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Lecture 1. Throughout these notes, we use indifferently A ⊂ B and A ⊆ B to
state that A is a subset of B, with possibly A = B. We would use instead A ⊊ B
to stress that A is a proper or strict subset of B, namely A ⊂ B yet A ̸= B.

The set N of natural numbers does not contain 0. We set N0 := N ∪ {0}.
The terms “function”, “map”, and “mapping” will be used synonymously. Given

a function f : X → R on a set X, given t ∈ R we abbreviate {x ∈ X : f(x) < t} by
{f < t}. The sets {f ≤ t}, {f = t}, {f ≥ t}, {f > t}, etc. are defined analogously.

These lecture notes are strongly based on summaries of previous versions of this course by
Matthias Ruf, Michele Dolce, and Lucio Galeati, who thankfully shared their notes with me.
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0. A short compendium of topology1

Let X be an arbitrary set. Then we have the following basic definitions. All
implicit statements are left to the reader as an exercise.

• A topology τ ⊂ P(X) on X is a family of sets such that ∅, X ⊂ τ that
is stable under finite intersections and arbitrary unions. The sets in τ are
called open sets and the pair (X, τ) is called a topological space. The
closed sets of (X, τ) are exactly those sets whose complement is an open
set. The collection of closed sets is closed under arbitrary intersections and
finite unions.

• We say B ⊂ τ is a basis of the topology τ if every open set can be written
as union of elements in B.

• If τ1 and τ2 are two topologies on X with τ1 ⊂ τ2, we say τ1 is coarser
than τ2 and τ2 is finer than τ1

2.
• If (X, τ) and (Y, ρ) are topological spaces, then a function f : X → Y is

called continuous if f−1(A) ∈ τ for every A ∈ ρ, where f−1 denotes the
usual preimage. (In general, images of open sets under continuous maps
need not be open.) If we want to specify the respective reference topologies
explicitly, we also write f : (X, τ) → (Y, ρ).

• If f : (X1, τ1) → (X2, τ2) and g : (X2, τ2) → (X3, τ3) are continuous maps
between the three given topological spaces, so is their composition g ◦
f : (X1, τ1) → (X3, τ3) defined by g ◦ f(x) := g(f(x)).

• If B ⊂ X, its closure B of B is defined as the smallest closed set containing
B. In particular, a set is closed if and only if it coincides with its closure.
The interior intB of B is defined as the largest open set contained in B.
The boundary of B is defined as ∂B = B \ intB.

• For a topological space (X, τ), a set K ⊂ X is compact is every open cover
of K admits a finite subcover. That is, given any (not necessarily countable)
collection {Ui : i ∈ I} ⊂ τ whose union contains K, there exists a finite
index set J ⊂ I such that K ⊂

⋃
i∈J Ui.

• The continuous image of compact sets is compact. That is, if f : (X, τ) →
(Y, ρ) is continuous and K ⊂ X is compact, then f(K) ⊂ Y is compact.

• A topological space (X, τ) is Hausdorff (or T2) if for all x, y ∈ X with
x ≠ y there exist Ux, Uy ∈ τ with x ∈ Ux and y ∈ Uy yet Ux ∩ Uy = ∅. On
a Hausdorff topological space, singletons are closed sets. Additionally, you
should try to check in this case that compact sets are closed. (Note that
singletons are compact in any topology.)

• Given a topological space (X, τ) and a sequence (xn)n∈N in X, we say that
(xn)n∈N converges to a point x ∈ X (with respect to τ) if for every U ∈ τ
containing x there exists n0 ∈ N such that xn ∈ U for all n ≥ n0.

• Continuous functions preserve convergence of sequences. More precisely,
let f : (X, τ) → (Y, ρ) be a continuous function and (xn)n∈N be a sequence
converging to x ∈ X with respect to τ . Then the sequence (f(xn))n∈N in
Y converges to f(x) with respect to ρ. This is an instructive exercise only
requiring to apply the definitions.

Remark 0.1 (Caveat). Special care is required when working with sequences in
abstract topological spaces! While they enjoy the natural property described above
(which we will often use throughout the course), the correct notion to use in order

1The content of this preliminary chapter is not examinable. Yet, we will frequently use some
of the facts provided here in the lectures and exercises.

2In general, one accepts the slight linguistic mismatch that “coarser” or “finer” can also mean
the two topologies coincide.
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to characterize the topology τ would be nets, i.e. families labeled by a directed but
in general uncountable index set. We will not treat nets in detail and use them very
sparingly, which is why in most arguments we will rather consider mostly open sets,
and most importantly neighborhoods.

As a practical example, let us point out the following facts. On any topological
space (X, τ), you should try to check closed sets are sequentially closed. In other
words, if E ⊂ X is closed and (xn)n∈N is a sequence in E converging to x ∈ X,
then x ∈ E. However, the converse is not true: there exist topological spaces with
sequentially closed sets which are not closed. ■

Although the basic objects in a topology are open sets, it is often convenient
(particularly in the first part of this course) to think in terms of neighborhoods.

• A set N ⊂ X is called a neighborhood of a point x ∈ X if there exists
U ∈ τ contained in N such that x ∈ U . In particular, an open set U is a
neighborhood of all the points it contains. On the other hand, note that
neighborhoods need not be open in general.

• A family Nx ⊂ P(X) of subsets of X is called a neighborhood basis of
x ∈ X if every N ∈ Nx is a neighborhood of x and for every neighborhood
W ⊂ X of x there exists N ∈ Nx such that N ⊂ W . In particular, this
applies when W ∈ τ .

• Specifying a topology τ is equivalent to specifying a neighborhood basis Nx
of every point x ∈ X. Indeed, any open set can then be reconstructed as
a union of elements of Nx: given U ∈ τ , for any y ∈ U there must exist
Ny ∈ Nx such that y ∈ Ny ⊂ U , which implies U =

⋃
y∈U Ny. In particular,

the collection N :=
⋃
x∈X Nx is a basis of the topology τ .

• Continuity of maps is characterized by neighborhoods. More precisely, a
map f : (X, τ) → (Y, ρ) is continuous if and only if the preimage of any
neighborhood under f is a neighborhood. In fact, it suffices to verify this
property on bases of neighborhood at every given point in Y .

• Let τ1 and τ2 be topologies on X. Then showing τ1 ⊂ τ2 is equivalent to
verifying the following: for any x ∈ X and any neighborhood N1 ⊂ X of x
with respect to τ1, there exists a neighborhood N2 ⊂ X with respect to τ2
with X2 ⊂ N1 and x ∈ N2. It is actually enough to verify this whenever N1
belongs to a neighborhood basis of x with respect to τ1.

• Closed sets can be defined intrinsically by neighborhoods. More precisely,
given B ⊂ X, then x ∈ B if and only if for any neighborhood N ⊂ X of x
we have N ∩B ̸= ∅.

As a basic example, let us recall how the above concepts readapt consistently to
the case of metric spaces.

• Given any set X, a semimetric on X is a map d : X2 → R+ such that
d(x, x) = 0 for every x ∈ X, d(x, y) = d(y, x) for every x, y ∈ X, and
d(x, z) ≤ d(x, y) + d(y, z) for every x, y, z ∈ X. If additionally d does not
vanish outside the diagonal of M2, then d is called a metric on X. In the
first case, the couple (X, d) is called a semimetric space, in the second a
metric space.

• On a semimetric space (X, d), the open ball with center x ∈ X and radius
r > 0 are defined by Br(x) := {y ∈ X : d(x, y) < r}.

• The topology τd induced by the semi-metric d on X is defined as
follows: a set U ⊂ X is open if and only if for every x ∈ U there exists r > 0
such that Br(x) ⊂ U . (Note Br(x) always contains x.) In other words, the
collection of open balls {Br(x) : x ∈ X, r > 0} forms a basis of the topology
τd. Moreover, for any fixed x ∈ X, {Br(x) : r > 0} forms a neighborhood
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basis of x. This is not the only option: for instance, {B1/n(x) : n ∈ N} is
also a (countable) neighborhood basis of x.

• Given a semimetric space (X, d), the topology τd is Hausdorff if and only if
{d(x, ·) = 0} = {x} for every x ∈ X. In other words, τd is Hausdorff if and
only if d is a metric. For this reason, in these notes we will only consider
metric spaces instead of semimetric spaces.

We finally recall two basic operations on topological spaces.
• If (X, τX) is a topological space and Y ⊂ X, then the subspace topology

(or relative topology) of Y is given by τY := {U ∩ Y : U ∈ τX}. Then
(Y, τY ) is a topological space and τY is the smallest topology which makes
the inclusion map ι : Y → X given by ι(y) := y continuous. Furthermore,
a set N ′ ⊂ Y is a neighborhood of y in τY if and only if it is of the form
N ′ = N ∩ Y , where N ⊂ X is a neighborhood of y in τX . Similarly, bases
and neighborhood bases of τY and τX can be shown to be in analogous
direct correspondences.

• For an arbitrary family of sets {Xi : i ∈ I}, the product set X :=
∏
i∈I Xi

can be identified as the collection of all possible indexed tuples (xi)i∈I
such that xi ∈ Xi for all i ∈ I. Given an arbitrary family of topological
spaces {(Xi, τi) : i ∈ I}, we define the product topology

∏
i∈I τi on their

product X as the coarsest topology such that for every i ∈ I, the projection
πi : X → Xi defined by πi(x) := xi is continuous.

Often, the reference topologies are clear from the context. In this case, we will
name topological properties and notions without explicit reference to the topology.
However, note carefully that sometimes topologies need specification to rule out
ambiguities or errors. For instance, the clause “[0, 1) is open” is not true for the
standard topology on R, but it is true for the relative topology on [0, 1].

1. Locally convex vector spaces

This first chapter introduces the basic objects we will consider throughout the
course in a rather abstract fashion. It might take a bit of time to develop the
right intuition about them. The basic idea is to set the properties of convergence,
compactness, etc. of test functions and distributions on a topological ground. For
relevant and helpful applications and examples, see the exercise sheets and the
upcoming chapters.

Remark 1.1 (Convention). In principle, vector spaces can be defined over arbitrary
fields K; throughout the course, however, we will restrict ourselves to vector fields
over R. In particular, whenever we say “let X be a vector space”, we mean X is an
R-vector space. However, note that all stated results would still hold (with minor
modifications) for complex vector spaces. ■

1.1. Basic notions. Given n ∈ N, Euclidean space Rn will always be endowed
with the Euclidean topology τEucl induced by the Euclidean metric d2 given by

d2(x, y) :=
√

|x1 − y1|2 + · · · + |xn − yn|2.

Definition 1.2 (Topological vector space). Let X constitute a vector space with
given addition +: X2 → X and scalar multiplication · : R × X → X. Moreover,
let τ be a topology on X. The couple (X, τ) will be called a topological vector
space, briefly TVS, if the mappings + and · are continuous. Here, X2 and R ×X
are endowed with the evident product topologies τ2 and τEucl × τ , respectively.

Remark 1.3 (Separate continuity). It follows from the definition of the product
topology that addition and scalar multiplication in a TVS (X, τ) are separately
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continuous. Given any x̄ ∈ X, define the translation f : X → X by f(x) := x+ x̄.
Then f is continuous. Moreover, it is straightforward to check f is invertible with
continuous inverse. Therefore, translations are homeomorphisms on topological
vector spaces. Analogously, given x̄ ∈ X the map g : R → X given by g(λ) := λx is
continuous. For a fixed λ̄ ∈ R the map h : X → X with h(x) := λx is continuous.
If λ̄ ≠ 0, you should check h is invertible with continuous inverse. In other words,
nontrivial dilations are homeomorphisms of X. ■

Remark 1.4 (Neighborhoods). The topology of a TVS (X, τ) is characterized by
bases of neighborhoods of the origin. Indeed, as translations are homeomorphisms
by the previous remark, they map open sets to open sets and neighborhoods to
neighborhoods. In particular, a set N ⊂ X is a neighborhood of 0 if and only if
x+N is a neighborhood of x, where we set x+N := {x+ n : n ∈ N}.

In addition, one can “shrink” (or — less relevant in applications — “enlarge”)
neighborhoods of the origin (and hence of arbitrary points in X) as much as needed
by multiplication with an arbitrary parameter λ > 0. Indeed, a set N ⊂ X is a
neighborhood of 0 if and only if λN is, where we set λN := {λn : n ∈ N}. ■

Example 1.5 (Normed spaces). Every normed space is a topological vector space.
However, we are mainly interested in topologies that are not normable, possibly not
even metrizable (like weak topologies on Banach spaces, see later). ■

In order to define “local convexity” of a TVS, we need the following concept.

Definition 1.6 (Seminorm). Let X be a vector space. A function p : X → R+ is
called a seminorm if

a. p(λx) = |λ| p(x) for every λ ∈ R and every x ∈ X and
b. p(x+ y) ≤ p(x) + p(y) for every x, y ∈ X.

Every seminorm p on X satisfies p(0) = 0 and p(x) = p(−x) for every x ∈ X.
Note that every norm on X is a seminorm, but we do not require seminorms to only
vanish at 0 (for instance, the map sending all of X to 0 is clearly a seminorm).

The reason why we will speak about “locally convex” topologies in Definition 1.12
is because its generating sets from (1.1) below are convex (cf. Definition 1.16). In
turn, this follows from the following simple observation.

Lemma 1.7 (Convexity). Every seminorm p on a vector space X is convex.

Proof. Given any x, y ∈ X and any λ ∈ [0, 1], simply note
p((1 − λ)x+ λy) ≤ p((1 − λ)x) + p(λy) = (1 − λ) p(x) + λ p(y). □

Vector spaces equipped with given families of seminorms are naturally endowed
with an associated topology.

Definition 1.8 (Seminorm topology). Let X be a vector space and let P := {pi :
i ∈ I} be a family of seminorms on X. Let us define τ , the topology induced by
P on X, as follows: a subset U ⊂ X belongs to τ if and only if for every x ∈ U
there exist a finite set J ⊂ I and ε > 0 such that Bε,J(x) ⊂ U , where

Bε,J(x) := {y ∈ X : pi(y − x) < ε for every i ∈ J}. (1.1)

In other words, the above seminorm topology τ on X is characterized by the
requirement that, for every point x ∈ X, the set {Bε,J (x) : ε > 0, J ⊂ I finite} is a
basis of neighborhoods of x.

Since Bε,{i}(x) = {pi(x− ·) < ε} for every i ∈ I, (1.1) equivalently becomes

Bε,J(x) =
⋂
i∈J

Bε,{i}(x). (1.2)
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Remark 1.9 (Seminorms vs. semimetrics). Definition 1.8 should be compared to
the topology induced by a semimetric. Indeed, given i ∈ I define di : X2 → R+ by
di(x, y) := pi(x− y). It is straightforward to check di is a semimetric (and a metric
if and only if pi is a norm). Thus, Bε,{i}(x) is nothing but the open ε-ball with
center x ∈ X with respect to di. In turn, by (1.2) a basis of neighborhoods of x is
given by the family of all finite intersections of such semimetric balls with a fixed
yet arbitrary radius. ■

Lemma 1.10 (Seminorm topology yields TVS). In the framework of Definition 1.8,
the space (X, τ) is a TVS.
Proof. Exercise 2.1. □

Example 1.11 (Continuous functions). A TVS with infinitely many seminorms is
given by C(R) with the family {pn : n ∈ N}, where

pn(f) := sup
x∈[−n,n]

|f(x)|. ■

We are in a position to state the first central notion of this course.
Definition 1.12 (Locally convex topological vector space). We call a vector space
X equipped with the topology induced by a family P := {pi : i ∈ I} of seminorms a
locally convex topological vector space, briefly LCTVS, if X0 = {0}, where

X0 := {x ∈ X : pi(x) = 0 for every i ∈ I}.

Remark 1.13 (About Definition 1.12). The definition of LCTVSs appears rather
restrictive, as it relies on a priori given seminorms. Given a topology τ on X, it
is hard to identify the right seminorms it should be induced by per se. There is
a more geometric characterization of LCTVSs based on the existence of a convex
neighborhood basis of the origin (and the Hausdorff property). These definitions
are equivalent, but in the lecture we will only prove a partial converse adding
some geometric conditions to convexity, cf. Theorem 1.18. The full equivalence is
established in Exercise 1.3. ■

Example 1.14 (Continuation of Example 1.11). The topology from Example 1.11 is
easily seen to be locally convex: for every f ∈ C(R) \ {0} there exists n ∈ N such
that pn(f) > 0. ■

Recall the set X0 above always contains 0. The point of the condition X0 = {0}
defining LCTVSs is the Hausdorffness of their generating topology.
Lemma 1.15 (Hausdorff property). Let τ be a topology on a vector space X as in
Definition 1.8. Then τ is Hausdorff if and only if X0 = {0}.
Proof. We assume first X0 = {0}. To show Hausdorffness of τ , let x, y ∈ X satisfy
x ≠ y. Since x − y ̸= 0, by assumption there exist i ∈ I and a seminorm pi such
that δ > 0, where δ := pi(x− y). Then the open sets Bδ/2,{i}(x) and Bδ/2,{i}(y) are
disjoint; indeed, otherwise a point z ∈ Bδ/2,{i}(x) ∩Bδ/2,{i}(y) would satisfy

pi(x− y) ≤ pi(x− z) + pi(z − y) = pi(z − x) + pi(z − y) < δ,

which contradicts the choice of δ.
On the other hand, suppose τ is Hausdorff. As noted above, it suffices to show

X0 ⊂ {0}. Let x ∈ X0. If x ≠ 0, by the hypothesized Hausdorffness there exists an
open set U ⊂ X containing x such that 0 /∈ U . Since U is open, we find J ⊂ I finite
such that Bε,J (x) ⊂ U . But then 0 /∈ Bε,J (x), which implies there exists i ∈ J such
that pi(x) = pi(−x) = pi(0 − x) ≥ ε, contradicting the inclusion x ∈ X0. □

Definition 1.16 (Minkowski functional). Let X be a vector space. A subset A ⊂ X
will be called
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a. absorbing if for every x ∈ X there exists ε > 0 such that for every t ∈ R
with |t| ≤ ε we have tx ∈ A,

b. balanced if λA ⊂ A for all λ ∈ R with |λ| ≤ 1, and
c. convex if (1 − λ)x+ λy ∈ A for all x, y ∈ A and λ ∈ [0, 1].

If A is absorbing, balanced, and convex, we define the associated Minkowski
functional pA : X → R+ by

pA(x) := inf{t > 0 : x ∈ tA}.

The connection between geometry and seminorms becomes more evident in the
following result. It also clarifies the conditions on the set A in the above definition
used to set up the concept of Minkowski functionals.

Proposition 1.17 (Seminorms from Minkowski functionals). Let X be a vector
space. Assume that A ⊂ X is absorbing, balanced, and convex. Then the induced
Minkowski functional pA is a seminorm satisfying

{pA < 1} ⊂ A ⊂ {pA ≤ 1}. (1.3)
Conversely, if q is any seminorm on X, then q = pAq

with the absorbing, balanced,
and convex set Aq := {q < 1}.

Proof. To prove the first claim, first note since A is absorbing, pA is finite.
To prove homogeneity of pA, note first pA(0) = 0 since A is balanced. Next, fix

λ ∈ R \ {0} and x ∈ X. Again since A is balanced, we deduce λA = |λ|A and
therefore λx ∈ tA if and only if x ∈ tA/|λ|. This entails

pA(λx) = inf{t > 0 : λx ∈ tA}
= inf{t > 0 : x ∈ |λ|−1tA}
= inf{|λ| |λ|−1t > 0 : x ∈ |λ|−1tA}
= |λ| inf{µ > 0 : x ∈ µA}
= |λ| pA(x).

Next, we prove subadditivity of pA. Let x, y ∈ X. Since pA is finite, by definition
for every ε > 0 there exist λ, µ > 0 such that

• λ ≤ pA(x) + ε and x ∈ λA as well as
• µ ≤ pA(y) + ε and y ∈ µA.

By convexity of A we know λA+ µA ⊂ (λ+ µ)A, so that x+ y ∈ (λ+ µ)A. Hence
by definition and the arbitrariness of ε we infer pA(x+ y) ≤ pA(x) + pA(y). This
shows pA is a seminorm.

Finally, we establish the inclusions (1.3). Since a ∈ 1 · A for every a ∈ A, we
obtain pA(a) ≤ 1, which shows A ⊂ {pA ≤ 1}. Furthermore, given any x ∈ X with
pA(x) < 1 there exists λ ∈ [0, 1) such that x ∈ λA ⊂ A, where we used that A is
balanced. Hence {pA < 1} ⊂ A.

Now we show the representation of arbitrary seminorms claimed in the second
statement. We start by showing the sublevel set {q < 1} is absorbing, balanced,
and convex. If x ∈ X satisfies q(x) = 0, then tx ∈ {q < 1} for every t ∈ R by
homogeneity of q. If q(x) > 0, then for every ε ∈ (0, 1/q(x)) and every t ∈ R with
|t| ≤ ε we have q(tx) = |t| q(x) < 1 and therefore tx ∈ {q < 1}. This shows {q < 1}
is absorbing. In order to show {q < 1} is balanced, let x ∈ {q < 1} and λ ∈ R be
such that |λ| ≤ 1. Then q(λx) = |λ| q(x) < 1, so that λx ∈ {q < 1}. Finally, since
seminorms are convex by Lemma 1.7, the set {q < 1} is convex as the sublevel set
of a convex function.

Moreover, note that every x ∈ X satisfies
pAq (x) = inf{t > 0 : x ∈ tAq}
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= inf{t > 0 : t−1x ∈ Aq}
= inf{t > 0 : q(t−1x) < 1}
= inf{t > 0 : q(x) < t}
= q(x). □

Lecture 2. Now we can formulate the main theorem on the equivalent definitions
of LCTVSs indicated in Remark 1.13.

Theorem 1.18 (Characterization of local convexity). Let X be an LCTVS in the
sense of Definition 1.12. Then 0 has a neighborhood basis consisting of absorbing,
balanced, convex, and open sets.

Conversely, if (X, τ) is a Hausdorff topological vector space such that 0 has a
neighborhood basis consisting of convex sets, then its topology is induced by a family
of seminorms on X according to Definition 1.12.

Note that any absorbing or balanced set contains 0 (see the proof of Proposi-
tion 1.17). In a topological vector space, translations are homeomorphisms. Thus,
the origin plays no special role in the previous theorem from a topological point of
view. Theorem 1.18 can be adapted in that every point x ∈ X has a neighborhood
basis consisting of convex sets that are x-translates of absorbing and balanced sets.

