functions we study here take values in Banach spaces.

Let X be a Banach space. As usual, we denote its norm by || - || and its dual
space by X'.

A function z: [0,1] — X7 is called simple if it assumes only finitely many values
in X. More precisely, there exist k¥ € N, Borel subsets Ey,...,E, C [0,1], and
vy, ..., € X such that for every t € [0, 1],

k
z(t) = Z 1g, (1) v;. (E.1)

A map z: [0,1] — X is called
e strongly measurable if there is a sequence (x,)nen of simple functions
such that (||z, — z||)nen converges to zero L'-a.e. and

e weakly measurable if for every 2’ € X', the map f: [0,1] — R given by
f(t) :=a'(z(t)) is Borel measurable.

45This is the analog the lower bound on the sum of the distances in Lemma 4.4.

46Notice the analogy with the function F' defined in Lemma 4.4.

4"We choose the domain [0,1] to simplify the presentation. It could also be taken to be R or
any nontrivial subinterval thereof.



74 MATHIAS BRAUN

Linear combinations of strongly measurable functions are strongly measurable; the
analog holds for weak measurability. Moreover, if the map «: [0,1] — X is strongly
measurable, then its norm ||z|| is a Borel measurable map from [0, 1] to R.

A precise relation between strong and weak measurability is the following.

Theorem E.1 (Pettis). A map z: [0,1] — X is strongly measurable if and only
if it is weakly measurable and almost separably valued, i.e. there exists a Borel set
N C [0,1] with LY[N] =0 such that z([0,1] \ N) is a separable subset of X.

In particular, if X is separable, strong and weak measurability are equivalent.

Now we turn to integration of such functions, the so-called Bochner integrals.
Given a simple function z: [0,1] — X of the form (E.1), we set

1 k
/0 x(t)dt == ZU[EJ v;

Note this integral is X-valued by definition. It does not depend on the particular
way (E.1) is written. Given z: [0,1] — X strongly measurable, we then say z
is Bochner 1ntegrable if there exists a sequence (z,,)nen Of sunple functions such
that fo |z(t) — 2, (t)|| dt — 0 as n — co. In this case, ( fol zp(t) dt)nen is a Cauchy
sequence in X, hence the following quantity is well-defined:

1 1
/ z(t)dt := lim x,(t) dt.
0

n—roo 0

This integral is independent of the choice of the sequence (z,),en with the above
properties. Moreover, the following “triangle inequality” holds:

[ w0a] < [ fear o

Given any Bochner integrable map z: [0,1] — X and any Borel measurable set
B C [0,1], we also define

/Bx(t) dt = /01 () 2 (1) dt.

The following is a convenient characterization of Bochner integrability.

Theorem E.2 (Bochner). A strongly measurable function x: [0,1] — X is Bochner

integrable if and only if
1
/ (t)]| dt < .
0

Armed with an integration theory for X-valued functions, we can now introduce
Lebesgue and Sobolev spaces. Moreover, it allows us to define absolute continuity.

Definition E.3 (Lebesgue spaces). Given any p € [1, 0], the space LP([0,1]; X) is
the space of (equivalence classes up to Ll-a.e. equality of) those strongly measurable
maps z: [0,1] = X such that ||$HLP([0 1;x) < 00, where

P /p .
Hm H dt provided p < co,
||17HLP([0,1]X = 0 .
L -esssup Hx H otherwise.
te[0,1]
Definition E.4 (Sobolev spaces). Given any p € [1,0], the space W1P([0,1]; X)
consists of those x € LP([0,1]; X') such that there exists an element 2’ € LP([0,1]; X)
such that for every ¢ € C°((0,1)),

/ o () 2(t) dt = — / o(t) 2/ () dt. (E.3)
0 0
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For every p € [1, 0], the Sobolev space WP ([0, 1]; X) becomes a Banach space
with respect to the norm

1/p
lllwr qo.a1:x) = [l o.a:x) + 127 2 0.11:)]
In quite general settings, there is a one-to-one correspondence between Sobolev
functions and absolutely continuous functions in Banach spaces.

Definition E.5 (Absolutely continuous curves). Given any p € [1,00], the space
ACP([0,1]; X) consists of all maps x: [0,1] — X such that there is f € LP([0,1]; L)
such that for every s,t € [0,1] with s < t,

Hx(t) —x(s)H §/ flr)dr.

In particular, AC®([0, 1]; X) is the set of Lipschitz continuous maps x: [0, 1] — X.
The following two general results, stated without proof, verify the one-to-one
correspondence outlined above.

Proposition E.6 (Absolutely continuous representative). Given any p € [1, 0]
and any x € WHP([0,1]; X), there exists ¥ € ACP([0,1]; X) with x = % L'-a.e.
Moreover, for every s,t € [0,1] with s < t, the representative & satisfies

() — i(s) = /: 2/(r)dr.

In general Banach spaces, absolute continuity does not imply a.e. differentiability.
In other words, the fundamental theorem of calculus cannot be turned into a
statement about the derivative of the function in question. This property is connected
to the so-called Radon—Nikodym property of Banach spaces. A simple sufficient
criterion is separability; therefore, the one-to-one correspondence holds e.g. on every
Hilbert space, the main setting of §5.

Theorem E.7 (Sobolev representative and a.e. differentiability). Assume X is
reflezive. Given any p € [1,00] and any x € ACP([0,1]; X), for L1-a.e. t € [0,1] the
following limit exists in X:

/(1) = lim w

The function =’ thus defined — with e.g. constant extension beyond the set of
all t € [0,1] for which the above limit does not exist — belongs to LP([0,1]; X) and
satisfies (E.3) for every ¢ € C2°((0,1)); in particular, x € WHP([0,1]; X).
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