The proof of Theorem 1.18 relies on the following fact.

Lemma 1.19 (Existence of good neighborhoods). Let (X, τ) constitute a TVS.
Then every convex neighborhood of 0 contains an absorbing, balanced, convex, and
open neighborhood of 0.

Proof. Exercise 1.3. □

Proof of Theorem 1.18. Assume (X, τ) satisfies Definition 1.12. We consider the
following family of sets:

N := {Bε,I0(0) : ε > 0, I0 ⊂ I finite}.

We claim N is a neighborhood basis of the origin of absorbing, balanced, convex,
and open sets. Clearly, 0 ∈ Bε,I0(0) for every ε > 0 and every I0 ⊂ I finite. Next we
show every B ∈ N is open with respect to the topology inherited by the seminorms.
Write B = Bε,I0(0) and let y ∈ Bε,I0(0), define δ := maxi∈I0 pi(y) < ε, and choose
z ∈ Bε−δ,I0(y). Then

pi(z) ≤ pi(z − y) + pi(y) < (ε− δ) + δ = ε.

This shows Bε−δ,I0(y) ⊂ Bε,I0(0) and by definition the set Bε,I0(0) is open. In order
to prove the remaining properties, it suffices to note that the function maxi∈I0 pi
is still a seminorm. Then we can repeat the proof of Proposition 1.17 to show
Bε,I0(0) = {maxi∈I0 pi < ε} is absorbing, balanced and convex. We conclude the
first part of the proof by noting the definition of the seminorm topology implies N

is a neighborhood basis of 0.
Now we prove the converse. Let N′ be a family of convex sets that forms a

neighborhood basis of the origin. By Lemma 1.19, there exists a family N′′ of
absorbing, balanced, convex, and open sets that still forms a neighborhood basis
of the origin. Given any U ∈ N′′, consider the Minkowski functional pU : X → R+
from Definition 1.16, which defines a seminorm by Proposition 1.17.

We first claim U = {pU < 1}. We already know from Proposition 1.17 that
{pU < 1} ⊂ U . Now let x ∈ U . Since the scalar multiplication is continuous from
R ×X to X and 1 · x ∈ U , there exists s > 1 such that sx ∈ U . In particular, this
gives pU (x) < 1/s < 1. Hence x ∈ {pU < 1}, which shows U ⊂ {pU < 1}.
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Next, let us consider the topology induced by the seminorms {pU : U ∈ N′′}
according to Definition 1.8. Since {pU < ε} = ε {pU < 1} for every ε > 0, by
continuity of the scalar multiplication the set {pU < ε} is open. Moreover, given
any x ∈ X, continuity of the addition implies

{pU (· − x) < ε} = {x+ z ∈ X : pU (z) < ε} = x+ {pU < ε} ∈ τ.

As open sets are stable under finite intersections, we conclude Bε,I0(x) ∈ τ for every
ε > 0 and every I0 ⊂ I finite. This means the topology induced by the seminorms
is coarser than τ . Conversely let O ∈ τ be open. Since addition is continuous, we
know x+ N′′ defines a neighborhood basis for any x ∈ X. Hence, we can write

O =
⋃
x∈O

(x+ Ux) =
⋃
x∈O

(x+ {pUx
< 1}) =

⋃
x∈O

{pUx
(· − x) < 1}

with Ux ∈ N′′. Hence O is an open set also with respect to the topology induced by
the above seminorms.

We finally need to show the Hausdorff property implies that if an element of X
vanishes on all seminorms, it has to be zero. Assume x ∈ X \ {0}. Since (X, τ) is
Hausdorff, there exists U ∈ N′′ such that x /∈ U . Then the above reasoning implies
pU (x) ≥ 1, which entails the claim. □

Given an LCTVS, from now on we can choose between a representation of the
topology with seminorms or a convex neighborhood basis of the origin.

1.2. Metrization and normability. Given an LCTVS endowed with a family of
seminorms P := {pi : i ∈ I}, it is a natural question to understand which conditions
prevent the topology from being compatible with a metric or a norm. In this section
we characterize these two notions. To this aim, we first need to discuss if one can
get rid of some of the seminorms pi while keeping the same induced topology τ —
as we shall see, an LCTVS is metrizable if and only if the topology is induced by a
countable family of seminorms.

Definition 1.20 (Seminorm basis). Let X be a vector space. Let P be a family of
seminorms on X. A subfamily Q ⊂ P is called a basis of seminorms for P if for
every p ∈ P there exist s > 0 and q ∈ P such that p(x) ≤ s q(x) for every x ∈ X.

You should compare this to the Lipschitz continuity of a norm ∥ · ∥1 with respect
to another norm ∥ · ∥2 on X. Suppose there is C > 0 with ∥x∥1 ≤ C ∥x∥2. What
does this entail about the respectively induced topologies on X?

The following shows no topological information is lost when restricting ourselves
to the topology induced by a basis of seminorms.

Lemma 1.21 (Reduction lemma). Let X be a vector space endowed with a family
P of seminorms inducing the seminorm topology τ . Then any basis Q of seminorms
for P induces the same topology.

Proof. For clarity, we write τP := τ . Let τQ denote the topology induced by Q.
By the inclusion Q ⊂ P, we obtain τQ ⊂ τP.
Conversely, let U ∈ τP be given. By definition of τP, given any x ∈ U there exist

p1, . . . , pn ∈ P and ε > 0 such that
⋂n
i=1{pi(· − x) < ε} ⊂ U . Since Q is a basis

of seminorms for P, given any i ∈ {1 . . . , n} there exist qi ∈ Q and si > 0 such
that pi ≤ si qi. Since we are dealing with finitely many seminorms, replacing si by
s := max{s1, . . . , sn}, we may and will assume the constants do not depend on the
index i. By the consequential inequality pi ≤ s qi for every i ∈ {1, . . . , n},

n⋂
i=1

{qi(· − x) < s−1 ε} ⊂
n⋂
i=1

{pi(· − x) < ε} ⊂ U.
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This shows U ∈ τQ to conclude the inclusion τP ⊃ τQ. □

Example 1.22 (Continuation of Example 1.11). In the framework of Example 1.11,
given any sequence (nk)k∈N diverging to ∞, Q := {pnk

: k ∈ N} is a basis for P.
Note the family Q is countable. In view of the upcoming Theorem 1.23, this implies
the seminorm topology on C(R) induced by P is metrizable. ■

Recall a topological space (X, τ) is metrizable if there exists a metric d on X
that induces τ , viz. τ = τd.

Theorem 1.23 (When is an LCTVS metrizable?). Let X be an LCTVS with a
topology τ induced by a family of seminorms {pi : i ∈ I}. Then (X, τ) is metrizable
if and only if there exists a countable set I ′ ⊂ I such that {pi : i ∈ I ′} induces τ3.

In particular, a metrizable LCTVS has some useful properties that all metric
spaces have. For instance, it is second-countable, paracompact, Lindelöf, normal,
and completely regular. We will not enter details as we do not need these properties
and refer the interested reader to any standard textbook on topology.

Proof of Theorem 1.23. Suppose there exists a countable subfamily {pn : n ∈ N}
of seminorms generating τ . Define dτ : X2 → R+ by

dτ (x, y) =
∑
n∈N

2−n pn(x− y)
1 + pn(x− y) .

As shown in Exercise 2.4, dτ is a metric generating τ . (A similar construction works
if the subfamily is merely finite).

Conversely, assume τ is generated by a metric d. Then there exists a countable
neighborhood basis of the origin given by the balls {B1/n(0) : n ∈ N}. From the
definition of the topology τ , we infer for every n ∈ N there exists εn > 0 and In0 ⊂ I
finite with the property

Bεn,In
0

(0) ⊂ B1/n(0). (1.4)
Define the countable set

I ′ :=
⋃
n∈N

In0 .

Since the family {B1/n(0) : n ∈ N} of metric balls is a neighborhood basis of the
origin, (1.4) implies the seminorms {pi : i ∈ I ′} induce a finer topology than τ .
Since I ′ ⊂ I, these topologies actually agree. □

Recall a topological space (X, τ) is normable if there exists a norm on X whose
induced metric d obeys τ = τd. A normable topological space is clearly metrizable,
but the converse is not true (the discrete metric is not induced by a norm). Hence,
normability of a topology is strictly stronger than metrizability. It is therefore no
surprise that compared to Theorem 1.23, normability of locally convex topologies
deals with a more restrictive realm than countable families of seminorms.

Proposition 1.24 (When is an LCTVS normable?). Let X be an LCTVS with a
topology τ induced by a family {pi : i ∈ I} of seminorms. Then (X, τ) is normable
if and only if there exists a finite set I ′ ⊂ I such that {pi : i ∈ I ′} induces τ .

3One would be tempted to claim (X, τ) is metrizable if and only if there exists a countable
basis for the family of seminorms {pi : i ∈ I}. However, this is not true. For a counterexample
suggested by Matthias Ruf, consider X := C([0, 1]) with the seminorms p0(f) := supx∈[0,1/2] |f(x)|
and p1/2(f) := sup[1/2,1] |f(x)|. Moreover, given any point x ∈ (0, 1/2) consider the seminorm
px(f) := |f(x)| + |f(x+ 1/2)|. Then the space is even normable because max{p1, p2} generates
the uniform convergence. However, by construction the family of seminorms {px : x ∈ [0, 1/2]}
does not contain a countable base.
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Proof. Assume {pi : i ∈ I ′} induces τ , where I ′ ⊂ I is finite. Define the seminorm
∥x∥τ = maxi∈I′ pi(x), which becomes a norm when the seminorms separate points
in the sense of Definition 1.12. Is not difficult to show that this norm induces the
same topology as τ4.

To prove the converse, assume ∥ · ∥ is a norm on X that generates τ . Then there
exist ε, δ > 0 and I0 ⊂ I finite such that the induced balls satisfy

Bδ(0) ⊂ {x ∈ X : pi(x) < ε for every i ∈ I0} ⊂ B1(0).
This shows the seminorms maxi∈I0 pi and ∥ · ∥ are equivalent, which implies they
generate the same topology. In particular, {pi : i ∈ I0} is a finite subfamily of
seminorms inducing the topology on X. □

Remark 1.25 (Comments on Theorems 1.18 and 1.23). The proofs of Theorems 1.18
and 1.23 reveal a LCTVS is metrizable if and only if there exists a countable convex
neighborhood basis of the origin. ■

Lecture 3. This remark provides an intrinsic, more geometric characterization of
metrizability for LCTVS which does not rely on seminorms. Similarly, normability
can be characterized by a more geometric condition.
Definition 1.26 (Boundedness). Let (X, τ) be a TVS. A subset E ⊂ X is called
bounded if for every neighborhood V of 0 there exists s > 0 such that E ⊂ sV .
Theorem 1.27 (Kolmogorov’s criterion). Let X be a LCTVS. Then X is normable
if and only if the origin has a bounded neighborhood.
Proof. If ∥ · ∥ is a norm on X that generates the reference topology τ , the induced
open unit ball is a bounded neighborhood of the origin since every neighborhood of
the origin contains a set of the form Bδ(0) for some δ > 0.

Conversely, we let U be a bounded neighborhood of the origin and denote by
{pi : i ∈ I} a family of seminorms generating τ . By definition, there exist ε > 0 and
I0 ⊂ I finite such that {p < ε} ⊂ U , where p := maxi∈I0 pi. Fix any other seminorm
pi with i ∈ I. Since {pi < R} = R{pi < 1} for every R > 0 by homogeneity and
{pi < 1} is a neighborhood of the origin, the boundedness of U implies that exists
s > 0 such that

ε{p < 1} = {p < ε} ⊂ U ⊂ {pi < s} =⇒ {p < 1} ⊂ {pi < ε−1 s}. (1.5)
We claim (1.5) implies that

pi ≤ 2s
ε
p. (1.6)

Once (1.6) is shown, since the argument works for any pi, we conclude p induces
the topology τ by arguing as in the proof of Lemma 1.21. Furthermore, since p is
a seminorm inducing an Hausdorff topology, it must hold p(x) = 0 if and only if
x = 0, implying p is the desired norm.

It remains to prove (1.6). Fix x ∈ X and let us assume first p(x) ̸= 0; then by
homogeneity and (1.5), we have

p
[ x

2p(x)

]
= 1

2 < 1 =⇒ pi

[ x

2p(x)

]
= pi(x)

2p(x) <
s

ε
=⇒ pi(x) < 2s

ε
p(x).

If p(x) = 0, by homogeneity and (1.5), for every δ > 0 we have

p(x) < δ =⇒ x ∈ δ{p < 1} ⊂ δ{pi < ε−1 s} =⇒ pi(x) < δs

ε
;

by the arbitrariness of δ, this implies pi(x) = 0. Therefore we have verified (1.6),
which concludes the proof. □

4In fact, given any x ∈ X and any ε > 0 one has Bε,I′ (x) = {∥ · −x∥τ < ε}.
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On TVS there exists a notion of Cauchy sequences — in fact, a related definition
of Cauchy sequences makes sense in arbitrary topological spaces, not necessarily
endowed with a metric.
Definition 1.28 (Cauchy sequence). Let X be a TVS. A sequence (xn)n∈N is called
a Cauchy sequence if for every neighborhood U of the origin there exists n0 ∈ N
such that for every n,m ∈ N with n,m ≥ n0, we have xm − xn ∈ U .
Remark 1.29 (About Definition 1.28). If there exists a translation-invariant metric
d that generates the topology on X, then Definition 1.28 coincides with the metric
definition of Cauchy sequences, since d(x, y) = d(x − y, 0) for every x, y ∈ X. In
particular, this is the case for a LCTVS (X, τ) with the metric induced by countably
many seminorms (cf. the construction from Theorem 1.23).

However, translation-invariance is crucial, otherwise these two notions do not
coincide. This can be shown for example by endowing R with the metric d given by
d(x, y) := |arctan(x) − arctan(y)|; d still induces the Euclidean topology on R, but
(R, d) is not sequentially complete, since the sequence (xn)n∈N given by xn := n is
a nonconvergent Cauchy sequence. ■

Definition 1.30 (Fréchet space). A metric space (X, d) is sequentially complete
if every Cauchy sequence (xn)n∈N converges.

A LCTVS (X, τ) is called a Fréchet space if τ is induced by a translation-
invariant metric d which is sequentially complete.
1.3. Linear maps and the dual space. In what follows, we let (X, τ) and (Y, ρ)
be Hausdorff TVS. Let L(X,Y ) denote the space of all continuous linear mappings
from X to Y . Since Y is a TVS, L(X,Y ) is itself a vector space by the usual
addition and scalar multiplication for maps between vector spaces. A particular case
is given by the choice Y = R equipped as usual with the Euclidean topology. In this
case, we use the shorter notation X ′ = L(X,R), which is called the (topological)
dual space of X. Before discussing the continuity of linear maps, we collect a
similar result concerning the continuity of seminorms.
Lemma 1.31 (Continuity of seminorms). Let X be an LCTVS with seminorms
{pi : i ∈ I} generating the reference topology. Consider another seminorm q on X.
Then the following are equivalent.

(i) The seminorm q is continuous.
(ii) There exist c > 0 and I0 ⊂ I finite such that

q ≤ c
∑
i∈I0

pi.

Proof. Exercise 3.3. □

Proposition 1.32 (Characterization of continuous linear maps). Let (X, τ) and
(Y, ρ) be locally convex topological vector spaces. Let P := {pi : i ∈ I} and Q := {qj :
j ∈ J} two families of seminorms generating τ and ρ, respectively. Let T : X → Y
be linear. Then the following are equivalent.

(i) T ∈ L(X,Y ).
(ii) T is continuous at zero. That is, for any V ∈ ρ containing 0, T−1(V ) ∈ τ .
(iii) For all j ∈ J there exist cj > 0 and Ij ⊂ I finite such that the seminorm

Pj = maxi∈Ij pi satisfies
qj ◦ T ≤ cjPj .

In particular, for every f ∈ X ′ there exist c > 0 and I0 ⊂ I finite such that

|f | ≤ c
∑
i∈I0

pi.
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Proof. We will show (ii) =⇒ (i), (i) =⇒ (iii), and (iii) =⇒ (ii).
(ii) =⇒ (i). Let V ⊂ Y be open and x ∈ T−1(V ). Then the translation V − T (x)

is a neighborhood of 0 in Y . By the hypothesized continuity of T in 0, there exists
a neighborhood U of 0 in X such that T (U) ⊂ V − T (x). The set x+ U forms a
neighborhood of x, and for all z ∈ x+ U one has

T (z) ⊂ T (x) + T (U) ⊂ T (x) + V − T (x) = V.

Thus x+ U ∈ T−1(V ) implying openness of T−1(V ), verifying the continuity of T .
(i) =⇒ (iii). By Lemma 1.31, qj is continuous on Y . This implies continuity of

the composition qj ◦ T . On the other hand, since qj is a seminorm and T is linear,
qj ◦T is a continuous seminorm. Applying Lemma 1.31 again, we deduce there exist
Cj > 0 and Ij ⊂ I finite such that

qj ◦ T ≤ Cj
∑
i∈Ij

pi ≤ Cj #Ij max
i∈Ij

pi.

(iii) =⇒ (ii). It suffices to show that for any neighborhood of V of 0, T−1(V )
is also a neighborhood of 0. Given such V , we can find ε > 0 and J0 ⊂ J finite
such that 0 ∈ Bε,J0(0) ⊂ V . For all j ∈ J0, by assumption there exist cj and a
seminorm Pj — which is continuous by Lemma 1.31 — with qj ◦ T ≤ cjPj . Since
Pj is continuous in 0, we can find an open neighborhood Wj ⊂ X of the origin
such that Pj(Wj) < ε/cj . Defining W :=

⋂
j∈J0

Wj , by construction W is an open
neighborhood of the origin satisfying

qj ◦ T ≤ cj Pj < ε.

Hence T (W ) ⊂ U and 0 ∈ W ⊂ T−1(U). Since W ∈ τ , this shows T−1(U) is a
neighborhood of 0, implying continuity of T in 0. □

Next we will discuss the finite-dimensional case, which is quite special in that
continuity becomes a redundant assumption.

As usual, we equip Euclidean space with the usual Euclidean topology. We note
that the second statement below does not simply follow from the first and basic
linear algebra, since Y — albeit being a vector space as the image of a linear map —
comes with its own subspace topology.

Proposition 1.33 (Continuity redundancy). Let X constitute a Hausdorff TVS
and Y ⊂ X.

(i) If f : Rn → X is linear, then f is continuous.
(ii) If f : Rn → Y is linear and bijective, then f−1 : Y → Rn is continuous.
(iii) If Y is a subspace of finite dimension, then Y is closed.

Proof. (i) Let {e1, . . . , en} denote the canonical basis of Rn. Then for every x ∈ Rn,

f(x) = f
[ n∑
i=1

xi ei

]
=

n∑
i=1

xi f(ei).

Since f(e1), . . . , f(en) are fixed vectors in X and all coordinate projections are
continuous, the continuity of f follows from the hypothesized continuity of the
vector space operations.

(ii) As f is bijective and linear, the map f−1 : Y → Rn is well-defined and linear.
By Proposition 1.32, to verify its continuity it suffices to do so at 0. That is, we
need to show for any neighborhood U of 0 on Rn, there exists a neighborhood W̃ of
0 on Y with (f−1)(y) ∈ U for every y ∈ W̃ . In other words, since {Bε(0) : ε > 0} is
a neighborhood basis of 0 on Rn, and the open sets on Y are defined by intersecting
open sets of X with Y , we must verify the following: given any ε > 0, there is a
neighborhood W of 0 in X such that ∥f−1(y)∥ < ε for all y ∈ W ∩ Y .
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To this end, set S := {x ∈ Rn : ∥x∥ = 1}. Since S is compact, the continuity of
f implied by (i) yields f(S) ⊂ X is compact. Since f(0) = 0, the bijectivity of f
implies 0 /∈ f(S). Since X is a Hausdorff space, compact sets are closed and their
complements are open. Therefore, there exists an open neighborhood V of 0 such
that V ∩ f(S) = ∅; by Exercise 1.3, we can take V to be balanced.

Define E := f−1(V ). We claim E ⊂ B1(0). Suppose by contradiction there exists
x ∈ Rn with ∥x∥ ≥ 1 and x ∈ E; then x/∥x∥ ∈ S and the balancedness of V implies
the relations

f
[ x

∥x∥

]
= f(x)

∥x∥
∈ 1

∥x∥
f(E) ⊂ 1

∥x∥
V ⊂ V,

which is a contradiction. Hence ∥y∥ < 1 for all y ∈ f−1(V ). In particular, given any
ε > 0, the set W = εV ∩ Y is a neighborhood of the origin in Y . Since Y is a linear
subspace and f−1 is linear,

f−1(εV ∩ Y ) = f−1(ε(V ∩ Y )) = εf−1(V ∩ Y ) = εE ⊂ εB1(0) = Bε(0).

Hence f−1 is continuous in 0.
(iii) Take y ∈ Y . Set d := dimY , then by standard results from linear algebra

there exists a bijective, linear map f : Rd → Y . Let V ⊂ X be constructed as in
(ii) and E = f−1(V ). As V is an open neighborhood of the origin, it is absorbing,
therefore there exists s > 0 such that y ∈ sV . We claim that openness of sV and
the inclusion y ∈ Y imply y ∈ Y ∩ sV . To see this, we use the characterization of
the closure by neighborhoods, viz. y ∈ Y ∩ sV if and only if, for any neighborhood
W of y, we have W ∩ (Y ∩ sV ) ̸= ∅.

Since sV is open, W ∩ sV is a neighborhood of y; since y ∈ Y , applying again
the aforementioned characterization (for W̃ = W ∩ sV ), we must have

W ∩ (Y ∩ sV ) = (W ∩ sV ) ∩ Y = W̃ ∩ Y ̸= ∅.
Since this holds for any W , we deduce y ∈ Y ∩ sV .

Next, the homogeneity and bijectivity of f from Rd to Y (and the fact sY = Y )
imply Y ∩ sV = f(sE). Hence we have the inclusions

y ∈ Y ∩ sV ⊂ f(sE) ⊂ f(Bs(0)) = f(Bs(0)) ⊂ Y,

where we used that since Bs(0) is compact, so is f(Bs(0)), which is therefore also
closed since X is Hausdorff. Thus Y = Y , which concludes the proof. □

Remark 1.34 (Consequences). The above result has several key implications.
• If (X, τ) is a finite-dimensional Hausdorff TVS we can construct a linear

isomorphism f : X → RdimX , the latter being endowed with the Euclidean
topology. In particular, f is continuous with continuous inverse, i.e. a
linear homeomorphism. This yields open sets on X and on RdimX are in a
one-to-one correspondence.

• Consider now Rd with locally convex topologies τ1 and τ2 induced by two
norms ∥ · ∥1 and ∥ · ∥2 respectively. Then the identity map from (Rd, τ1) to
(Rd, τ2) is a homeomorphism, whence τ1 = τ2. Since ∥·∥1 and ∥·∥2 induce the
same topology, applying Lemma 1.31 twice they must be equivalent norms
(in the usual sense). In other words, there exists only one topology on Rd

which makes it a Hausdorff TVS, which is the Euclidean one. As a byproduct,
we have shown the basic fact that all norms on Rd are equivalent. By
(i), similar considerations apply to any other finite dimensional Hausdorff
TVS (X, τ).

• Let (X, τ) be a Hausdorff TVS. Then it can be shown the origin has a
neighborhood basis of precompact sets if and only if X is finite-dimensional.
For one implication, apply (i) above. The other will studied in Exercise 4.4.
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In particular, on infinite-dimensional normed spaces, the closed unit ball
B1(0) is never compact — a fact that is usually already shown in a first
course on functional analysis. ■

Lecture 4. One of the most important properties of locally convex topological
vector spaces is the presence of a Hahn–Banach theorem, which we state below
without proof. There exist more versions that distinguish whether X is a real or
complex vector space, cf. e.g. [10, §3].

Theorem 1.35 (Hahn–Banach theorem, analytical version). Let X constitute a
vector space and let p : X → R+ be a seminorm. Suppose M ⊂ X is a linear
subspace and f : M → R is a linear functional such that |f(x)| ≤ p(x) for every
x ∈ M . Then f can be extended to a (nonrelabeled) linear functional f : X → R
satisfying the property |f(x)| ≤ p(x) for all x ∈ X.

Theorem 1.36 (Hahn–Banach theorem, geometric version). Let (X, τ) be a LCTVS
and let A,B ⊂ X be convex sets such that A is compact and B closed. If A∩B = ∅,
then there exist x′ ∈ X ′ and α, β ∈ R such that for every x ∈ A and every y ∈ B,

x′(x) < α < β < x′(y).

From these theorems, we deduce in particular that the dual space of a locally
convex topological vector space separates points.

Corollary 1.37 (Point separation in the dual space). Let (X, τ) be a LCTVS and
x ∈ X \ {0}. Then there exists x′ ∈ X ′ such that x′(x) ̸= 0.

Proof. Apply Theorem 1.36 to the compact sets {0} and {x}, which are closed as
(X, τ) is Hausdorff. Clearly x′(0) = 0 for every x′ ∈ X ′, so that x′(x) ̸= 0. □

Definition 1.38 (Weak topology). Let (X, τ) be a LCTVS. We define the weak
topology on X as the coarsest topology τw such that all elements x′ ∈ X ′ are
continuous with respect to τw.

Corollary 1.39 (Local convexity). If (X, τ) is a LCTVS, so is (X, τw).

Proof. Thanks to Corollary 1.37, the proof is identical to Exercise 2.1. □

Similarly to the weak topology and in analogy to the case of Banach spaces, we
define the so-called weak∗ topology on X ′.

Definition 1.40 (Weak∗ topology). Let (X, τ) be a TVS with dual X ′. The weak∗

topology on X ′ is the coarsest topology such that the mappings x′ 7→ x′(x) are
continuous on X ′ for every x ∈ X.

In the above situation, X ′ always becomes a LCTVS when equipped with the
weak∗ topology. We will study this and further elementary properties in the exercises.
One could fill a whole course with locally convex spaces, but we shall stop here with
the abstract considerations as they suffice for the next chapter. The interested reader
should consult [10, §§1–3] for a complete treatment about basic linear functional
analysis on topological vector spaces. See also §A for more details about weak and
weak∗ topologies on LCTVS.

2. Test functions and distributions

We start by introducing a locally convex topology on the function space C∞(Ω)5

of functions on Ω which are differentiable infinitely often, where Ω ⊂ Rd is open.

5In all function spaces, unless stated otherwise the target domain will be R. The theory that
we develop also holds for C-valued functions; in that case, note however that differentiability does
never refer to complex differentiability.
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Remark 2.1 (Disclaimer). This space and its topology discussed below are not going
to be the usual ones used in the theory of distributions! Those will appear later in
Definition 2.10. The relevant space will be the set C∞

c (Ω) of compactly supported
elements of C∞(Ω), cf. Definition 2.2 below. To avoid confusion of these two spaces,
we will write D(Ω) in place of C∞

c (Ω). ■

Definition 2.2 (Test functions). Let Ω ⊂ Rd be open and φ ∈ C(Ω).
a. The support of φ is defined by

sptφ := {x ∈ Ω : φ(x) ̸= 0}
Ω

= {x ∈ Ω : φ(x) ̸= 0}
Rd

∩ Ω.

b. We define the set of test functions by

D(Ω) := {φ ∈ C∞(Rd) : sptφ is a compact subset of Ω}.

c. Given a compact set K ⊂ Rd, we further define the space

DK = {φ ∈ C∞(Rd) : sptφ ⊂ K}.

Remark 2.3 (Basic observations). Since spt(f + g) ⊂ spt f ∪ spt g and spt(λf) =
suppf for every continuous functions f and g and every λ ∈ R \ {0}, the spaces
D(Ω) and DK are vector spaces with respcect to the usual pointwise addition and
scalar multiplication of functions.

Moreover, as shown in the exercises, the function f : R → R given by

f(t) :=
{

e−1/t if t > 0,
0 otherwise

lies in C∞(R). By the chain rule, the function

φ(x) =
{

e1/(∥x∥2−1) if ∥x∥ < 1,
0 otherwise,

belongs to C∞(Rd) and satisfies sptφ = B1(0). Given any x0 ∈ Rd and any ε > 0,
the function φx0,ε : Rd → R defined through φx0,ε(x) := φ((x− x0)/ε) belongs to
C∞(Rd) with sptφx0,ε = Bε(x0)6. In particular, D(Ω) ̸= {0}; the same holds for
DK if K has non-empty interior7. Since both spaces are stable under multiplication
with smooth functions, it follows that both spaces are infinite dimensional (again
when K has nonempty interior). ■

In Definition 2.4 below, we construct a locally convex topology on C∞(Ω); this
induces a similar topology on DK , which is a linear subspace of C∞(Ω) provided
K ⊂ Ω is compact. Later in Definition 2.10, we will see a different locally convex
topology on D(Ω) that induces the same relative topology on DK .

We recall some basic notation from vector calculus. A multiindex is an element
of Nd

0. The norm of a multiindex α ∈ Nd
0 is defined by |α| := α1+· · ·+αn. Moreover,

for such an α we define the differential operator (the “α’th partial derivative”)

Dα :=
[ ∂

∂x1

]α1
· · ·

[ ∂

∂xd

]αd

,

where the above powers mean so-and-so-fold application of the respective partial
derivative. It will always act on smooth functions, so by Schwarz’ theorem, we can
group the partial derivatives by directions and not worry about their order.

6The flock of functions thus defined is a very useful tool to regularize functions in the study of
PDEs often called (standard) mollifier (up to a dimensional “normalization”). We refer to [6, §C]
for details.

7When K has empty interior, we have DK = {0}.
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Definition 2.4 (A seminorm topology on C∞(Ω)). Let Ω ⊂ Rd be open and
(Kn)n∈N be a sequence of compact sets with Kn ⊂ intKn+1 for every n ∈ N and
Ω =

⋃
n∈N Kn

8 For N ∈ N, we define the seminorm pN : C∞(Ω) → R+ by
pN (φ) := max{|Dαφ(x)| : α ∈ Nd

0, |α| ≤ N, x ∈ KN}.
Let ρ denote the induced seminorm topology.

Let τK denote the relative topology induced by the family of seminorms {pN :
N ∈ N} on the space DK whenever K ⊂ Ω is compact.
Definition 2.5 (Heine–Borel property). We say a TVS (X, τ) has the Heine–Borel
property if every bounded and closed subset of X is compact.

Of course, this terminology stems from the Heine–Borel theorem, which states
Rd has the Heine–Borel property.
Proposition 2.6 (Fundamental properties). The LCTVS (C∞(Ω), ρ) is a Fréchet
space and has the Heine–Borel property.

Moreover, if K ⊂ Ω is compact, then DK is a closed subset of C∞(Ω).
Proof. The separation property from Definition 1.12 is satisfied, implying the
seminorms {pN : N ∈ N} induce a locally convex topology.

By construction, this family of seminorms is countable, implying metrizability
of the space in question by Theorem 1.23. By the proof of that theorem, the
metric inducing the seminorm topology in question may and will be chosen to be
translation-invariant. To be a Fréchet space, we are left to show completeness. Let
(φn)n∈N be a Cauchy sequence in C∞(Ω). This means that for every ε > 0 and
every N ∈ N there exists M ∈ N such that

sup
x∈KN

|Dαφn(x) −Dαφm(x)| < ε

for all multiindices α ∈ Nd
0 with |α| ≤ N and every n,m ≥ M . In particular, for any

fixed such α and a fixed compact set K ⊂ Ω the sequence (Dαφn)n∈N is a Cauchy
sequence with respect to the uniform topology on K. Since the latter is complete,
(Dαφn)n∈N converges uniformly on K to a continuous function gα : K → R. Since
the sets (Kn)n exhaust Ω, the limit gα does not depend on K, Dαφn(x) → gα(x) as
n → ∞ for every x ∈ Ω, and (Dαφn)n∈N converges locally uniformly (i.e. uniformly
on each compact subset of Ω) to the function gα. By standard results from analysis,
we obtain Dαg0(x) = gα(x) for every x ∈ Ω, so that g0 ∈ C∞(Ω). Moreover, by
construction φn → g0 as n → ∞ with respect to the topology of C∞(Ω), as the
convergence reduces to the uniform convergence on compact subsets for any partial
derivative. This shows the claimed completeness.

We turn to the Heine–Borel property. Let E ⊂ C∞(Ω) be bounded and closed.
Since the topology in question is metrizable, it suffices to prove sequential com-
pactness of E. This will be a consequence of the Arzelà–Ascoli Theorem 2.7 below
(applied to each partial derivative), whose hypotheses we now verify. By Exercise
3.1, boundedness of E implies for every N ∈ N there exists MN > 0 such that
sup{pN (φ) : φ ∈ E} ≤ MN . Note that the inequality supx∈KN

|Dαφ(x)| ≤ MN

whenever |α| ≤ N implies the sequence (Dβφn)n∈N is equicontinuous — in fact,
equi-Lipschitz, i.e. Lipschitz continuous with uniformly bounded Lipschitz constants

— on KN−1 whenever |β| ≤ N − 1. Indeed, since KN−1 ⊂ intKN , compactness im-
plies rN := dist(KN−1, ∂KN ) > 0. Hence for any x ∈ KN−1 one has BrN

(x) ⊂ KN ;
the mean value theorem implies for every y ∈ BrN

(x) that
|Dβφ(y) −Dβφ(x)| ≤ sup

z∈BrN
(x)

|∇Dβφ(z)||y − x| ≤ d pN (φ) |y − x|.

8In this case, we say the sequence (Kn)n∈N exhausts Ω. For an explicit construction, one
can take Kn := {x ∈ Ω : |x| ≤ n, d(x, ∂Ω) ≥ 1/n}; cf. Exercise 4.2.
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This yields the desired equi-Lipschitz continuity. For equiboundedness, note that
supx∈KN−1

|Dβφ(x)| ≤ pN (φ) ≤ MN . Therefore, the Arzelà–Ascoli theorem applies
which, together with a classical diagonal argument, implies for every sequence
(φn)n∈N in E there exists a subsequence that converges in C∞(Ω). As E is closed,
this limit belongs to E.

Finally, we show closedness of DK in C∞(Ω). Note that for every x ∈ Ω the
function δx : C∞(Ω) → R9 defined by δx(φ) := φ(x) is linear and continuous, so
that its kernel is closed. Since φ ∈ DK if and only if φ ∈ C∞(Ω) and δx(φ) = 0 for
every x ∈ Ω \ K (noting K is closed), the set DK is closed as the intersection of
closed sets. □

The following result, used to show the Heine–Borel property in the above proof
and repeated for the convenience of the reader, forms the central characteristic of
(pre)compactness result in spaces of continuous functions.

To formulate it, given a compact metric space (K, d), let C(K) denote the space
of real-valued continuous functions defined on K. When endowed with the uniform
topology (i.e. the topology induced by the usual supremum norm on K), this becomes
a Banach space. Lastly, recall a subset of a Hausdorff topological space is called
precompact if its closure is compact.

Theorem 2.7 (Arzelà–Ascoli theorem). Let (K, d) be a compact metric space. Then
a set F ⊂ C(K) is precompact with respect to the uniform topology if and only if the
following two conditions hold simultaneously.

(i) Uniform equicontinuity. For every ε > 0 there exists δ > 0 such that for
every x ∈ K, we have the implication

d(x, y) ≤ δ =⇒ sup
f∈F

|f(y) − f(x)| ≤ ε.

(ii) Pointwise boundedness. For every x ∈ K, the subset {f(x) : f ∈ F} is a
bounded subset of R.

Uniform equicontinuity might seem like an odd condition at first glance. We
hope the following example (that you might want to comprehend as an instructive
exercise) clarifies the two conditions above in a more practical way.

Example 2.8 (Lipschitz functions). Let (K, d) be a compact metric space. A function
f : K → R is called Lipschitz continuous if there exists a constant L > 0 such that
|f(y) − f(x)| ≤ L d(x, y) for every x, y ∈ K. The smallest possible choice of L with
this property is denoted Lip f and called Lipschitz constant of f .

Let F be any given set of functions with supf∈F Lip f < ∞. Then F is a subset
of C(K); it is in fact precompact therein. ■

Remark 2.9 (Further considerations). We have the following
• Since DK is closed in C∞(Ω), DK is a Fréchet space as well. It also has the

Heine–Borel property: bounded sets in DK are also bounded in C∞(Ω).
• The above topology on C∞(Ω) does not depend on the sequence (Kn)n∈N

of compact sets exhausting Ω. Conversely, note that a neighborhood basis
of the origin in (DK , τK) is given by the sets

Vε,N =
{
φ ∈ DK : sup

x∈K
|Dαφ(x)| < ε whenever |α| ≤ N

}
,

so that the topology τK of DK does not depend on the ambient open set
Ω containing K. In fact, τK is induced by the family {p̃N : N ∈ N} of

9Later and in the literature, this is called Dirac δ-distribution.
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seminorms given as follows for every φ ∈ DK :

p̃N (φ) := max{|Dαφ(x)| : x ∈ K, α ∈ Nd
0, |α| ≤ N}. (2.1)

• In light of Proposition 2.6, C∞(Ω) might seem like a great space to work
with. However, it has the problem that an element φ ∈ C∞(Ω) might
behave badly as it approaches the boundary of Ω. As a practical example,
consider Ω := (0,+∞) and φ ∈ C∞(Ω) defined by φ(x) := sin(1/x). This
function has no limit as x → 0+; even worse, all its derivatives explode near
zero. The spaces DK and D(Ω) do not have this problem.

• One could try to equip the space D(Ω) with the relative topology of C∞(Ω).
In this way we would produce a metrizable, locally convex topology. However,
this space fails to be complete! Intuitively, this is clear: the limit of a
sequence (φn)n∈N in D(Ω) may fail to have compact support in Ω, since
the supports sptφn can reach the boundary as n → ∞. See Exercise 5.3 for
a counterexample. ■

Lecture 5.

2.1. A locally convex topology on D(Ω). Let us heuristically discuss what we
have seen thus far. Let Ω ⊂ Rd open. On one hand, given any compact K ⊂ Ω, we
have the Fréchet spaces (DK , τK). On the other, we have (C∞(Ω), ρ), which is also
a Fréchet space, but allows for functions with pathological behavior at the boundary.
The space D(Ω) lies somewhat in between: given an exhaustion (Kn)n∈N of Ω,

DK ⊂ D(Ω) =
⋃
n∈N

DKn ⊂ C∞(Ω).

We would like to endow D(Ω) with an appropriate topology. However, by Remark 2.9,
the topology inherited from its inclusion into C∞(Ω) does not appear right. Ideally,
the topology τ we are looking for should satisfy the following.

• It should turn (D(Ω), τ) into a LCTVS. In this way, we have the Hahn–
Banach theorems at our disposal and we can turn its dual space D′(Ω),
endowed with the weak∗ topology, into a LCTVS as well, cf. the discussion
right after Definition 1.40.

• It should “respect” the inclusion DK ⊂ D(Ω), where K ⊂ Ω is compact.
Namely, the topology induced by τ on DK as a subspace of D(Ω) should
coincide exactly with τK . We would then hope (D(Ω), τ) inherits some of
the nice topological properties of (DK , τK).

• The topology τ should be as large as possible. In this way, “many” linear
operators will become continuous, and we can expect a rich structure for
the dual D′(Ω).

We are now in a position to introduce a topology on D(Ω) that fullfills the above
requirements. The price we pay is we lose metrizability of D(Ω) (see Corollary 2.15
below). On the other hand, we gain many useful properties inherited from the
spaces DKn

coming from the exhaustion sequence (Kn)n∈N (see Theorem 2.14).

Definition 2.10 (Topology on D(Ω)). Let Ω ⊂ Rd be open. We set

N(Ω) := {U ⊂ D(Ω) : U balanced and convex,
U ∩ DK ∈ τK for every compact K ⊂ Ω}.

We define a collection τ of subsets of D(Ω) as follows. We say E ∈ τ if and only
if it can be written as the (possibly empty) union of sets of the form φ+ U , where
φ ∈ D(Ω) and U ∈ N(Ω).
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Definition 2.10 is rather abstract, but we will gradually see in the next results
why it is the right choice. If it does not appear intuitive, this is because indeed it is
not. Historically, Schwartz10 actually first defined the notion of convergence in D(Ω)
(see Theorem 2.14), which in practical applications to PDEs is often enough, and
only later understood how to construct the topology τ inducing this convergence.

We first have to show τ actually defines a locally convex topology.

Proposition 2.11 (Local convexity). Consider the class τ from Definition 2.10.
Then (D(Ω), τ) is a LCTVS and N(Ω) defines a neighborhood basis of the origin.

Before entering the proof, we notice N(Ω) is stable under finite intersections and
multiplication by nonzero scalars. The first fact can be verified using the intersection
of balanced and convex sets is still balanced and convex, and τK is stable under
finite intersection; the second one is similar.

Proof. We start by showing τ defines a topology. By definition, ∅,D(Ω) ∈ τ and
τ is stable under arbitrary unions. To show τ is closed under finite intersections,
by induction it suffices to show that if V1, V2 ∈ τ then V1 ∩ V2 ∈ τ . To this end, it
suffices to show that for any φ ∈ V1 ∩ V2, there exists U ∈ N(Ω) such that

φ+ U ⊂ V1 ∩ V2. (2.2)

Once (2.2) is shown, we can conclude τ is a topology. Since V1, V2 ∈ τ , there exist
ϕ1, ϕ2 ∈ D(Ω) and U1, U2 ∈ N(Ω) with φ ∈ ϕ1+U1 ⊂ V1 and φ ∈ ϕ2+U2 ⊂ V2. Next,
let K ⊂ Ω be compact such that φ, ϕ1, ϕ2 ∈ DK . Note U1 ∩DK , U2 ∩DK ∈ τK . By
continuity of the scalar multiplication there exists δ > 0 such that φ−ϕ1 ∈ (1−δ)U1
and φ− ϕ2 ∈ (1 − δ)U2. By convexity of U1 and U2, for every i ∈ {1, 2},

φ− ϕi + δUi ⊂ (1 − δ)Ui + δUi = Ui.

Hence, setting U = δU1 ∩ δU2, we deduce that for all i as above,
φ+ U ⊂ φ+ δUi ⊂ ϕi + Ui ⊂ Vi.

Therefore φ + U ⊂ V1 ∩ V2, which proves the first claim since the intersection of
balanced and convex sets remains balanced and convex.

The claim that N(Ω) defines a neighborhood basis of 0 follows immediately from
the definition of N(Ω).

It remains to show the local convexity of the topology. By Theorem 1.18, it suffices
to show D(Ω) is a Hausdorff topological vector space with a convex neighborhood
basis of the origin (which in this case is naturally chosen to be N(Ω), which is
already made of convex sets by definition).

We start with the Hausdorff property. Fix distinct φ1, φ2 ∈ D(Ω) and set
W := {φ ∈ D(Ω) : 2∥φ∥∞ < ∥φ1 − φ2∥∞}, (2.3)

where ∥ · ∥∞ is the usual supremum norm. We claim W ∈ N(Ω). Indeed, since it
is a ball with respect to a norm, W is balanced and convex. Moreover, for every
compact K ⊂ Ω,

W ∩ DK =
{
φ ∈ DK : 2 sup

x∈K
|φ(x)| < ∥φ1 − φ2∥∞

}
, (2.4)

which belongs to τK by Remark 2.9. This shows W ∈ N(Ω). Therefore, the sets
Wi := φi +W are open and contain φi, where i ∈ {1, 2}. Moreover, if φ ∈ W1 ∩W2,

∥φ1 − φ2∥∞ ≤ ∥φ1 − φ∥∞ + ∥φ− φ2∥∞ < ∥φ1 − φ2∥∞,

which yields a contradiction. Hence τ has the Hausdorff property.

10Laurent Schwartz (1915–2002), French mathematician, received a Fields Medal in 1950 for his
invention of the theory of distributions.



MATH-404 FUNCTIONAL ANALYSIS II 21

We turn to continuity of the vector space operations. To this aim, we shall
systematically use that sets of the form ψ + N(Ω) form a basis of the topology. Let
φ1, φ2 ∈ D(Ω) and W ∈ N(Ω). By convexity of W ,

φ1 + 1
2W + φ2 + 1

2W ⊂ (φ1 + φ2) +W,

which implies continuity, since W/2 ∈ N(Ω). To treat the scalar multiplication, fix
λ0 ∈ R, φ0 ∈ D(Ω), and W ∈ N(Ω). It suffices to show there exist U ∈ N(Ω) and
δ > 0 such that for every λ ∈ (λ0 − δ, λ0 + δ) and every φ ∈ φ0 + U ,

λφ ∈ λ0φ0 +W. (2.5)

We first claim for W ∈ N(Ω) there exists δ > 0 such that δφ0 ∈ W/2. Indeed,
there exists K ⊂ Ω compact such that φ ∈ DK . Then by continuity of the scalar
multiplication in DK , there exists δ > 0 such that δφ0 ∈ W/2 ∩ DK , as the latter
set is an open neighborhood of 0 in DK . Given such δ > 0, fix c > 0 such that
2c(|λ0| + δ) = 1 and set U := cW . By balancedness and convexity of W , for all
λ ∈ R with |λ− λ0| < δ and φ ∈ φ0 + U = φ0 + cW we obtain

λφ− λ0φ0 = λ(φ− φ0) + (λ− λ0)φ0 ⊂ 1
2W + 1

2W ⊂ W.

which proves the desired relation (2.5). □

Remark 2.12 (Explicit generating seminorms11). It is not immediate to find an
explicit form of the seminorms generating the topology. We know from Theorem 1.18
that we can take the Minkowski functionals pU , where U ∈ N(Ω). With some effort,
one can show a neighborhood basis of the origin is given by sets of the form

VA,ε := {φ ∈ D(Ω) : |Dαφ(x)| < ε(x) for every x ∈ Ω, |α| ≤ A(x)},

where ε : Ω → (0,∞) and A : Ω → (0,∞) are continuous functions. Equivalently, a
corresponding seminorm is given by

pA,ε(φ) := sup{|ε−1(x)Dαφ(x)| : x ∈ Ω, |α| ≤ A(x)}.

As we will not use these seminorms, we leave the proof — partitions of unity are
helpful — to the motivated reader. ■

Remark 2.13 (Algebraic considerations12). For the readers familiar with categories,
(D(Ω), τ) is the locally convex direct inductive limit of the Fréchet spaces (DKn , τKn),
for any sequence (Kn)n∈N of compacts exhausting Ω. In particular, (D(Ω), τ) is a
so-called LF-space.

Alternatively, the topology τ can be characterized as the largest topology such
that for every n ∈ N, the inclusion ιn : (DKn

, τKn
) → (D(Ω), τ) is continuous. ■

In what follows, we tacitly endow D(Ω) with the topology τ given in Defini-
tion 2.10. All topological results refer to this topology, unless explicitly stated
otherwise.

Theorem 2.14 below provides many important structural properties of τ . Before
stating and proving it, we need to recall some basic facts.

• Given a LCTVS (X, τX) and a closed linear subspace Y ⊂ X, endowing
Y with the subspace topology τY , many properties of τY and τX are in a
one-to-one correspondence, cf. Exercise 6.1.

11This remark is not examinable.
12This remark is not examinable.
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• If X is a LCTVS with topology induced by a family of seminorms {pi : i ∈ I},
then a sequence (xn)n∈N in X is a Cauchy sequence if and only if, for every
i ∈ I and for every ε > 0, there exists n0 ∈ N such that pi(xn −xm) < ε for
every n,m ≥ n0. The same property can be schematically stated as follows:
for every i ∈ I,

lim
n,m→∞

pi(xn − xm) = 0. (2.6)

The proof relating Cauchy sequences to (2.6) is similar to Exercise 3.1 and
is left to the reader.

Theorem 2.14 (Fundamental properties of τ). The following statements hold.
(i) A convex and balanced set U ⊂ D(Ω) is open if and only if U ∈ N(Ω).
(ii) For every compact K ⊂ Ω, DK is a closed linear subspace of D(Ω).
(iii) Given any compact set K ⊂ Ω, the topology τK of DK coincides with the

subspace topology inherited from D(Ω).
(iv) If E ⊂ D(Ω) is bounded, there exists K ⊂ Ω compact such that E ⊂ DK

and for every N ∈ N there exists MN > 0 such that for every φ ∈ E and
every α ∈ Nd

0 with |α| ≤ N ,
sup
x∈K

|Dαφ(x)| ≤ MN . (2.7)

(v) The class D(Ω) has the Heine–Borel property from Definition 2.5.
(vi) If (φn)n∈N is a Cauchy sequence, then there exists K ⊂ Ω compact such

that φn ∈ DK for every n ∈ N and for every α ∈ Nd
0,

lim
n,m→+∞

sup
x∈K

|Dαφn(x) −Dαφm(x)| = 0.

(vii) A sequence (φn)n∈N in D(Ω) converges to φ ∈ D(Ω) if and only if there is
K ⊂ Ω compact such that sptφn ⊂ K for every n ∈ N and Dαφn → Dαφ
uniformly in K as n → ∞ for every α ∈ Nd

0.
(viii) The space D(Ω) is sequentially complete. That is, every Cauchy sequence in

D(Ω) converges in that space.

The main “thumb rule” takeaways of this theorem are the following.
• Convergence effectively takes place in compact subsets of Ω.
• Cauchy sequences in the space D(Ω) are characterized by all derivatives of

the function sequence in question being a Cauchy sequence with respect to
uniform convergence on the above compact subset.

• Convergence in D(Ω) is characterized by uniform convergence of all deriva-
tives of the function sequence in question on the above compact subset.

Proof of Theorem 2.14. (i) Given any U ∈ τ , we claim U ∩ DK ∈ τK for every
compact K ⊂ Ω. Let φ ∈ U ∩DK . By Proposition 2.11, there exists V ∈ N(Ω) such
that φ+ V ⊂ U . Since φ ∈ DK ,

φ+ (V ∩ DK) = (φ+ V ) ∩ DK ⊂ U ∩ DK .

Since φ + (V ∩ DK) is a neighborhood of φ in τK , it follows DK ∩ U ∈ τK . If in
addition U is balanced and convex, it follows from Definition 2.10 that U ∈ N(Ω).

The converse implication is trivial since N(Ω) ⊂ τ .
(ii) Fix K ⊂ Ω compact. It is clear that DK is a linear subspace. Thus, we only

need to check it is closed. Note that φ ∈ D(Ω) belongs to DK if and only if φ(x) = 0
for all x ∈ Ω \K. In other words, setting Zx := {φ ∈ D(Ω) : φ(x) = 0}, we have

DK =
⋂

x∈Ω\K

Zx;
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in order to show DK is closed, it suffices to show the subsets Zx are closed for every
x ∈ Ω. Fix x ∈ Ω and let φ /∈ Zx, which means |φ(x)| > 0. Define

Wφ := {φ̃ ∈ D(Ω) : 2∥φ̃− φ∥∞ < |φ(x)|}.

Going through similar arguments to those developed for W in (2.3) and (2.4), one
checks Wφ − φ ∈ N(Ω), so that Wφ ∈ τ . Moreover, by the triangle inequality, given
any φ̃ ∈ Wφ we have |φ̃(x)| ≥ |φ(x)| − |φ(x)|/2 > 0, which means Wφ ⊂ Zcx. As the
argument holds for any φ ∈ Zcx, we deduce Zcx is open in τ , thus Zx is closed.

(iii) The proof of the first part of (i) shows the subspace topology DK inherits
from D(Ω) is contained in τK .

Hence, it suffices to show the converse inclusion. Namely, given any E ∈ τK , we
need to show there exists U ∈ τ with E = DK ∩ U . By Remark 2.9, given any
φ ∈ E we can find Nφ ∈ N and δφ > 0 such that{

ψ ∈ DK : sup
x∈K

|Dαψ(x) −Dαφ(x)| < δφ whenever |α| ≤ Nφ
}

⊂ E.

Now we define

Uφ :=
{
ψ ∈ D(Ω) : sup

x∈Ω
|Dαψ(x)| < δφ whenever |α| ≤ Nφ

}
.

Going through the same argument we developed for W in (2.3) and (2.4), one
checks Uφ ∈ N(Ω), therefore φ + Uφ ∈ τ . Hence U :=

⋃
φ∈E(φ+ Uφ) ∈ τ and by

construction E = DK ∩ U .
(iv) Let E ⊂ D(Ω) be bounded and assume by contradiction E \ DK ̸= ∅ for

all compact sets K ⊂ Ω. Then there exists a sequence (xn)n∈N in Ω that has no
accumulation point in Ω and φn ∈ D(Ω) ∩E for every n ∈ N such that φn(xn) ̸= 0
for every n ∈ N. Now we define

W := {φ ∈ D(Ω) : n |φ(xn)| < |φn(xn)| for every n ∈ N}.

Given any compact set K ⊂ Ω, the number of n ∈ N such that xn ∈ K is finite. Since
the evaluation mapping φ to φ(xn) is continuous on DK , it follows W ∩ DK ∈ τK .
Since W is also balanced and convex, we deduce W ∈ N(Ω). Noting φn /∈ sW for
all s ≤ n, we deduce there exists no finite s > 0 such that E ⊂ sW , which yields a
contradiction.

Therefore, if E is bounded, there exists a compact set K ⊂ Ω such that E ⊂ DK .
By (iii), the set E is also bounded in DK . Property (2.7) then follows from the
topology τK being induced by the seminorms (2.1) and Exercise 3.1.

(v) By Remark 2.9, the space DK has the Heine–Borel property. Hence the claim
follows from properties (iii) and (iv). Indeed, by (iv) we know if E ⊂ D(Ω) is
bounded and closed, then E ⊂ DK for some compact set K ⊂ Ω. Then (iii) implies
E is also bounded and closed in DK and therefore compact in DK by Remark 2.9,
which together with (iii) implies compactness in D(Ω).

(vi) Let (φn)n∈N be a Cauchy sequence in D(Ω). By Exercise 3.1, the sequence
constitutes a bounded set in D(Ω), hence by (iv) there exists K ⊂ Ω compact such
that φn ∈ DK for every n ∈ N. By (iii), (φn)n∈N is also a Cauchy sequence in
DK , whose topology is induced by the seminorms from (2.1) by Remark 2.9. The
conclusion then follows from (2.6).

(vii) If φn → φ in D(Ω) as n → ∞, then (φn)n∈N is a Cauchy sequence in D(Ω),
which implies the conclusion by (vi).

For the converse implication, observe by assumption φ ∈ DK , and by Remark 2.9
— e.g. using the seminorms (2.1) — we have φn → φ with respect to τK as n → ∞.
By (iii), we have φn → φ with respect to τ as n → ∞.

(viii) This is now a consequence of (vi), completeness of DK , and (vii). □
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Lecture 6.

Corollary 2.15 (Nonmetrizability). The space D(Ω) is not metrizable.

Proof. Exercise 6.3. □

In the next subsection we will study the dual space of D(Ω). To this aim, we
formulate a very useful characterization of continuous linear maps defined on the
space of test functions.

Proposition 2.16 (Characterizations of continuity). Let Y be an LCTVS and
T : D(Ω) → Y be linear. Then the following properties are equivalent.

(i) T is continuous.
(ii) If (φn)n∈N converges to 0 in D(Ω), then (Tφn)n∈N converges to 0 in Y 13.
(iii) The restriction of T to DK is continuous for every compact K ⊂ Ω.

Proof. (i) =⇒ (ii). This is trivial.
(ii) =⇒ (iii). Since DK is metrizable and T is linear, sequential continuity in 0

with respect to τK is equivalent to continuity of T . Now let (φn)n∈N be a sequence
in DK which converges to zero in DK . By Theorem 2.14, this convergence also
happens in D(Ω), which by (ii) and the above implies the continuity of T .

(iii) =⇒ (i). Let V ⊂ Y be a balanced and convex neighborhood of 0 and set
U := T−1(V ). Since T is linear, the set U is also balanced and convex. By (iii), the
set U ∩ DK is open in τK for every compact set K ⊂ Ω, which implies U is open in
D(Ω) by Definition 2.10. This proves the continuity of T in 0; the linearity of T
implies its continuity by Proposition 1.32. □

Corollary 2.17 (Some continuous maps on D(Ω)). The following maps are contin-
uous from D(Ω) to D(Ω).

(i) The derivative assignment φ 7→ Dαφ, where α ∈ Nd
0 is given.

(ii) The multiplication assignment φ 7→ ψ φ, where ψ ∈ C∞(Ω) is given.
(iii) For Ω = Rd the affine transformation assignment φ 7→ φ(λ · −z), where

λ ∈ R \ {0} and z ∈ Rd are fixed.

Proof. Exercise 6.2. □

2.2. Distributions from a topological point of view. Next we study the dual
space of D(Ω). Observe that since the convergence on D(Ω) is quite strong, one
might expect many linear functionals to be continuous with respect to the topology
of D(Ω), so that its topological dual should be quite large.

Definition 2.18 (Distributions). Let Ω ⊂ Rd be open and let D(Ω) be the space of
test functions introduced in Definition 2.2. We denote by D′(Ω) the topological dual
space of D(Ω).

Elements of D′(Ω) are called distributions.

Example 2.19 (Concrete distributions). The following are examples of distributions
T ∈ D′(Rd).

• Dirac delta distribution. The assignment Tφ := φ(0). This distribution
is often denoted by δ0. Analogously δx0 for the Dirac delta distribution at
an arbitrary point x0 ∈ Rd.

• Evaluation of derivatives. The assignment Tφ := Dαφ(x0) for some
fixed multiindex α ∈ Nd

0 and some fixed x0 ∈ Rd. In short, T = δx0 ◦Dα.

13By Corollary 2.15, the space D(Ω) is not metrizable, so a priori continuity is not equivalent
to sequential continuity. Nevertheless, Proposition 2.16 guarantees that for linear functionals on
D(Ω), this is actually the case!



MATH-404 FUNCTIONAL ANALYSIS II 25

• Integration. The assignment Tf (φ) :=
∫

Rd f φ dLd, where f ∈ L1
loc(Rd,Ld);

the latter means f is integrable on every compact subset K ⊂ Rd;
• Integration of derivatives. The assignment Tφ :=

∫
Rd f Dαφ dLd for

some fixed multiindex α ∈ Nd
0 and f as above.

• Borel measures. The assignment Tφ :=
∫

Rd φ dµ, where µ is a locally
finite Borel measure14 on Rd.

All these examples are special cases of Exercise 6.2, so we omit the proofs. ■

Remark 2.20 (Towards fundamental lemmata of distribution theory). In the case
f ∈ L1

loc(Ω,Ld), the distribution Tf defined in the previous Example 2.19 uniquely
determines f Ld-a.e15. In this manner, we can regard L1

loc(Ω,Ld) as a “subset” of
distributions on Ω. One often informally says that a distribution T is (represented
by) a function if there exists f ∈ L1

loc(Ω,Ld) such that Tφ =
∫

Ω f φ dLd for every
φ ∈ D(Ω) and one tacitly identifies T with f .

Similarly one says a distribution is (represented by) a Radon measure in the
sense of Example 2.19 above. There are quite general representation results for
distributions by measures which do not even require to work with smooth functions,
cf. e.g. the Riesz–Markov–Kakutani representation theorem. We do not state
it rigorously here, but informally it says a distribution which remains nonnegative
when evaluated at a nonnegative function is necessarily given by a measure. ■

We have the following characterization of distributions.

Lemma 2.21 (Distributions by seminorms). Let Ω ⊂ Rd open. Given any N ∈ N
and K ⊂ Ω compact, define a seminorm pN,K on D(Ω) by

pN,K(φ) := max{|Dαφ(x)| : α ∈ Nd
0, |α| ≤ N, x ∈ K}.

Let T : D(Ω) → R be linear. Then T ∈ D′(Ω) if and only if for every compact set
K ⊂ Ω there exist CK > 0 and NK ∈ N0 such that for every φ ∈ DK ,

|Tφ| ≤ CK pNK ,K(φ). (2.8)

Proof. By Proposition 2.16 continuity of T is equivalent to continuity of the restric-
tion T

∣∣
DK

for every compact set K ⊂ Ω. Since the seminorms pN,K are increasing
in N , the statement follows from Proposition 1.32 and the fact that the given family
{pN,K : N ∈ N0} generates the topology τK , cf. Remark 2.9. □

Definition 2.22 (Order of distributions). If there exists a common number N ∈ N0
such that inequality (2.8) holds true for all compact sets K ⊂ Ω — but possibly with
a varying constant CK —, we say the distribution T has finite order.

In this case, its order is the smallest number N̄ ∈ N0 with this property.
Otherwise, the distribution is said to have infinite order.

Remark 2.23 (About Example 2.19). All distributions appearing in Example 2.19
have finite order (try to compute it).

As specified in the exercise sheets, an example in D′(R) of infinite order is the
following assignment:

Tφ :=
∑
n∈N

Dnφ(n).

14Recall a Borel measure on a topological space is a measure defined on the Borel σ-algebra
of that topological space, i.e. the smallest σ-algebra containing all open sets. Such a measure is
called locally finite if it is finite on each compact set.

15This is actually a quite important result, usually referred to as the fundamental lemma of
the calculus of variations, cf. Lemma 2.28 later. This insight is also a basis for the definition of
Sobolev spaces in PDE theory.
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2.3. A short introduction to distributional calculus. On distributions, one
can define many operations by duality, that is, by “moving the operation on the
argument φ ∈ D(Ω)”. This is a commonly used method that in PDE theory, one
usually sees in action when “sufficiently many derivatives are moved to the test
function in question in an integration by parts formula”.

In functional analytic terms, whenever we have a continuous linear functional
A : D(Ω) → D(Ω), we may define its adjoint16 A∗ : D′(Ω) → D′(Ω) by the following
formula for every φ ∈ D(Ω):

(A∗T )(φ) := T (Aφ).
One can then verify that, given any T ∈ D′(Ω), A∗T is again an element of D′(Ω)
and that A∗ is continuous with respect to the weak∗ topology of D′(Ω).

In the next definition, we present three important examples of this procedure.
Definition 2.24 (Differential calculus on distributions). Let Ω ⊂ Rd be open and
let T ∈ D′(Ω) be a distribution.

a. Given any α ∈ Nd
0, the partial derivative Dα of T is defined by
(DαT )(φ) := (−1)|α| T (Dαφ).

b. Given any ψ ∈ C∞(Ω), the product of T with ψ is defined by
(ψ T )(φ) := T (ψ φ).

c. If Ω = Rd and ψ ∈ C∞
c (Rd), the convolution of ψ with T is a function

defined by the assignment
(ψ ∗ T )(x) := T (ψ(x− ·))

Remark 2.25 (About Definition 2.24). By Corollary 2.17, for a distribution T the
partial derivatives DαT and the product ψT with a smooth function are again
distributions. Instead, ψ ∗ T is a C∞-function on Rd.

The idea behind these definitions is they coincide with the classical definitions
in the situation when T is replaced by Tf from Example 2.19. For instance, when
f ∈ Cm(Rd) with m ∈ N, then for any multiindex α ∈ Nd

0 such that |α| ≤ m, by
integration by parts17 we have

(DαTf )(φ) = (−1)|α|
∫

Rd

f Dαφ dLd =
∫

Rd

Dαf φ dLd = TDαf (φ).

Similarly, we obtain ψ Tf = Tψf and ψ ∗ Tf = ψ ∗ f .
Studying PDEs often leads to considering distributional derivatives of integrable

functions (e.g. by considering Sobolev spaces, cf. Remark 2.20). This means exactly
the quantity DαTf , which makes sense even when the function f in question is not
classically differentiable. For instance, consider the Heaviside function f = 1R+ .
Then for any φ ∈ D(R),

T ′
f (φ) = −

∫
R
f φ′ dL1 = −

∫ ∞

0
φ′ dL1 = φ(0) = δ0(φ),

where we used φ has compact support. This means the distributional derivative of
f is the Dirac delta centered in 0; this is often stated as “f ′ = δ0 in the sense of
distributions”. Observe that f is differentiable at every x ∈ R \ {0} with f ′(x) = 0,
so that in particular f ′ = 0 Ld-a.e. However, its distributional derivative is not the
function identically equal to 0!18 Some care must taken when trying to identify

16Think of the pairing Tφ of a linear map T ∈ D′(Ω) and φ ∈ D(Ω) as a “scalar product” ⟨T, φ⟩;
in this notation, the adjoint of A satisfies ⟨T,Aφ⟩ = ⟨A∗T, φ⟩.

17No boundary terms appear since φ has compact support.
18Yet, intuitively this recovers the “correct” derivative of the Heaviside function f . Indeed,

while f ′ = 0 outside zero, f makes a jump of height 1 at zero. In comparison, note T ′
2f = 2 δ0.
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derivatives defined a.e. point with distributional derivatives, in general they might
not coincide.

To be more precise, in the above example the distributional derivative of the
Heaviside step function is a measure with Lebesgue decomposition 0 · L1 + δ0

19.
Informally, this explains what is going on here: even when a function has vanishing
derivative L1-a.e. (which would contribute to the L1-absolutely continuous part
of the distributional derivative), its distributional derivative may still have an L1-
singular part. As a disclaimer, we note that not all distributional derivatives are
measures, hence the above analogy should be taken with care; the class of functions
for which this is the case (in an appropriate sense) are termed to have bounded
variation. ■

We can also speak about the convergence of distributions.

Definition 2.26 (Convergence). Let Ω ⊂ Rd be open and (Tn)n∈N be a sequence
in D′(Ω). We say it converges to T ∈ D′(Ω) if Tnφ → Tφ for every φ ∈ D(Ω).

This is exactly the convergence in the weak∗-topology, cf. Definition 1.40. We
interchangeably use the notations Tn ⇀∗ T as n → ∞ or Tn → T as n → ∞.

The following result shows why calculus with distributions is often very simple.

Lemma 2.27 (Convergence vs. partial derivatives). Let Ω ⊂ Rd be open and let
(Tn)n∈N be a sequence in D′(Ω) converging to T ∈ D′(Ω). Then for all α ∈ Nd

0, the
sequence (DαTn)n∈N converges to DαT . In other words, partial derivatives respect
convergence in D′(Ω).

Proof. Fix φ ∈ D(Ω). Then Dαφ ∈ D(Ω) as well and therefore the convergence of
Tn implies

lim
n→∞

(DαTn)(φ) = (−1)|α| lim
n→∞

Tn(Dαφ) = (−1)|α| T (Dαφ) = (DαT )(φ).

This terminates the proof. □

Using convolutions, it can be shown for every T ∈ D′(Ω) there exists a sequence
of functions (fn)n∈N in D(Ω) such that Tfn

→ T as n → ∞. Roughly speaking,
this means D(Ω) is sequentially dense in D′(Ω), with respect to the weak∗ topology,
up to identifying f ∈ D(Ω) with Tf ∈ D′(Ω) with a slight abuse of notation.

Lecture 7. In Example 2.19 we have introduced examples of distributions T ∈
D′(Rd). The example in its third bullet point is particularly interesting since, as
written in Remark 2.20, the distribution Tf associated to an L1

loc(Ω,Ld) function
uniquely determines f Ld-a.e. This is a highly nontrivial statement, implying the
injectivity of T· on L1

loc(Ω,Ld). The statement is the following.

Lemma 2.28 (Fundamental lemma of calculus of variations). Let Ω ⊂ Rd be open
and let f ∈ L1

loc(Ω,Ld). If every φ ∈ D(Ω) satisfies∫
Ω
f φ dLd = 0,

then f = 0 Ld-a.e.

For an application of this lemma that justifies its name, see Exercise 7.4.
The result is trivial if f ∈ D(Ω), since it would be enough to take φ = f to

conclude the proof. The key point in the naive ansatz φ = f is that we are choosing
a test function that is able to ‘detect’ the sign of f . Looking at the sign of f is
a much less restrictive property which does not require any smoothness. We only

19Here, δ0 denotes the Dirac mass at zero.
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need to sample the values of f on some set. This is the key idea on which we will
build the proof by contradiction.

In the proof below, we assume the reader knows the inner and outer regularity
properties of the Lebesgue measure.

Proof of Lemma 2.28. We first explain the proof strategy. If the conclusion of the
lemma fails, then f ≠ 0 on a set of positive measure. Hence, there are positive
measure sets where f > 0 or f < 0. We then need to construct suitable test functions
supported on either set depending on the situation. However, this is nontrivial
because the positivity and negativity sets can be complicated. For instance, they
could be a Cantor set; per se, they neither need to be closed nor open.

We divide the proof into the following six steps.
1. For every ball Br(x0) ⊂ Rd there exists a cutoff function g ∈ Cc(Rd) with

values in [0, 1] such that g = 1 on Br(x0) and spt g ⊂ B2r(x0).
2. Given any compact set K ⊂ Rd and any open set U ⊂ Rd containing K,

there exists g ∈ Cc(Rd) which takes values in [0, 1] such that g = 1 on K
and spt g ⊂ U .

3. Let A ⊂ Rd be a measurable set with finite measure. Then there exists
a sequence (gn)n∈N in Cc(Rd) with values in [0, 1] such that gn → 1A in
L1(Rd) as n → ∞. Moreover, if A ⊂ V for some open set V ̸= Rd, the
above sequence can be constructed to satisfy spt gn ⊂ V for every n ∈ N.

4. Upgrade Step 3 from continuous to smooth functions, i.e. ensure gn ∈ D(V )
for every n ∈ N.

5. Take A to be an appropriate subset of {f > 0} or {f < 0} to achieve the
desired contradiction.

Step 1. We define g(x) := max{1 − 2 d2(x,Br(x0))/r, 0}, where x ∈ Rd. Here
d2(·, Br(x0)) denotes the customary distance function to Br(x0) induced by the
Euclidean norm on Rd.

Step 2. Set r := d2(K, ∂U)/3. By compactness of K and since ∂U ∩K = ∅, we
have r > 0. Cover K by finitely many balls Br(x1), . . . , Br(xm) with x1, . . . , xm ∈ K.
Then B2r(xi) ⊂ U for all i ∈ {1, . . . ,m} by our choice of r. Let g1, . . . , gm be as
constructed in Step 1 and set g̃ = g1 + · · · + gm as well as g = min{1, g̃}. Then g
satisfies all the claimed properties thanks to the inclusions spt gi ⊂ B2r(xi) ⊂ U for
every i ∈ {1, . . . ,m}.

Step 3. Since the Lebesgue measure is regular20 and A has finite measure, for
every n ∈ N there exists a compact set Kn ⊂ A and an open set Un ⊃ A such
that Ld[Un \Kn] ≤ 1/n. Applying Step 2 we find a sequence (gn)n∈N in Cc(Rd)
with values in [0, 1] such that gn = 1 on Kn and gn = 0 outside Un. In particular,
gn = 1A on Kn ∪ (Rd \ Un) and |gn − 1A| ≤ 1 on Un \Kn. Hence∫

Rd

|gn − 1A| dLd ≤ Ld[Un \Kn] ≤ 1
n
.

Therefore, gn → 1A in L1(Rd,Ld) as n → ∞. Finally, if A ⊂ V for some open set
V , we can always replace the set Un above by the open set Un ∩ V and hence the
claim follows from the properties of the sequence (gn)n∈N from Step 2.

Step 4. Let A ⊂ Rd be a set of finite measure and V ⊂ Rd be an open set
containing A. We will regularize the sequence (gn)n∈N in Cc(V ) found in Step 3 by

20This means that Ld is simultaneously
• inner regular, i.e. Ld[A] = sup{Ld[K] : K ⊂ A compact} for every measurable A ⊂ Ld,
• outer regular, i.e. Ld[A] = inf{Ld[U ] : U ⊃ A open} for every measurable A ⊂ Ld.
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convolution, a standard method to regularize functions. Define η ∈ D(Rd) by

η(x) =
{
C e1/(∥x∥2−1) if ∥x∥ < 1,
0 otherwise,

where C > 0 is chosen such that η integrates up to one. Furthermore, given any
ε > 0 define ηε ∈ D(Rd) by ηε(x) := η(x/ε)/εd. Observe spt ηε ⊂ Bε(0) as well as∫

Rd ηε dLd = 1. These functions are often referred to as standard mollifiers. We
then define the convolution

gn ⋆ ηε(x) :=
∫

Rd

gn(x− y) ηε(y) dy =
∫
Bε(0)

gn(x− y) ηε(y) dy.

It is a classical result from analysis that gn ⋆ ηε ∈ C∞(Rd), cf. e.g. [6, §C] for details.
Moreover, by general properties of the convolution we have

spt gn ⋆ ηε ⊂ spt gn + spt ηε ⊂ spt gn +Bε(0). (2.9)

Since gn has compact support, it follows that gn ⋆ ηε ∈ D(Rd). Moreover, for ε small
enough (depending on n) we can ensure spt gn +Bε(0) ⊂ V , so that gn ⋆ ηε ∈ D(V ).
With n fixed, the uniform continuity of gn and the fact that the standard mollifiers
integrate up to one imply gn ⋆ ηε → gn uniformly on Rd and in L1(Rd,Ld) as ε → 0
due to (2.9). Choose εn > 0 such that ∥gn ⋆ ηεn

− gn∥L1(Rd,Ld) ≤ 1/n. Then by the
triangle inequality gn ⋆ ηεn → 1A in L1(Rd,Ld) as n → ∞. Finally, 0 ≤ gn ⋆ ηε ≤ 1
since ηε is non-negative and has integral one, and gn takes values in [0, 1].

Step 5. We are in a position to prove the statement of the lemma. Assume to
the contrary that f ̸= 0 on a set of positive Ld-measure. Without loss of generality
(up to switching the sign of f) we may and will assume Ld[{f > 0}] > 0. Using
an exhaustion of Ω by compact subsets and Levi’s monotone convergence theorem,
we find A ⊂ Ω Ld-measurable such that Ld[A] ∈ (0,∞), f > 0 on A, and A has
compact closure in Ω. Again by monotone convergence and possibly shrinking A,
we may and will assume there exists δ > 0 such that f ≥ δ on A.

Since A has compact closure in Ω, there exists an open, bounded set V such
that V ⊂ Ω and A ⊂ V . By Step 4, there exists a sequence (φn)n∈N in D(V ) with
values in [0, 1] such that φn → 1A in L1(Ω,Ld) as n → ∞. Choose a nonrelabeled
subsequence such that φn → 1A Ld-a.e. as n → ∞21. Then clearly f φn → f 1A
Ld-a.e. and |f φn| ≤ 1V |f | on Rd, which is integrable since V is bounded. Hence
by assumption and Lebesgue’s dominated convergence theorem,

0 = lim
n→∞

∫
Ω
f φn dLd =

∫
Rd

f 1A dLd ≥ δLd[A],

which is a contradiction. □

2.4. The Schwartz space and tempered distributions. In our short introduc-
tion of distributions, we have seen some examples and basic elements of distributional
calculus. As both distributions and the Fourier transform are important in the
theory of PDEs, there is a final natural question we address: can we also define the
Fourier transform acting on distributions?

Again our ansatz is by duality, extending the standard Fourier transform acting
on integrable functions. As an example, let us try to define the Fourier transform
of the distribution associated to Tf with f ∈ L1(Rd,Ld). Following the paradigm

21L1-convergence implies subsequential a.e. convergence.
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from Definition 2.24, the Fourier transform of Tf should be given by TF[f ], where F

denotes the usual Fourier transform on Rd. Using Fubini’s theorem, we compute

TF[f ](φ) =
∫

Rd

φ(k)F[f ](k) dk

=
∫

Rd

φ(k)
∫

Rd

e−ik·x f(x) dx dk

=
∫

Rd

f(x)F[φ](x) dx

“=” Tf (F[φ]).
Is the last term on the right-hand side a well defined object? Can we extend it
to any distribution? The answer is no, since the Fourier transform of a nontrivial
D(Rd)-function never has compact support (cf. Exercise 6.4), which suggests that
pairing it with a distribution is not defined in general. To overcome this issue, one
needs to slightly enlarge the space of test functions and therefore we introduce the
Schwartz space22.

Definition 2.29 (Schwartz space). The Schwartz space S(Rd) is defined as
S(Rd) := {f ∈ C∞(Rd; C) : sup

x∈Rd

|xαDβf(x)| < ∞ for every α, β ∈ Nd
0},

where xα := xα1
1 · · ·xαd

d .
We endow this Schwartz space by the locally convex topology given by the countable

family of seminorms {pα,β : α, β ∈ Nd
0} given by

pα,β(f) := sup
x∈Rd

|xαDβf(x)|.

Clearly, the LCTVS S(Rd) is metrizable, cf. Theorem 1.23.
Roughly speaking, Schwartz functions are smooth functions that decay rapidly

at infinity, as quantified by the previous definition23. More precisely, by definition
all derivatives of a Schwartz functions decay superpolynomially at infinity.

For instance, the function f : Rd → R given by f(x) := e−x⊤Ax, where A ∈ Rd×d

is symmetric and positive definite, belongs to S(Rd) yet has noncompact support.
In the next lemma we collect some elementary properties of S(Rd) whose proof is
left to the interested reader.

Lemma 2.30 (Involutions of Schwartz space). Let f, g ∈ S(Rd) and α ∈ Nd
0. Then

the following functions belong also to S(Rd).
(i) The complex conjugation x 7→ f(x).
(ii) The product x 7→ f(x) g(x).
(iii) The product with arbitrary monomials x 7→ xα f(x).
(iv) The derivative map x 7→ Dαf(x).

We also recall less obvious properties of the Schwartz space without proof.

Proposition 2.31 (Basic properties of Schwartz space). The following properties
hold true.

(i) The space D(Rd) is densely contained in S(Rd).

22The space is named after Laurent Schwartz, who pioneered the theory of distributions and his
work was awarded with a Fields medal in the 1950. See his biography at https://mathshistory.
st-andrews.ac.uk/Biographies/Schwartz/.

23Since our aim is to study the Fourier transform (and antitransform) of functions, it makes
sense in the following to always take them C-valued. In particular, f(x) will denote the complex
conjugate of f(x). Recall that all results from the previous lectures on C∞(Ω) seemlessy transfer
to C∞(Ω; C) (e.g. by splitting f into its real and imaginary parts) and that by differentiability we
always mean real differentiability, not complex differentiability.

https://mathshistory.st-andrews.ac.uk/Biographies/Schwartz/
https://mathshistory.st-andrews.ac.uk/Biographies/Schwartz/
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(ii) We have S(Rd) ⊂ Lp(Rd,Ld) for every p ∈ [1,∞].
(iii) S(Rd) is complete and has the Heine–Borel property.
(iv) The Fourier transform F : S(Rd) → S(Rd) defined by

F[f ](k) :=
∫

Rd

f(x) e−ik·x dx

is a linear homeomorphism.

Let us briefly explain the last property. As known from classical Fourier analysis,
the decay of a function and its derivatives at infinity is related to the smoothness of
its Fourier transform, while its smoothness is related to the decay of the Fourier
transform at infinity. For this reason, the seminorms from Definition 2.29 encode
both decay at infinity and smoothness and it is natural to expect that the Fourier
transform inherits these properties. The mathematical proof of (iv) is merely a
rigorous formulation of the above thoughts.

By the above proposition the Fourier transform maps D(Rd) into S(Rd). Hence
we could define the Fourier transform on “distributions” that are defined on S(Rd).
Since D(Rd) ⊂ S(Rd), this means those are special family of distributions.

Definition 2.32 (Tempered distribution). A tempered distribution is a linear func-
tional T : S(Rd) → C that is continuous with respect to the convergence introduced
in Definition 2.29, symbolically T ∈ S′(Rd).

Note every tempered distribution is a “classical” distribution on Rd since the
convergence on D(Rd) implies the convergence in S(Rd). Moreover, every Lp-
function can be interpreted as tempered distribution in the sense of Example 2.19.
However, not all cases in Example 2.19 define tempered distributions. For instance,
the function f ∈ L1

loc(R,L1) given by f(x) := ex2 grows so quickly such that its
product with the Schwartz function 1/f has no finite integral on R. With some
small restrictions the operations on distributions also make sense for tempered
distributions24.

Theorem 2.33 (Fourier transform on tempered distributions). Given T ∈ S′(Rd),
we define its Fourier transform T̂ ∈ S′(Rd) by T̂ (φ) = T (F[φ]). This Fourier trans-
form is a linear bijective map from S′(Rd) to S′(Rd).

Proof. First we show T̂ is again a tempered distribution. First of all, we know
F[φ] ∈ S(Rd) for every φ ∈ S(Rd), meaning T̂ is well-defined. Linearity follows
from linearity of the Fourier transform and linearity of T . Thus, it remains to show
the Fourier transform defined above is continuous. By linearity, it suffices to prove if
(φn)n∈N is a sequence in S(Rd) converging to zero, then T̂ (φn) → 0 as n → ∞. By
definition and continuity of T this reduces to prove F[φn] → 0 in S(Rd) as n → ∞.
This is the last item of Proposition 2.31.

To conclude the proof, we need to show the Fourier transform is bijective. We
first prove injectivity. By linearity it suffices to prove T̂ = 0 implies T = 0. Let
φ ∈ S(Rd) be given. Then F−1[φ] ∈ S(Rd) by the Fourier inversion theorem on the
Schwartz space. This yields

0 = T̂ (F−1[φ]) = T (F[F−1[φ]]) = T (φ).
Since φ ∈ S(Rd) was arbitrary, the above identity implies T = 0. To prove surjec-
tivity, let T ∈ S′(Rd) and define a tempered distribution S ∈ S′(Rd) by the formula
S(φ) := T (F−1[φ]). Again this is a tempered distribution since the inverse Fourier

24One has to be careful with the definition of the product with smooth functions. The product
of a Schwartz function with ψ ∈ C∞(Rd) is not a Schwartz function in general. However, it suffices
to require ψ is smooth and ψ and all its derivatives grow at most polynomially.
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transform is also linear and continuous with respect to the convergence in S(Rd) by
Proposition 2.31. The definition entails

Ŝ(φ) = S(F[φ]) = T (F−1[F[φ]]) = T (φ).

This terminates the proof. □

In the previous proof, we obtained the formula T̂−1 = T ◦ F−1. In particular,
it is elementary to verify the Fourier transform and its inverse are sequentially
weakly∗-continuous on S′(Rd). (The weak∗-continuity is true as well, but the proof
is slightly more involved.)

This concludes our concise survey on (tempered) distributions.

Lecture 8.

3. Calculus on Banach spaces

If not specified otherwise, in this section X, Y , and Z always denote Banach
spaces over a field K equal to R or C. We introduce basic calculus for maps
F : X → Y and deduce several properties well-known from the finite-dimensional
case. Since many proofs hardly differ from the case of maps from Rn to Rm, where
n,m ∈ N, we often just sketch them.

3.1. Basic definitions and elementary results. In a basic undergraduate course
in analysis, one defines the “derivative” of a given map F : Rn → Rm, where
n,m ∈ N, at a point x0 ∈ Rn in two related yet different ways.

• If there exists a linear map A ∈ L(Rn,Rm) such that

lim
h→0

|F (x0 + h) − F (x0) −Ah|
|h|

= 0

then this map is unique, termed the (total) derivative of F at x0, and
denoted by DF (x0).

• If for a given v ∈ Rn, the limit

lim
ε→0

F (x0 + εv) − F (x0)
ε

exists in Rm, it is (clearly) unique, termed the directional derivative of
F at x0 in the direction of v, and denoted by DvF (x0).

Recall a differentiable map is differentiable in every direction, but the converse is not
true in general. Hence, the first notion is stronger, while in applications directional
derivatives are frequently easier to compute.

We will generalize both notions to Banach spaces. The results to follow valid
when we replace Banach spaces by general normed spaces.

The first element of calculus on such spaces is an appropriate notion of (total)
derivative. It is defined in complete analogy to the finite-dimensional case that has
already been treated in an undergraduate analysis course.

Definition 3.1 (Fréchet differentiability). Let F : X → Y and let U ⊂ X be open.
We say F is Fréchet differentiable (or simply differentiable) at a point x0 ∈ U
if there exists a bounded linear map A ∈ L(X,Y ) such that

lim
h→0

∥F (x0 + h) − F (x0) −Ah∥Y
∥h∥X

= 0.

We say F is Fréchet differentiable (or simply differentiable) on U if it is differ-
entiable at every point x0 ∈ U .
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The operator A above is easily seen to be unique if it exists. Depending on the
context, we will thus write F ′(x0) := A or DF (x0) := A.

Note that a differentiable function is in particular continuous (understood in the
evident way, since we are dealing with normed spaces).

If a map F : U → Y is differentiable on some open set U ⊂ X, then the map
F ′ : U → L(X,Y ) is also a map with values in a Banach space. By iterating this
observation25, we can define higher order derivatives as follows.

To simplify the notation, given any n ∈ N we inductively introduce the target
space Tn of the n-th derivative of the map F in question by T1 := L(X,Y ) and
Tn+1 := L(X,Tn).

Definition 3.2 (Higher order derivatives). Let U ⊂ X be open and F : U → Y .
Fix n ∈ N. Inductively, if F is n-times differentiable in a neighborhood V of x0
and its n-th Fréchet derivative F (n) : V → Tn is differentiable at x0, we say that F
is (n+ 1)-times differentiable at x0.

We say F is (n+ 1)-times differentiable in U if it is (n+ 1)-times differentiable
at every x0 ∈ U .

Finally, we define

Cn(U ;Y ) = {F : U → Y : F is n-times differentiable in U

and F (n) is continuous on U}.

Example 3.3 (Fréchet differentiable maps). • Every bounded linear map is
Fréchet differentiable with constant derivative. Indeed, if A ∈ L(X,Y )
then we have A′(x) = A for every x ∈ X. This follows from the simple
observation A(x+ h) −Ax−Ah = 0 for every x, h ∈ X.

• Let X := L2([0, 1],L1) and Y := R. Define F : X → Y by

F (u) =
∫ 1

0
|u|2 dL1.

Then F is differentiable and

F ′(u)v = 2
∫ 1

0
u v dL1.

This is a consequence of the following more abstract result. Let H be a real
Hilbert space with scalar product ⟨·, ·⟩. Then the map F : X → R defined
by F (x) := ⟨x, x⟩ is differentiable with F ′(x)y = 2 ⟨x, y⟩ for every x, y ∈ H.
Indeed, by bilinearity we easily see

⟨x+ h, x+ h⟩ − ⟨x, x⟩ − 2 ⟨x, h⟩ = ∥h∥2
H ,

for every h ∈ H, implying

lim
h→0

|F (x+ h) − F (x) − 2 ⟨x, h⟩|
∥h∥H

= lim
h→0

∥h∥H = 0. ■

We now turn to extensions of classical calculus rules.

Lemma 3.4 (Chain rule). Let U ⊂ X and V ⊂ Y be open. Let F : U → Y and
G : V → Z. Assume both F is differentiable at a point x0 ∈ U with F (x0) ∈ V and
G is differentiable at F (x0). Then G ◦ F : U → Z is differentiable at x0 and

(G ◦ F )′(x0) = G′(F (x0))F ′(x0).

Proof. Exercise 9.1. □

25Note that, for instance, F ′′ : U → L(X,L(X,Y )). Compare this with the customary Hessian
of maps between finite-dimensional vector spaces.
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Be careful with the notation in the lemma above, in the sense that we are not
taking products of derivatives, but compositions. More precisely, F ′(x0) constitutes
a bounded linear map sending x ∈ X to F ′(x0)x ∈ Y , after which the bounded
linear map G′(F (x0)) sends y := F ′(x0)x ∈ Y to G′(F (x0))y.

Another important tool in analysis is the mean value theorem. First, we recall
the classical example of the circle f : [0, 2π] → R2 given by f(t) := (cos(t), sin(t))
for which the equality f(x) − f(y) = f ′(ξ)(x− y) — that one proves for real-valued
functions in a first analysis course — cannot hold for any ξ ∈ [x, y] (take e.g.
x = 2π and y = 0). In other words, whenever the target domain of f has more
than one dimension we cannot expect to extend the standard mean value theorem.
The natural partial generalization to higher dimensions (which is often enough in
applications) is the inequality |f(x) − f(y)| ≤ |f ′(ξ)||x− y| for some ξ ∈ [x, y]. This
is what we are going to generalize on Banach spaces.

To simplify the notation, in what follows we do not specify the norms whenever
confusion is excluded. If x ∈ X then ∥x∥ refers to its norm in X, while terms like
∥F ′(x)∥ refer to the operator-norm of F ′(x) in L(X,Y ).

Lemma 3.5 (Mean value inequality). Let [a, b] ⊂ R be an interval and let the map
F : [a, b] → X be continuous on all of [a, b] and differentiable on (a, b). Then there
is ξ ∈ (a, b) such that

∥F (b) − F (a)∥ ≤ ∥F ′(ξ)∥ |b− a|.

Proof. Without loss of generality, we may and will assume F (a) ̸= F (b), otherwise
the claim is clear. Then by the Hahn–Banach theorem, we know there is g ∈ X ′

such that ∥g∥ = 1 and g(F (b) − F (a)) = ∥F (b) − F (a)∥26. We intend to apply the
standard mean value theorem27 to the mapping g ◦ F . In particular, we know there
exists ξ ∈ [a, b] such that

(g ◦ F )(b) − (g ◦ F )(a) = (g ◦ F )′(ξ)(b− a).

Using the chain rule and linearity of g,

(g ◦ F )′(ξ)(b− a) = g′(F (ξ))(F ′(ξ)(b− a)) = g(F ′(ξ)(b− a)).

We finally get

∥F (b) − F (a)∥ = g(F (b) − F (a))
= g(F ′(ξ)(b− a))
≤ ∥g∥ ∥F ′(ξ)∥ |b− a|
= ∥F ′(ξ)∥ |b− a|.

This terminates the proof. □

The above lemma allows us to prove local Lipschitz continuity of differentiable
functions whose derivatives are locally28 uniformly bounded. Indeed, it suffices to
consider the restriction to one-dimensional segments.

We also have the following version of the Schwarz theorem on the symmetry of
second derivatives.

26The Hahn–Banach theorem has the following consequence: for each non-zero x0 ∈ X there
exists g ∈ X′ such that g(x0) = ∥x0∥. To prove this, consider the subspace M spanned by x0 and
define g(λx0) = λ∥x0∥ where g ∈ M ′ and ∥g∥ = 1. Then apply the Hahn–Banach theorem to
extend g to all of X′. Note that this is another proof of Corollary 1.37.

27We can assume g is real-valued since we can always interpret X as a vector space over R.
28Attention: in infinite dimensions “locally” has to be understood on open neighborhoods

instead of compact subsets.
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Lemma 3.6 (Schwarz theorem). Let U ⊂ X be open. Assume that F : U → Y is
two-times differentiable on U . Then for every x ∈ U and every v, w ∈ X,

(F ′′(x)v)w = (F ′′(x)w)v.

Proof. Fix ε > 0 and v, w ∈ X with ∥v∥, ∥w∥ < η, where η > 0 is sufficiently small
such that for every s ∈ [0, 1],

∥F ′(x+ v + sw) − F ′(x) − F ′′(x)(v + sw)∥L(X,Y ) ≤ ε (∥v∥ + s∥w∥),
∥F ′(x+ sw) − F ′(x) − F ′′(x)sw∥L(X,Y ) ≤ ε s∥w∥.

By the triangle inequality and the definition of the operator norm,
∥F ′(x+ v + sw)w − F ′(x+ sw)w − (F ′′(x)v)w∥Y ≤ ε (∥v∥ + 2s∥w∥) ∥w∥,

We define g : [0, 1] → Y through g(s) = F (x+ v + sw) − F (x+ sw) − s(F ′′(x)v)w.
Then the mean value inequality implies

∥F (x+ v + w) − F (x+ w) − F (x+ v) + F (x) − (F ′′(x)v)w∥

≤ sup
s∈(0,1)

∥∥∥ d
dsg(s)

∥∥∥
≤ sup
s∈(0,1)

∥F ′(x+ v + sw)w − F ′(x+ sw)w − (F ′′(x)v)w∥Y

≤ ε (∥v∥ + 2∥w∥) ∥w∥.
Exchanging the roles of v and w we conclude
∥F (x+ v + w) − F (x+ w) − F (x+ v) + F (x) − (F ′′(x)w)v∥ ≤ ε (2∥v∥ + ∥w∥) ∥v∥.
This entails

∥(F ′′(x)v)w − (F ′′(x)w)v∥ ≤ 2 ε(∥v∥ + ∥w∥)2

Since both sides are positively homogeneous of degree two, the above restriction on
the norm of ∥v∥ and ∥w∥ can be dropped. Sending ε → 0 yields the claim. □

We have defined a notion of differentiability. Next, we will introduce directional
derivatives. They have several advantages. For instance, they are somewhat easier to
compute. Moreover, differentiability is a very strong property in infinite dimensions29

and one often needs to use weaker notions of differentiability. This is motivated by
the following example.
Example 3.7 (A nowhere differentiable map). Let X := L2((0, 1),L1) and define
F : X → X as F (u) := cos ◦u. Then F is not differentiable at 0. Indeed, assume F
is differentiable at 0. Then for every v ∈ D((0, 1)) with unit L2-norm,

F ′(0)v = F ′(0)v + lim
ε→0

F (εv) − F (0) − F ′(0)εv
ε

= lim
ε→0

F (εv) − F (0)
ε

,

where the limits are understood in L2((0, 1),L1). We compute

lim
ε→0

∥∥∥F (εv) − F (0)
ε

∥∥∥2
= lim
ε→0

1
ε2

∫ 1

0
|cos(εv(x)) − 1|2 dx = 0,

where the latter equality follows from the global bound |cos(x)−1| ≤ |x|2/2 for every
x ∈ R+, which can be seen by Taylor expansion, and the boundedness of v. This
implies F ′(0)v = 0 for every v ∈ D((0, 1)); by density of D((0, 1)) in L2((0, 1),L1),
we deduce F ′(0) = 0. Hence for every h ∈ L2((0, 1),L1),∫ 1

0
|cos(h(x)) − 1|2 dx = o(∥h∥2).

29Roughly speaking, in finite dimensions one only needs to control finitely many directions to
control the entire derivative.
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Now choose h = 1[0,ε] with ε ∈ (0, 1). The above estimate implies

ε |cos(1) − 1|2 = o(ε2).

Dividing by ε, we obtain a contradiction since the left-hand side is different from
zero. With more effort one can show F is in fact nowhere differentiable. ■

Lecture 9. Now we turn to the analog of directional differentiation.

Definition 3.8 (Gâteaux differentiability). Let U ⊂ X be open and F : U → Y .
We say F is Gâteaux differentiable at a point x0 ∈ U if there exists A ∈ L(X,Y )
such that for every v ∈ X,

Av = lim
ε→0

F (x0 + εv) − F (x0)
ε

.

We say F is Gâteaux differentiable in U if it is Gâteaux differentiable at every
x0 ∈ U .

In other words, we require the above limit to exist and to constitute a bounded
linear map from X to Y .

In the above case, we write δF (x0) := A (which is trivially unique if existent) to
distinguish the Gâteaux derivative from the Fréchet derivative.

Note that in contrast to the classical definition of differentiability, in the above
limit the convergence can be nonuniform with respect to the direction v. The
relationship between the two concepts is similar to the finite-dimensional case.
Hence we omit the proof of the lemma below.

Lemma 3.9 (Gâteaux vs. Fréchet differentiation). Let U ⊂ X be open and F : U →
Y . If F is differentiable at x0 ∈ U , it is Gâteaux differentiable and δF (x0) = F ′(x0).

Conversely, if F is Gâteaux differentiable in a neighborhood V of x0 and the
Gâteaux derivative δF : V → L(X,Y ) is continuous, then F is differentiable at x0
with δF (x0) = F ′(x0).

As customary in the Euclidean case, the Gâteaux derivative provides a useful
necessary condition for optimization problems.

Lemma 3.10 (Necessary conditions for extremizers). Let U ⊂ X be open and
F : U → R. If x0 ∈ U is a local extremizer of F and F is Gâteaux differentiable at
x0, then δF (x0) = 0.

Proof. By replacing F with −F , it suffices to establish the claim when x0 is a local
minimizer. Given any v ∈ X, the small perturbation x0 + εv lies in U for every
sufficiently small ε > 0. Given any such ε, local minimality of F at x0 implies
F (x0) ≤ F (x0 + εv). Therefore,

δF (x0)v = lim
ε→0+

F (x0 + εv) − F (x0)
ε

≥ 0.

Replacing v by −v we deduce δF (x0)v = 0. □

Similar to the finite-dimensional situation one can also derive necessary and
sufficient conditions for the second derivatives in optimization problems. We will
briefly discuss them in the exercises.

3.2. Partial derivatives and the implicit function theorem. Now we consider
functions defined on Cartesian products of Banach spaces, i.e., we assume that
given any n ∈ N, X1, . . . , Xn are Banach spaces. We equip X1 × . . .×Xn with the
complete maximum norm given by ∥(x1, . . . , xn)∥ = max{∥xi∥Xi

: i ∈ {1, . . . , n}}.
If U ⊂ X1 × · · · ×Xn is an open set and F : U → Y is a map, then for a fixed vector
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(x1, . . . , x̂i, . . . , xn) ∈ X1 × · · · × X̂i × · · · × Xn
30 we can consider the restriction

xi 7→ F (x1, . . . , xi−1, xi, xi+1, . . . , xn) defined on the open set
Ui = {xi ∈ Xi : (x1, . . . , xi, . . . , xn) ∈ U},

where i ∈ {1, . . . , n}. The i-th partial derivative ∂iF : U → L(Xi, Y ) is defined as
the derivative of this restriction (always intended in the sense of Fréchet).

The following result shows partial derivatives enable us to recover the entire
derivative provided f is differentiable on the product space.

Lemma 3.11 (Partial vs. total derivative). Let U ⊂ X1 × · · · ×Xn be open and let
F : U → Y . If F is differentiable, then all its partial derivatives exist and satisfy
the following for every (x1, . . . , xn) ∈ U and every (h1, . . . , hn) ∈ X1 × · · · ×Xn:

F ′(x1, . . . , xn)(h1, . . . , hn) =
n∑
j=1

∂jF (x1, . . . , xn)hj . (3.1)

Moreover, if F ∈ C1(U ;Y ), then ∂jF ∈ C(U ;L(Xj , Y )) for every j ∈ {1, . . . , n}.
Conversely, if all partial derivatives exist and obey ∂jF ∈ C(U ;L(Xj , Y )), then

F ∈ C1(U ;Y ) and its derivative computes as (3.1).

Proof. The argument for the first two claims is left as an exercise to the reader.
The last statement is shown in Exercise 10.1. □

Now let us address the implicit function theorem. We first collect some conse-
quences of Banach’s fixed point theorem. Note that the first statement below is a
nonlinear, abstract version of the Neumann series.

Lemma 3.12 (Contractions). (i) Let T : X → X. If there exists θ ∈ (0, 1)
such that ∥T (x) − T (y)∥ ≤ θ ∥x − y∥ for every x, y ∈ X, then Id − T is a
homeomorphism from X to X.

(ii) Let S : Bδ(0) → X, where Bδ(0) denotes the closed δ-ball in X for δ > 0,
and assume there exists θ ∈ (0, 1) such that ∥S(x) − S(y)∥ ≤ θ∥x− y∥ for
every x, y ∈ Bδ(0). If ∥S(0)∥ < δ(1 − θ) then the map Id + S has a unique
zero. Moreover, setting ρ := (1 − θ)δ − ∥S(0)∥ we have

Bρ(0) ⊂ (Id + S)(Bδ(0)).

Proof. Exercise 10.2. □

As we will see, the second part of the above lemma is tailor-made for the proof
of the implicit function theorem.

Theorem 3.13 (Implicit function theorem). Let x0 ∈ X and y0 ∈ Y . Let U ⊂ X
and V ⊂ Y be open neighborhoods of x0 and y0, respectively. Assume F : U ×
V → Z is continuous, partially differentiable in its second component, and that
∂2F : U × V → L(Y, Z) is continuous. Suppose F (x0, y0) = 0. If the linear map
∂2F (x0, y0) is invertible, there exist closed balls Br(x0) ⊂ U and Bδ(y0) ⊂ V and
exactly one map T : Br(x0) → Bδ(y0) such that F (x, T (x)) = 0 for all x ∈ Br(x0).

Moreover, the map T is continuous and satisfies T (x0) = y0.

As usual, the implicit function theorem gives a local parametrization of a subset
of the zero level set of F around (x0, y0) by the first component.

Proof of Theorem 3.13. Up to a translation (which does not cost generality), we
may and will assume x0 = 0 and y0 = 01. We set L := ∂2F (0, 0). Since for given
x ∈ U and y ∈ V the equation F (x, y) = 0 holds if and only if y+L−1F (x, y)−y = 0
by the hypothesized invertibility of L, we verify the assumptions of the second part

30We use the usual hat notation from multilinear algebra to indicate the i-th slot is omitted.
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of Lemma 3.12 for S(x, ·) := L−1F (x, ·) − IdY , where IdY denotes the identity on
Y . Indeed, a zero of IdY + S(x, ·) will depend on x and we use this zero to construct
the desidered map T .

Since ∂2S(0, 0) = 0 and ∂2S is continuous on U × V , given any θ ∈ (0, 1) there
exists δ > 0 such that ∥∂2S(x, y)∥ ≤ θ on Bδ(0) ×Bδ(0). The mean value theorem
on the convex set Bδ(0) ⊂ Y implies

∥S(x, y1) − S(x, y2)∥ ≤ θ∥y1 − y2∥.
Moreover, the continuity in the first variable implies that for some r ∈ (0, δ), we
have ∥S(·, 0)∥ < δ(1 − θ) on Br(0). Hence the second statement of Lemma 3.12
yields there exists a unique zero T (x) ∈ Bδ(0) of the map y 7→ y + S(x, y) for every
x ∈ Br(0). By uniqueness, we have T (0) = 0.

In order to prove continuity of T , note that for every x, x0 ∈ Br(0) we have
∥T (x) − T (x0)∥ = ∥S(x, T (x)) − S(x0, T (x0))∥

≤ ∥S(x, T (x)) − S(x, T (x0))∥ + ∥S(x, T (x0)) − S(x0, T (x0))∥
≤ θ ∥T (x) − T (x0)∥ + ∥S(x, T (x0)) − S(x0, T (x0))∥

Absorbing the θ-dependent term in the left-hand side, the continuity follows from
the continuity of S in the first variable. □

Next we prove the inverse function theorem on Banach spaces.
Theorem 3.14 (Inverse function theorem). Let U0 ⊂ X be open and F ∈ C1(U0;Y ).
Let x0 ∈ U0 be such that F ′(x0) is invertible. Then there exists an open neighbor-
hood U ⊂ U0 of x0 such that F

∣∣
U

: U → F (U) is a homeomorphism onto the open
neighborhood F (U) of y0 := F (x0).

Moreover, there is a possibly smaller open neighborhood V ⊂ U of x0 such that
F

∣∣−1
U

∈ C1(F (V );X), and the following identity holds for every x ∈ V :

(F
∣∣−1
U

)′(F (x)) = F ′(x)−1.

Proof. We apply the implicit function theorem to the assignment defined by
H(x, y) := F (x) − y with Z = Y and the roles of X and Y reversed. We thus find
W = Br(y0) and Bδ(x0) ⊂ U0 and a unique continuous map T : W → Bδ(x0)31

such that T (y0) = x0 and H(T (y), y) = 0, that is, F (T (y)) = y for every y ∈ W . In
particular, W is in the image of F and the set U := F−1(W ) ∩Bδ(x0) containing
x0 is open in X and F (U) = W is an open neighborhood of y0. Moreover, F has
to be injective on U (otherwise there are at least two possibilities to construct the
map T ). Note that T (W ) ⊂ F−1(W ) ∩Bδ(x0) = U . Hence T : W → U , but we still
need to show that T (F (x)) = x for every x ∈ U . Clearly F : U → W is bijective
(by injectivity and since W = F (U)). Hence as a general fact left and right inverse
agree and we found F

∣∣−1
U

= T , so that F is indeed a homeomorphism.
It remains to show the differentiability properties of T . As the set of invertible

linear maps is open32, for some possibly smaller open neighborhood W0 ⊂ W the
bounded, linear operator F ′(T (y)) is still invertible. Set V = F−1(W0) ∩ Bδ(x0).
Let us show that T is differentiable at y ∈ W0 = F (V ) with derivative F ′(T (y))−1.
Observe that

∥T (y + h) − T (y) − F ′(T (y))−1h∥
≤ ∥F ′(T (y))−1∥L(Y,X) ∥F ′(T (y))T (y + h) − F ′(T (y))T (y) − h∥

31To obtain the open ball in the image, it suffices to decrease the radius.
32This is a well-known consequence of the von Neumann series when Y = X. In the general

case, given L0 invertible, write L = L0(I + L−1
0 (L− L0)) and then L is invertible whenever

I + L−1
0 (L− L0) is invertible. The latter operator is again an operator from X to X and hence it

is invertible when the operator norm ∥L− L0∥ is small enough.
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= c ∥F ′(x)(xh − x) − (F (xh) − F (x))∥,
where x := T (y), xh := T (y + h), and c := ∥F ′(T (y))−1∥L(Y,X). Note that by
the continuity of T it follows that xh → x as h → 0. Hence, given ε > 0, the
differentiability of F at x implies that for ∥h∥ small enough,

∥T (y + h) − T (y) − F ′(T (y))−1h∥ ≤ c ε∥xh − x∥ = c ε∥T (y + h) − T (y)∥.

In particular, for ε small enough we conclude ∥T (y + h) − T (y)∥ ≤ c(1 − εc)−1∥h∥.
Inserting this bound into the estimate above we obtain

∥T (y + h) − T (y) − F ′(T (y))−1h∥ ≤ c ε∥xh − x∥ = c2 ε(1 − cε)−1∥h∥,

which shows T is differentiable in W0 with T ′(y) = F ′(T (y))−1. Since T and F ′ are
continuous, we obtain T ∈ C1(W0;X). □

Remark 3.15 (Smoothness). One can show that the local inverse function inherits
the smoothness of F , that is, if F ∈ Cm(U0, Y ) for some m ∈ N ∪ {∞}, then
F

∣∣−1
U

∈ Cm(F (V );X) as well. A detailed proof of this fact is quite technical. Here
is a sketch of the argument. Using T ′(y) = F ′(T (y))−1 and the fact that taking the
inverse of a bounded, linear operator is a smooth function, it suffices to show that
the composition of smooth functions and Cm−1-functions belongs to Cm−1, which
follows essentially from the chain rule. A similar statement holds for the function
given by the implicit function theorem. ■

Lecture 10. As a further application of the implicit function theorem we discuss
global diffeomorphisms33. Recall a diffeomorphism between two Banach spaces is a
smooth bijective map with smooth inverse.

Corollary 3.16 (Sufficient criterion for diffeomorphy). Let F ∈ C1(X;Y ) be such
that F ′(x) is invertible for all x ∈ X. If there exists a constant c > 0 such that
∥F ′(x)−1∥ ≤ c ∥x∥ + c for every x ∈ X, then F is a diffeomorphism from X to Y .

Proof. By the inverse function theorem, it suffices to show F is bijective. We
first show F is surjective. Fix y ∈ Y and x0 ∈ X. Define H : R × X → Y by
H(t, x) := F (x) − ty− (1 − t)F (x0). Then H(0, x0) = 0 and ∂2H(0, x0) = F ′(x0) is
invertible. By the implicit function theorem there exists x : [0, δ] → X such that

F (x(t)) = ty + (1 − t)F (x0).
If δ ≥ 1 we know y = F (x(1)). To this end, we derive an ODE satisfied by x.

We use the following trick to obtain the desired ODE by applying the inverse func-
tion theorem. Consider G : R×X → R×X defined by G(t, x) = (t, F ′(x0)−1H(t, x)).
Then G ∈ C1(R ×X,R ×X) and G′(0, x0)(t, h) = (t, h−yt+F (x0)t), a map which
is clearly invertible. Since G−1(t, 0) = (t, x(t)), we deduce x is indeed differentiable
in an open interval around 0 and then the chain rule yields that

x′(t) = F ′(x(t))−1(y − F (x0)).
Let T denote the maximal interval of the form [0, T ) where this differential equation
can be solved with initial value x(0) = x0. If T ≤ 1 then

∥x(t)∥ ≤ ∥x0∥ +
∫ t

0

∣∣F ′(x(s))−1(y − F (x0))
∣∣ ds

≤ ∥x0∥ +
∫ t

0

[
c∥x(s)∥ + c

]
∥y − F (x0)∥ ds

= c1 + c2

∫ t

0
∥x(s)∥ ds

33The proof of this result was skipped in the lecture. The proof is not examinable.
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for some appropriate constant C > 0. Gronwall’s inequality then yields ∥x(t)∥ ≤
C exp(Ct) ≤ C ′ for all t ∈ [0, T ). In turn, using the ODE the quantity ∥x′∥ is
uniformly bounded on [0, T ). In particular, the limit limt→T x(t) exists (here we use
that X is complete). Denote the limit by xT . Then we repeat the above argument
with x0 replaced by xT and obtain a contradiction to the maximality of T . This
shows T > 1 — actually T = ∞! — and therefore F is surjective.

For proving injectivity, assume F (x1) = F (x2) = y yet x1 ̸= x2. Without loss of
generality we may and will assume y = 0. We will construct a continuous function
φ : [0, 1]2 → X such that F (φ(t, s)) = −sF (tx1 + (1 − t)x2) for every s, t ∈ [0, 1].
Then F (φ(t, 0)) = 0 for all t ∈ [0, 1], which contradicts the local invertibility of F .
To find φ, define C0([0, 1];X) = {u ∈ C([0, 1];X) : x(0) = x(1) = 0} (space of X-
valued continuous functions on [0, 1] with Dirichlet boundary conditions) equipped
with the maximum norm ∥ · ∥∞. Define H : C0

0 ([0, 1];X) → C([0, 1];Y ) by
H(u)(t) := F (u(t) + tx1 + (1 − t)x2).

Note that H(u)(0) = H(u)(1) = 0, so that H(u) ∈ C0
0 ([0, 1];Y )). Moreover, one

can show H ∈ C1(C0[0, 1];X);C([0, 1];Y )) with derivative
(H ′(u)h)(t) = F ′(u(t) + tx1 + (1 − t)x2)h(t).

In particular,
(H ′(u)−1y)(t) = F ′(u(t) + tx1 + (1 − t)x2)−1y(t).

Hence ∥H ′(u)−1∥ ≤ C∥u∥∞ +C for some constant C > 0. Repeating the first part of
the proof with F replaced by H and x0 = 0 ∈ C0([0, 1], X) and y = 0 ∈ C([0, 1];Y )
to find a differentiable function v : [0, 1] → C0([0, 1];X) such that v(0) = 0 and

v′(s) = −H ′(v(s))−1H(0).

Setting φ(t, s) = tx1 + (1 − t)x2 + v(s)(t) we get
F (φ(t, s)) = H(v(s))(t)

=
∫ s

0
(H ′(v(r))v′(r)) (t) dr

= −sH(0)(t)
= −sF (tx1 + (1 − t)x2).

This terminates the proof. □

3.3. Taylor expansion on Banach spaces. For function f : R → R the Taylor
expansion around a point x ∈ R reads

f(x+ h) = f(x) + f ′(x)h+ . . .+ f (n)(x)
n! hn + o(|h|n),

provided f is n-times differentiable, where n ∈ N. In case one has more information,
one can express the remainder o(|h|n)34 either as an integral or an evaluation of
a term involving the (n+ 1)-st derivative. We already know from the mean value
theorem that the latter possibility cannot be expected for functions with target
domain not being a subset of the real line.

Before we prove any formulation of the Taylor expansion in Banach spaces, we
need to understand the structure of higher order derivatives. It will be convenient
to identify them with bounded, multilinear maps.

34Here is a little reminder on Landau notation. We will write f ∈ o(h) as x → a provided
limsupx→a |f(x)/h(x)| = 0. Equivalently, for every ε > 0 there exists δ > 0 such that for every
x ∈ Bδ(a), we have |f(x)| ≤ ε |h(x)|. Whenever we write f = g + o(h) as x → a we intend to say
f − g ∈ o(h) as x → a.
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Recall Sn denotes the group of permutations of {1, . . . , n}, i.e. the set of all
bijective maps σ : {1, . . . , n} → {1, . . . , n}, where n ∈ N.

Definition 3.17 (Multilinear maps). Given any n ∈ N, let Mn(X,Y ) denote the
set of multilinear, bounded maps from Xn to Y , i.e., functions m : Xn → Y that
are linear in each variable and such that the following quantity is finite:

∥m∥Mn(X,Y ) := sup{∥m(x1, . . . , xn)∥Y : ∥xi∥X ≤ 1 for every i ∈ {1, . . . , n}}.

We call m ∈ Mn(X,Y ) symmetric if for every permutation σ ∈ Sn and every
(x1, . . . , xn) ∈ Xn,

m(xσ(1), . . . , xσ(n)) = m(x1, . . . , xn)

Remark 3.18 (Functional analytic properties). The space Mn(X,Y ) with the above
norm becomes a Banach space. Additionally, the space of symmetric maps is a
closed subspace of it. ■

The identification of higher order derivatives derivative with an appropriate
symmetric, bounded, multilinear map is justified in the next lemma.

Lemma 3.19 (Generalized Schwarz theorem). Let U ⊂ X be open. Let F : U → Y
be N-times differentiable, where N ∈ N. Then for every n ∈ {1, . . . , N}, every
permutation σ ∈ Sn, and every x ∈ U ,

F (n)(x)(h1, . . . , hn) = F (n)(x)(hσ(1), . . . , hσ(n)). (3.2)

Moreover, given any x ∈ U , we have F (n)(x) ∈ Mn(X,Y ) and

∥F (n)(x)∥ = ∥F (n)(x)∥Mn(X,Y ).

Recall the terms in (3.2) are understood as iterated applications. For instance,
• if n = 2 we have F ′′(x)(h1, h2) = (F ′′(x)h1)h2,
• if n = 3 we have F ′′′(x)(h1, h2, h3) = ((F ′′(x)h1)h2)h3,

and so on.

Proof of Lemma 3.19. We first prove symmetry by induction on n, starting with
n = 2. In this case the statement is exactly Schwarz theorem, cf. Lemma 3.6.

To prove the general case, assume for the moment that σ is a permutation
such that σ(1) = 1. The hypothesized differentiability of F (n) implies for every
h1, . . . , hn ∈ X the map x 7→ F (n)(x)(h1, . . . , hn) from U to Y is differentiable with[

F (n)(·)(h1, . . . , hn)
]′(x)h = F (n+1)(x)(h, h1, . . . , hn)

for every h ∈ X. By our induction hypothesis,

F (n+1)(x)(h1, . . . , hn+1) =
[
F (n)(·)(h2, . . . , hn+1)

]′(x)h1

=
[
F (n)(·)(hσ(2), . . . , hσ(n+1))

]′(x)hσ(1)

= F (n+1)(x)(hσ(1), . . . , hσ(n+1))

Next, we consider σ ∈ Sn such that σ(1) = 2 and σ(2) = 1 yet σ(k) = k for every
k ∈ {3, . . . , n + 1}. Then the statement follows from Schwarz’s theorem applied
to the assignment x 7→ F (n−1)(h3, . . . , hn+1). The general case follows from the
fact that any permutation can be written as a composition of the permutations
considered above35.

35Given any σ ∈ Sn, consider first a permutation that exchanges σ(1) and 2 (first type when
σ(1) ̸= 1 or second type when σ(1) = 1). Then exchange the first and second element (second
type). The remaining permutation will be of the first type.
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Using the symmetry proven in the preceding part, it suffices to prove linearity in
the first component. This directly follows from the definition of the n-th derivative
and the linearity of point evaluations f(x) in f .

To show boundedness, let h1, . . . , hn ∈ X with ∥hj∥ ≤ 1 for all j ∈ {1, . . . , n}.
Iterating the boundedness of the n-th derivative,∥∥F (n)(x)(h1, . . . , hn)

∥∥
Y

≤
∥∥F (n)(x)(h1, . . . , hn−1)

∥∥
L(X,Y )∥hn∥

≤
∥∥F (n)(x)(h1, . . . , hn−2)

∥∥
L(X,L(X,Y )) ∥hn−1∥ ∥hn∥

≤ . . .

≤ ∥F (n)(x)∥ ∥h1∥ · · · ∥hn∥.

This proves F (n)(x) ∈ Mn(X,Y ) and ∥F (n)(x)∥Mn(X,Y ) ≤ ∥F (n)(x)∥. To prove the
reverse inequality, note that by definition

∥F (n)(x)∥ = sup
h1∈X,

∥h1∥≤1

· · · sup
hn∈X,

∥hn∥≤1

∥F (n)(x)(h1, . . . , hn)∥Y

≤ sup{∥F (n)(x)(h1, . . . , hn) : ∥hj∥ ≤ 1 for every j ∈ {1, . . . , n}}

= ∥F (n)(x)∥Mn(X,Y ).

This terminates the proof. □

Armed with the multilinearity of the n-th-derivative, the Taylor expansion is an
easy consequence of the mean value theorem combined with an induction argument.

Theorem 3.20 (Taylor expansion without quantitative remainder estimate). Let
U ⊂ X be open. Let F : U → Y be n-times differentiable, where n ∈ N. Then for
every x0 ∈ U ,

F (x0 + h) =
n∑
k=0

1
k!F

(k)(x0) (h, . . . , h)︸ ︷︷ ︸
k times

+ o(∥h∥n) as h → 0,

with the usual convention F (0) = F .

Proof. We prove the statement by induction on n. For n = 1 it reduces to the
definition of Fréchet-differentiability.

Now assume F is (n+ 1)-times differentiable. Note that the Taylor expansion is
exact for h = 0. Hence by the mean value theorem applied to the assignment

G(t) := F (x0 + th) −
n+1∑
k=0

1
k!F

(k)(x0)(th, . . . , th)

= F (x0 + th) − tk
n+1∑
k=0

F (k)(x0)(h, . . . , h)

and an index shift we obtain∥∥∥F (x0 + h) −
n+1∑
k=0

1
k!F

(k)(x0)(h, . . . , h)
∥∥∥

≤ sup
t∈[0,1]

∥∥∥F ′(x0 + th)h−
n+1∑
k=1

1
(k − 1)!F

(k)(x0)(th, . . . , th, h)
∥∥∥

≤ sup
t∈[0,1]

∥∥∥F ′(x0 + th) −
n∑
k=0

1
k!F

(k+1)(x0)(th, . . . , th)
∥∥∥
L(X,Y )

∥h∥



MATH-404 FUNCTIONAL ANALYSIS II 43

= sup
t∈[0,1]

∥∥∥F ′(x0 + th) −
n∑
k=1

1
k! (F

′)(k)(x0)(th, . . . , th)
∥∥∥
L(X,Y )

∥h∥

Applying the induction hypothesis for F ′,∥∥∥F (x0 + h) −
n+1∑
k=0

1
k!F

(k)(x0)(h, . . . , h)
∥∥∥

≤ sup
t∈[0,1]

o(∥th∥n) ∥h∥ = o(∥h∥n+1) as h → 0,

which is the desired asymptotic. □

Next we present one version of the Taylor expansion with a more precise control
of the error assuming higher order differentiability.

Theorem 3.21 (Taylor expansion with remainder estimate). Let U ⊂ X be open.
Let F : U → Y be (n + 1)-times differentiable. Then for every x ∈ U and every
h ∈ X such that the segment [x, x+ h] is contained in U , there is ζ ∈ [x, x+ h] with∥∥∥F (x+ h) −

n∑
k=0

1
k!F

(k)(x)(h, . . . , h)
∥∥∥ ≤ 1

(n+ 1)!
∥∥F (n+1)(ζ)(h, . . . , h)

∥∥.
Proof. By the Hahn–Banach theorem, there exists g ∈ Y ′ with ∥g∥ = 1 and

g
[
F (x+ h) −

n∑
k=0

1
k!F

(k)(x)(h, . . . , h)
]

=
∥∥∥F (x+ h) −

n∑
k=0

1
k!F

(k)(x)(h, . . . , h)
∥∥∥.

Define the function f : [0, 1] → R by

f(t) := g
[
F (x+ th) −

n∑
k=1

1
k!F

(k)(x)(th, . . . , th)
]
.

By the chain rule f ∈ Cn+1((a, b)), where (a, b) is an open interval containing [0, 1].
(Recall U is open.) By Taylor’s theorem, there exists t0 ∈ [0, 1] such that∥∥∥F (x+ h) −

n∑
k=0

1
k!F

(k)(x)(h, . . . , h)
∥∥∥

= f(1) − f(0) =
n∑
k=1

1
k!f

(k)(0) + 1
(n+ 1)!f

(n+1)(t0).

The derivatives of f are given by

f (k)(t) = g
[
F (k)(x+ th)(h, . . . , h) −

n∑
j=k

tj−k

(j − k)!F
(k)(x)(h . . . , h)

]
.

In particular, for t = 0 we find f (k)(0) = 0. This implies∥∥∥F (x+ h) −
n∑
k=0

1
k!F

(k)(x)(h, . . . , h)
∥∥∥

= 1
(n+ 1)!f

(n+1)(t0)

= 1
(n+ 1)!g(F (n+1)(x+ t0h)(h . . . , h))

≤ 1
(n+ 1)!∥F

(n+1)(ζ)(h, . . . , h)∥,

where we have set ζ := x+ t0h. □
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Remark 3.22 (Integral remainders). In the case Y = R, the above proof yields
g ∈ {−1, 1} and therefore the Taylor expansion is exact with the intermediate value
ζ. Remainder formulas with integral expression require integration theory in Banach
spaces and therefore we omit them in this course. ■

Lecture 11.

4. A selection of fixed point theorems

Fixed point problems occur all over analysis. For instance, solving an equation
of the form G(x) = y, where x and y belong to the same space, can easily be
transformed into the fixed point equation F (x) = x, where F (x) = x−G(x) − y.
The function F can be seen as a perturbation of the identity, even though the
perturbation might not be small in any sense.

Another well-known domain where fixed point arguments occur is the theory
of ODEs. Suppose f : R+ × Rn → Rn is a (say) smooth function, where n ∈ N.
Solving the ODE x′(t) = f(t, x(t)) with x(0) = x0 directly would amount to looking
for solutions x in a space of C1-functions, which is analytically challenging. Instead,
we transform the ODE by integration into a fixed point equation F (x) = x, where

F (x)(t) := x0 +
∫ t

0
f(s, x(s)) ds.

Observe we only have to solve this fixed point equation in a space of continuous
functions, which is one derivative better! Indeed, by the fundamental theorem
of calculus a continuous solution x of F (x) = x is automatically continuously
differentiable, hence solves the original ODE.

In this section we study the existence of fixed points of functions F : K → X,
where K ⊂ X is an appropriate set.

4.1. Banach-style fixed point theorems. A well-known result is Banach’s fixed
point theorem, which ensures existence and uniqueness whenever F is a strict
contraction on a complete metric space. Moreover, the fixed points depend Lipschitz
continuously on F .

Theorem 4.1 (Banach). Assume (X, d) is a complete metric space. Moreover, let
F : X → X be a contraction, i.e. there exists λ ∈ (0, 1) such that d(F (x), F (y)) ≤
λ d(x, y) for every x, y ∈ X. Then F has a unique fixed point.

The restriction on λ cannot be dropped if one wants to retain unique existence of
a fixed point. For instance, nontrivial translations in Rn are 1-Lipschitz continuous
yet do not have any fixed points. Moreover, the identity map on Rn is again
1-Lipschitz yet all points are fixed points.

Proof. Define a sequence (xn)n∈N0 by xn := Fn(x0), where x0 ∈ X is an arbitrarily
chosen initial point. We claim (xn)n∈N converges to the unique fixed point of F .

Uniqueness is trivial. Indeed, if x, x′ ∈ X are two fixed points of F ,
d(x, x′) = d(F (x), F (x′)) ≤ λ d(x, x′),

which forces d(x, x′) = 0.
To show the claimed convergence, first note for every k ∈ N,

d(xk+1, xk) = d(T (xk), T (xk−1)) ≤ λ d(xk, xk−1) ≤ · · · ≤ λk d(x0, x1).
Given n,m ∈ N with n < m, the triangle inequality and a geometric sum yield

d(xm, xn) ≤
m−1∑
k=n

d(xk+1, xk)
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≤
m−1∑
k=n

λk d(x0, x1)

≤ λn d(x0, x1)
m−n−1∑
k=0

λk

≤ λn

1 − λ
d(x0, x1).

This shows (xn)n∈N is a Cauchy sequence. Since (X, d) is complete, it has a limit
in X we denote by x. Given any n ∈ N, we have

d(x, F (x)) ≤ d(x, xn) + d(xn, F (x)) ≤ d(x, xn) + λ d(xn−1, x).

Sending n → ∞ and using convergence of (xn)n∈N to x shows x = F (x). □

The following simple consequences of the proof of Banach’s fixed point theorem
are left as an exercise for the interested reader.

Corollary 4.2 (Error bounds). Retain the hypotheses and the notation from the
previous Theorem 4.1. Then for every x0 ∈ X, the sequence (xn)n∈N defined by
xn := Tn(x0) converges to the unique fixed point x of F .

Moreover, given any n ∈ N we have the a priori estimate

d(xn, x) ≤ λn

1 − λ
d(x0, x1)

and the a posteriori estimate

d(xn, x) ≤ λ

1 − λ
d(xn−1, xn).

However, the strict contraction property might be quite restrictive in applications.
We thus provide a small selection of different fixed point theorems. Let us start
with the following elementary generalization of Banach’s fixed point Theorem 4.1
under the stronger assumption that the domain is compact.

Theorem 4.3 (Edelstein). Let (X, d) be a compact metric space and F : X → X be
such that d(F (x), F (y)) < d(x, y) for every distinct x, y ∈ M . Then F has a unique
fixed point.

Proof. Uniqueness is shown as in the proof of Theorem 4.1.
To show existence, consider the real-valued assignment h(x) := d(x, F (x)). It is

Lipschitz continuous since

d(x, F (x)) ≤ d(x, y) + d(y, F (x))
≤ d(x, y) + d(y, F (y)) + d(F (y), F (x))
≤ 2 d(x, y) + d(y, F (y)),

which implies h(x) − h(y) < 2 d(x, y). Exchanging the roles of x and y then yields
the desired Lipschitz continuity of h. By continuity the image of h(X) is compact
in R. Hence h achieves its minimum on M . Let x0 denote such a minimizer. If
x0 = F (x0), we are done. Otherwise, we would get

h(F (x0)) = d(F (x0), F (F (x0))) < d(x0, F (x0)) = h(x0),

which contradicts the minimality of x0. □
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4.2. Schauder’s fixed point theorem. In this subsection we prove a quite general
existence theorem for fixed points. Usually the theorem is stated on Banach
spaces, but we show a version for LCTVS. We will need the following auxiliary
result that relies on the Brouwer fixed point theorem, cf. Theorem 4.9 below, that
we will prove later.

Recall given any subset A ⊂ X of a vector space X, its convex hull is defined by

coA :=
{ n∑
i=1

λi xi : n ∈ N, x1, . . . , xn ∈ A, λ1, . . . , λn ∈ [0, 1],
n∑
i=1

λi = 1
}
.

Lemma 4.4 (Nonempty intersections). Let X be a Hausdorff TVS and B ⊂ X.
For every x ∈ B let A(x) ⊂ X be a closed set such that

co {x1, . . . , xn} ⊂
n⋃
i=1

A(xi)

for every finite subset {x1, . . . , xn} ⊂ B. Then for every finite set {y1, . . . , yk} ⊂ B,
the intersection

⋂k
j=1 A(yj) is nonempty.

Proof. Assume to the contrary there exist y1, . . . , yk ∈ B such that
⋂k
j=1 A(yj) is

empty. Let W denote the linear span of {y1, . . . , yk}. By Proposition 1.33, the space
W is closed. Hence, by assumption on the family A, also W ∩ A(x) is closed for
every x ∈ B. In particular, given any z ∈ W , we have z /∈ W ∩A(yj) if and only if
d(z,W ∩A(yj)) > 0; here, d is the induced Euclidean norm on W (which generates
the subspace topology of W by Proposition 1.33). Note that

⋂k
j=1 W ∩A(yj) = ∅,

so that for all c ∈ C, where C := co {y1, . . . , yk}, we have
k∑
j=1

d(c,W ∩A(yj)) > 0.

Define F : C → C by

F (c) =
[ k∑
j=1

d(c,W ∩A(yj))
]−1 k∑

j=1
d(c,W ∩A(yj)) yj .

Then F is continuous since the distance function is continuous. Moreover, C is
compact, convex and nonempty. By Brouwer’s fixed point theorem the map F has
a fixed point c0 ∈ C. Let I ⊂ {1, . . . , k} denote the set of those indices j such that
d(c0,W ∩A(yj)) > 0. Then by the assumption on the sets A(yj) we have

c0 = F (c0) ∈ co {yj : j ∈ I} ⊂
⋃
j∈I

A(yj),

which yields a contradiction to the definition of the set I. □

Now we can state and prove Schauder’s fixed point theorem on LCTVS, which
was first established by Tychonoff. This theorem is usually presented in Banach
spaces but it is quite interesting to see that it holds on any LCTVS. We refer to
Remark 4.6 for more comments about the version in Banach spaces.

Theorem 4.5 (Schauder–Tychonoff). Let X be an LCTVS and K ⊂ X be closed,
convex, and nonempty. Let F : K → K be continuous such that F (K) is compact.
Then F has a fixed point in K.

Proof. Let U be a convex, balanced, and open neighborhood of the origin. Define
S := F (K). Since S is compact, there exists a finite subset {y1, . . . , yn} ⊂ S such
that S ⊂

⋃n
i=1(yi + U). For each i ∈ {1, . . . , n} we set

A(yi) := {x ∈ K : F (x) /∈ yi + U}.
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Since yi + U is open, the set A(yi) is closed. Note that
n⋂
i=1

A(yi) =
{
x ∈ K : F (x) /∈

n⋃
i=1

(yi + U)
}

= ∅.

Applying the contraposition of Lemma 4.4 to the set B := {y1, . . . , yn}, we deduce
there exists a subset J ⊂ {1, . . . , n} and xU ∈ co {yi : i ∈ J} with the property
xU /∈

⋃
i∈J A(yi). Since xU ∈ K by convexity, this implies F (xU ) ∈ yi +U for every

i ∈ J . In turn, there exists ui ∈ U with F (xU ) = yi + ui. Write xU =
∑
i∈J λiyi,

where
∑
i∈J λi = 1 and all coefficients are nonnegative. By convexity of U ,

F (xU ) =
∑
i∈J

λi F (xU ) =
∑
i∈J

λi(yi + ui) = xU +
∑
j∈J

λiui ∈ xU + U.

Hence, for fixed U there exists xU ∈ K such that F (xU ) ∈ xU + U . Thanks to
the compactness of the reference set S, we may and will therefore assume that
net {F (xU ) : U balanced, convex, open neighborhood of the origin}36 converges to
some x0 in K. But then xU converges to x0. Indeed, let V be a convex, balanced
neighborhood of the origin. Then eventually (along a subnet) xU ∈ F (xU ) + U ⊂
x0 + V/2 + V/2 ⊂ x0 + V . By continuity of F , it follows that F (x0) = x0. □

Remark 4.6 (Banach space version of Theorem 4.5). The Schauder–Tychonoff fixed
point theorem is usually stated in Banach spaces. For the proof presented here, the
only simplification would be that one can replace U with balls of radius 1/m and
directly construct a sequence instead of a net. However, in Banach spaces there is a
simpler proof which avoids the application of Lemma 4.4 and uses Brouwer’s fixed
point theorem in a more direct way. We present this proof in the appendix and we
highlight analogies with the proof on LCTVS discussed here. ■

Next, we present an interesting application of the Schauder fixed point theorem.

Theorem 4.7 (Peano). Let (t0, x0) ∈ R × Rn and consider the ODE x′(t) =
f(t, x(t)) and x(t0) = x0. If the function f : [−a+ t0, a+ t0] ×BR(y0) → Rn is
continuous for some a,R > 0, then there exists δ > 0 such that the above initial
value problem has a solution x : [−δ + t0, δ + t0] → Rn.

Proof. Exercise 12.3. □

In general, applying the Schauder–Tychonoff fixed point theorem can be quite
tricky since one needs to find the set K for which F maps K to K. The following
consequence avoids this problem on Banach spaces.

Theorem 4.8 (Schaefer’s fixed point theorem). Let X be a Banach space and let
F : X → X be continuous such that F (B) is compact for every bounded set B ⊂ X.
Assume further that the set {x ∈ X : x = λF (x) for some λ ∈ [0, 1]} is bounded in
X. Then F has a fixed point.

Proof. Exercise 12.2. □

Lecture 12.

36The family of balanced, convex, open neighborhoods of the origin can be turned into a directed
set with respect to set inclusion. Note that this family is stable under intersections and therefore
the net is well defined. If you have not seen nets, you should imagine that they are natural
generalization of sequences with uncountably many indices.
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4.3. Brouwer’s fixed point theorem. Here we prove Brouwer’s fixed point
theorem in the general version we used to show the Schauder–Tychonoff fixed point
theorem. There are several proofs, which use quite difficult approaches. We use
here an analytical one which only requires a change of variables for the occurring
integrals. Let us first state the theorem.

Theorem 4.9 (Brouwer). Let K ⊂ Rn, where n ∈ N, be convex, compact, and
nonempty. Moreover, let f : K → K be continuous. Then f has a fixed point in K.

Remark 4.10 (From Euclidean space to finite dimensions). In the proof of Lemma 4.4
we used the above theorem in a finite-dimensional subspace of a Hausdorff TVS.
By Proposition 1.33, such spaces are linearly homeomorphic to Rn for some n ∈ N.
All these identifications preserve convexity and compactness, so that the restriction
to maps defined on subsets of Rn imposes no restriction. ■

We will prove Theorem 4.9 in several stages. First we reduce the analysis to the
case when K is the closed unit ball B1(0).

Lemma 4.11 (Reduction lemma). Let us assume that every continuous function
f : B1(0) → B1(0) has a fixed point. Then the statement from Theorem 4.9 holds.

Proof. First note the assumption implies every continuous map f : BR(0) → BR(0)
has a fixed point, where R > 0 is arbitrary. Indeed, given such an f , consider the
map fR : B1(0) → B1(0) defined by fR(x) := f(Rx)/R, which has a fixed point
x0 ∈ B1(0) by assumption. Then Rx0 is clearly a fixed point of f .

Now consider a convex, compact, and nonempty set K ⊂ Rn and a continuous
function f : K → K. Take a finite or countable dense subset {ai : i ∈ I} ⊂ K.
Given any i ∈ I, define the continuous cutoffs φi : Rn \K → [0, 1] by

φi(x) = max
{

2 − |x− ai|
d(x,K) , 0

}
.

We then define f̃ : Rn → Rn by

f̃(x) =


f(x) if x ∈ K,[∑
i∈I

2−iφi(x)
]−1 ∑

i∈I
2−iφi(x) f(ai) otherwise

Clearly, f̃ extends f . Moreover, f̃ is continuous on the open set Rn \K. We claim
it is also continuous at every given x ∈ K. To this aim, it suffices to consider a
sequence (xn)n∈N in Rn \K converging to x. Given ε > 0, the continuity of f on K
implies there exists δ > 0 such that |f(x) − f(ai)| < ε for all i ∈ I with |x− ai| < δ.
Clearly φi(xn) = 0 whenever |xn − ai| ≥ 2 d(xn,K). Since last term tends to 0 as
n → ∞, for n ∈ N large enough we only need to consider those i ∈ I such that
|x − ai| < δ. For those, an elementary estimate shows |f̃(xn) − f̃(x)| ≤ ε, which
proves continuity. In total, this shows f̃ is a continuous extension of f . Finally, we
note that since K is closed and convex, by the definition of the extension we get

f̃(Rn) ⊂ co(f(K)) ⊂ K.

Consider now a closed ball BR(0) that contains K. Then by the first part of the
proof, f̃ has a fixed point in BR(0). But we know this fixed point has to belong to
K. Hence f has a fixed point as well. □

Remark 4.12 (Alternative proof of Lemma 4.11). One could alternatively try to
find a homeomorphism g : B1(0) → K. Indeed, assume such a map exists. Then
F := g−1 ◦ f ◦ g : B1(0) → B1(0) is continuous and therefore there exists a fixed
point x0 of F by assumption. This easily implies g(x0) ∈ K is a fixed point for f .
Note when K = BR(0) we have g(x) = Rx, as shown during the above proof.
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To construct the map g, we need an extra assumption on K. This is because
K can be a lower dimensional object in general. For instance, we cannot hope
to construct a homeomorphism from the circle (which is intrinsically convex and
compact) to the unit disk. Therefore, let us assume there exist x0 ∈ Rn and δ > 0
such that Bδ(x0) ⊂ K. Up to translation, we can may and will assume x0 = 0.
Then, set p(x) := inf{t ≥ 0 : tx /∈ K} and p(0) := 0 (note the similarity to the
Minkowski functional). Since K is convex, it is not hard to show p is a norm and K
is the unit ball in this norm. Now, define h : K → B1(0) by

h(x) :=


p(x)
|x|

x if x ̸= 0,

0 otherwise,
where | · | is the Euclidean norm. This map can have problems of continuity at the
origin per se. However, since all norms in Rn are equivalent, h is indeed continuous
at 0. (The continuity at other points follows by continuity of the involved norms.)
Consequently, we also know h is a homeomorphism and we define g := h−1. ■

Having reduced the proof to the unit ball, we now formulate an equivalent
statement. We will only prove that this theorem implies Brouwer’s fixed point
theorem. The reverse implication will be part of the exercises.
Lemma 4.13 (Sufficient condition for Lemma 4.11). Assume there exists no con-
tinuous map R : B1(0) → ∂B1(0) such that R(x) = x for every x ∈ ∂B1(0). Then
every continuous map f : B1(0) → B1(0) has a fixed point.
Proof. Assume by contradiction there exists f : B1(0) → B1(0) such that f(x) ̸= x
for every x ∈ B1(0). Set g(x) := x−f(x) and hx(t) := |x+ tg(x)|2 − 1 for x ∈ B1(0)
and t ∈ R. Note hx(0) ≤ 0 and limt→∞ hx(t) = ∞ since g(x) ̸= 0. Hence there
exists tx ≥ 0 such that hx(tx) = 0. Since t 7→ hx(t) is a second order polynomial,
the number tx can be calculated explicitly in terms of x and g(x) (in particular
it is unique) and one can show the dependency of tx on x ∈ B1(0) is continuous.
Define then the continuous assignment R(x) := x+ txg(x), where x ∈ B1(0). By
construction, |R| = 1 everywhere, so that R : B1(0) → ∂B1(0). Moreover, for any
x ∈ ∂B1(0) we have hx(0) = 0, so that uniqueness of tx implies tx = 0. Hence
R(x) = x on ∂B1(0), which gives a contradiction. □

A map R as in the previous lemma is often called a retraction. We are thus left
to show that there exists no retraction from B1(0) to its boundary. We first prove
there exists no C1-retraction.
Lemma 4.14 (C1-retraction theorem). There exists no function f : B1(0) → ∂B1(0)
that is continuously differentiable on a neighborhood of B1(0) which obeys f(x) = x
for every x ∈ ∂B1(0).
Proof. We argue again by contradiction and assume such a map f exists. For
t ∈ [0, 1] set ft = (1 − t) Id + t f . By compactness of B1(0), the function f − Id is
Lipschitz continuous on B1(0) with Lipschitz constant c ≥ 1. As a consequence,
given any x, y ∈ B1(0) this shows

|ft(x) − ft(y)| ≥ |x− y| − t |(f − Id)(x) − (f − Id)(y)| ≥ (1 − ct)|x− y|.
In particular, for every t ∈ [0, 1/c) the map ft is injective and the inverse function
is Lipschitz continuous as well. Moreover, the assignment (t, x) 7→ det Dxft(x)
is continuous and equal to one for t = 0. Hence there exists ε > 0 such that
for all (t, x) ∈ [0, ε] ×B1(0), we have det Dxft(x) > 037. By the inverse function

37A priori, for every x ∈ B1(0) there exists a neighborhood of the form [0, εx] ×Bδ(x) such that
the statement holds on this set. The sets Bδ(x) form an open cover of B1(0). By compactness, we
find a finite subcover and thence a common ε > 0 that works for all x ∈ B1(0).
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theorem, we conclude for all t ∈ [0, ε] the image ft(B1(0)) is open and moreover, by
convexity, it is a subset of B1(0). Let us prove ft(B1(0)) = B1(0) for sufficiently
small t > 0. By the arguments hitherto, we know ft(B1(0)) ⊂ B1(0). Note that
ft(∂B1(0)) = ∂B1(0), which implies

B1(0) \ ft(B1(0)) = B1(0) \ ft(B1(0)).
By continuity of ft, the set ft(B1(0)) is compact and in particular closed. We
conclude B1(0) \ ft(B1(0)) is also open. Therefore, this enables us to decompose
B1(0) = ft(B1(0)) ∪ (B1(0) \ ft(B1(0))) which is the union of two open and disjoint
sets. Since B1(0) is connected, we deduce B1(0) \ ft(B1(0)) has to be empty; and
indeed, ft(B1(0)) = B1(0).

Lastly, given any t ∈ [0, 1] we consider the assignment

v(t) :=
∫
B1(0)

det Dxft(x) dx.

The change of variables formula implies v(t) = Ln[ft(B1(0))] = Ln[B1(0)] for all
t ∈ [0,min{ε, 1/c}). Since v(t) is a polynomial, we know v(t) equals a positive
constant on [0, 1]. However, for t = 1 we have ft = f and since |f(x)|2 = 1 for all
x ∈ B1(0), we know Df(x) f(x) = 0. This means Df(x) has a nontrivial kernel. In
particular, det Df(x) = 0 for all x ∈ B1(0), a contradiction. □

Finally, we remove the smoothness assumption by an approximation argument.

Theorem 4.15 (Retraction theorem). There exists no continuous function f : B1(0) →
∂B1(0) such that f(x) = x for every x ∈ ∂B1(0).

Proof. Again we argue by contradiction and construct a C1-retraction, which is
absurd in view of the previous lemma. First extend the given retraction to Rn by
setting f(x) := x whenever |x| > 1. This extension is continuous. By a convolution
argument, we find a sequence (fk)k∈N of functions in C∞(Rn,Rn) such that fk → f
locally uniformly on Rn as k → ∞. Let h ∈ C∞

c ((−1, 1); [0, 1]) such that h(0) = 1
and define hk : Rn → R by hk(x) := h(k|x|2 − k). Then we have hk(x) = 1 for
every x ∈ ∂B1(0), while hk(x) → 0 as k → ∞ whenever |x| ̸= 1. Define then

gk(x) := hk(x)x+ (1 − hk(x)) fk(x).
Note that gk ∈ C∞(Rn,Rn). Moreover, the above construction yields gk(x) = x
for x ∈ ∂B1(0) since hk = 1 on the unit sphere. The idea now is to normalize gk by
considering gk/|gk|. To this end, we show that for every sufficiently large k ∈ N, we
have |gk| ≥ c on B1(0). Clearly this condition allows us to normalize gk also in a
(k-dependent) neighborhood of B1(0) and then we are done.

Assume by contradiction there is a subsequence (kj)j∈N with minB1(0) |gkj
| → 0

as j → ∞. There exists a sequence (xj)j∈N in B1(0) with gkj
(xj) → 0 as j → ∞

and — up to a further subsequence — hkj
(xj) → t ∈ [0, 1] and xj → x0 ∈ B1(0).

By locally uniform convergence of (fk)k∈N to f , we get 0 = tx0 + (1 − t)f(x0). Note
that |x0| = 1 is impossible since otherwise f(x0) = x0 and therefore x0 = 0, which
is absurd. But if |x0| < 1, then for j ∈ N large enough we have hkj

(xj) = 0, which
implies t = 0 and then f(x0) = 0, which gives again a contradiction. Hence for
k ∈ N large enough, the map gk/|gk| is a well-defined retraction that is regular in a
neighborhood of B1(0). This contradicts the previous lemma. □

5. Gradient flows in Hilbert spaces

Recall that the gradient flow in Rn, where n ∈ N, of a (say) smooth potential
V : Rn → R starting at o ∈ Rn is a continuous curve x : R+ → Rn which is
differentiable in (0,∞) and which obeys x′

t = −∇V (xt) for every t > 0 and x0 = o.
The following brief survey provides an introduction into gradient flows on general
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Hilbert spaces. It was introduced by Brézis [2]. Although you will find all relevant
results that are used to date in this book, overall it is rather outdated; for a
modern account on gradient flows in general metric spaces, we refer to the book of
Ambrosio–Gigli–Savaré [1].

Gradient flows have many simple properties (good solution theory, quantitative
estimates, equilibrium points, etc.) that make them interesting. They arise in nu-
merous geometries and are a ubiquitous tool in modern analysis and its applications
to probability theory, geometry, machine learning, artificial intelligence, etc. One
particularly rich area where they have become central is optimal transport. This
trend started from the papers of Jordan–Kinderlehrer–Otto and Otto. As a toy
example, consider a parabolic PDE of the form ∂tut = Lut on Rn, where L is usually
an elliptic second-order differential operator acting spatially (e.g. the Laplacian).
By endowing the space P(Rn) of probability measures over Rn with a certain
optimal transport geometry, [7, 8] were able to show this PDE can be interpreted
as a gradient flow ∂tµt = −∇E(µt) on P(Rn) (understood appropriately), where
E is an entropy functional. The correspondence is given by µt = ut L

n. The point
of this identification is that one can trade a PDE on a finite-dimensional space for
an ODE (which are often simpler to study than PDEs) on an infinite-dimensional
space. This is no Hilbert space theory, but working on Hilbert spaces is simpler and
conveys many of the key ideas used in this metric context as well.

In the first part, we will clarify the meaning of the “gradient” of a functional
in a Hilbert space. This happens by means of convex analysis, for basics of which
we refer to Rockafellar [9]. In the second part, we outline the general theory of
existence, uniqueness, and fundamental properties.

5.1. Convexity and subdifferentials. Let H be a real Hilbert space. Let ⟨·, ·⟩
denote the inherent scalar product and ∥ · ∥ :=

√
⟨·, ·⟩ the induced norm. Let

E : H → R+ ∪ {∞} be an “energy” functional which we assume to be
• convex, i.e. E((1 − t)x+ ty) ≤ (1 − t)E(x) + tE(y) for every x, y ∈ H and

every t ∈ [0, 1] and
• lower semicontinuous, i.e. whenever (xn)n∈N converges to x ∈ H,

E(x) ≤ liminf
n→∞

E(xn).

For more on lower semicontinuity, we refer to Definition B.7 et seq.
Let D(E) := {x ∈ H : E(x) ∈ R} denote the convex domain of E. To create a
nonpathological theory, we will assume D(E) is nonempty.

Remark 5.1 (Euclidean Dirichlet energy). The basic example we will be interested in
is the following. On H := L2(Rn,Ln) we consider the functional E : L2(Rn,Ln) →
R+ ∪ {∞} defined through

E(u) :=


1
2

∫
Rn

|∇u|2 dLn if u ∈ W 1,2(Rn),

∞ otherwise.

It is clearly convex. Lower semicontinuity with respect to L2-convergence is straight-
forward and left as an exercise. You may want to use Corollary B.8. ■

The following is a general notion from convex analysis generalizing the concept
of a “differential” for a convex function, even though a convex function is in general
not differentiable everywhere38.

38However, convex functions on Rn enjoy good regularity properties. They are in fact twice
differentiable Ln-a.e. and locally Lipschitz continuous on the interior of their domain. On R, the
latter fact can easily be derived from the monotonicity of difference quotients implied by convexity.
An analogous principle holds in Rn; compare with Proposition 5.4.
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Definition 5.2 (Subdifferential). The subdifferential of E at a point x ∈ D(E)
is the set ∂−E(x) of all x∗ ∈ H such that for every y ∈ H,

⟨x∗, y − x⟩ ≤ E(y) − E(x).

We also set ∂−E(x) := ∅ provided x /∈ D(E).
We write D(∂−E) for the set of all x ∈ H such that ∂−E(x) ̸= ∅. In particular,

by the above convention we have D(∂−E) ⊂ D(E).
By definition, given any x ∈ D(E) we have 0 ∈ ∂−E(x) if and only if E attains

its minimum at x.
In more pictorial words, the subdifferential of E at x ∈ D(E) is the set of all

slopes of tangents that touch the graph of E from below at x.
Example 5.3 (Absolute value). On the elementary Hilbert space H := R consider
the convex and continuous function E : R → R+ given by E(x) := |x|. Check as an
exercise that its subdifferentials have the following form for every x ∈ R:

∂−E(x) =


{1} if x > 0,
[−1, 1] if x = 0,
{−1} otherwise.

■

Proposition 5.4 (Properties of the subdifferential). The following hold.
(i) Monotonicity. The multivalued map ∂−E : H → 2H constitutes a mono-

tone operator39. That is, for every x, y ∈ H, every x∗ ∈ ∂−E(x), and every
y∗ ∈ ∂−E(y),

⟨y − x, y∗ − x∗⟩ ≥ 0.

(ii) Strong-weak closure. The graph of ∂−E is strongly-weakly closed in H2.
That is, assume (xn)n∈N is a sequence in H converging to x ∈ H. Let
(x∗
n)n∈N be a sequence of elements x∗

n ∈ ∂−E(xn) which converges weakly
in H to x∗ ∈ H. Then x∗ ∈ ∂−E(x).

Proof. Exercise 13.4. □

Lecture 13.

5.2. Existence, uniqueness, and properties of gradient flows. After having
clarified how the quantity “∇E” of the targeted gradient flow equation should be
understood in general Hilbert spaces, we now turn to the precise definition of the
gradient flow equation itself.

As a first step, we clarify the targeted regularity in time. For more details on
absolutely continuous H-valued functions, we refer to §E.
Definition 5.5 (Local absolute continuity). We will call a curve x : (0,∞) → H
locally absolutely continuous if its restriction to every compact subset of (0,∞) is
1-absolutely continuous according to Definition E.5. Equivalently, for every compact
interval I ⊂ (0,∞), there is fI ∈ L1(I,L1) such that for every s, t ∈ I with s < t,∥∥x(t) − x(s)

∥∥ ≤
∫ t

s

fI(r) dr.

Remark 5.6 (Fundamental theorem of calculus). Combining Proposition E.6 and
Theorem E.7, for every locally absolutely continuous function x : (0,∞) → H and
L1-a.e. t > 0, the following derivative exists:

x′(t) := lim
h→0

x(t+ h) − x(t)
h

.

39Historically, this fact embeds the theory of gradient flows for convex and lower semicontinuous
functionals into the theory of gradient flows for maximal monotone operators by Brézis [2].
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It belongs to L1(I;L1) for every compact interval I ⊂ (0,∞).
Moreover, for every s, t ∈ [0, 1] with s < t, we have

x(t) − x(s) =
∫ t

s

x′(r) dr

in the sense of Bochner integration, cf. §E. Moreover, the map x′ in this formula is
uniquely determined up to modifications on L1-null sets. ■

Definition 5.7 (Gradient flow trajectory). A gradient flow trajectory of E is
a continuous curve x : R+ → H which is locally absolutely continuous on (0,∞),
obeys x(t) ∈ D(∂−E) for every t > 0, and satisfies the following for L1-a.e. t > 0:

−x′(t) ∈ ∂−E(x(t)). (5.1)

For now, the gradient flow equation on Hilbert spaces holds only for a.e. time and
is defined by a differential inclusion rather than a genuine identity. Both properties
can be improved, as stated in Theorem 5.12 below.

Typically, solving the gradient flow equation with gradient flow trajectory is
coupled with fixing an initial condition o ∈ H, i.e. requiring x(0) = o.

5.2.1. Existence. The goal of this part is Theorem 5.11. It states general existence
of gradient flows in Hilbert spaces.

To this aim, we prepare some material. Existence will be based on a numerical
scheme called minimizing movement scheme, which was introduced by the Italian
mathematician De Giorgi. Given any x ∈ H and a step size τ > 0, we define the
convex and lower semicontinuous functional Fx,τ : H → R+ ∪ {∞} by

Fx,τ := E + ∥ · − x∥2

2τ .

We will then generate a sequence (xτ(k))k∈N0 as follows. Define xτ(0) := o, the given
initial point. Inductively, given xτ(k) for k ∈ N0, we choose a point

xτ(k+1) ∈ argmin
{
Fxτ

(k),τ
(y) : y ∈ H

}
. (5.2)

We interpret xτ(k) as the point interpolated by a piecewise affine curve xτ : R+ → H
at t = kτ . Observe that formally — and rigorously if e.g. H = Rn for some n ∈ N
and E is continuously differentiable —, (5.2) implies

0 = ∇Fxτ
(k),τ

(xτ(k+1)) = ∇E(xτ(k+1)) +
xτ(k+1) − xτ(k)

τ
(5.3)

for every k ∈ N. This is why we hope and expect xτ converges to a gradient flow
trajectory of E as τ → 0 in a sense yet to be specified.

The subsequent lemma makes the second identity of (5.3) rigorous in general
Hilbert spaces (in terms of subdifferentials).

Lemma 5.8 (Correspondence of subdifferentials). For every x ∈ H and every
τ > 0, we have D(∂−Fx,τ ) = D(∂−E), and for every y ∈ H,

∂−Fx,τ (y) = ∂−E(y) + y − x

τ
.

Proof. Exercise 14.1. □

Now we show the scheme (5.2) is well-defined.

Proposition 5.9 (Existence of minimizers). Given any x ∈ H and any τ > 0, there
exists a unique minimizer xτ ∈ H of the functional Fx,τ .

Moreover, we have xτ ∈ D(∂−E) and

−xτ − x

τ
∈ ∂−E(xτ ).
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Proof. To show uniqueness, assume y, y′ ∈ H are two different minimizers of Fx,τ .
Since D(E) is nonempty, we necessarily have y, y′ ∈ D(E). Moreover, note that
the squared norm on a Hilbert space is strictly convex. Setting y′′ := y/2 + y′/2,
together with convexity of E these observations imply

Fx,τ (y′′) < 1
2

[
E(y) + ∥y − x∥2

2τ

]
+ 1

2

[
E(y′) + ∥y′ − x∥2

2τ

]
= min

{
Fx,τ (z) : z ∈ H

}
,

which is of course absurd.
Existence is a standard application of the so-called direct method of calculus

of variations. Since D(E) is nonempty and Fx,τ is positive, the minimum of Fx,τ
is a real number. Hence, there exists a sequence (xn)n∈N with the property that
limn→∞ Fx,τ (xn) = min{F (z) : z ∈ H}. We claim the existence of R > 0 such that
{xn : n ∈ N} ⊂ BR(0). Indeed, along a suitable subsequence, (∥xnj ∥)j∈N would
otherwise diverge to infinity. The triangle inequality yields

liminf
j→∞

∥xnj
− x∥ ≥ liminf

j→∞
∥xnj

∥ − ∥x∥ = ∞.

By definition of Fx,τ and nonnegativity of E, we get limj→∞ Fx,τ (xnj ) = ∞, in
contradiction to the finiteness of this limit. Thus, by the Banach–Alaoglu–Bourbaki
Theorem C.1, there exists m ∈ BR(0) such that (xn)n∈N converges weakly to m,
up to a subsequence we will not relabel. We finally claim m is a minimizer of F .
Indeed, recall from Corollary B.8 that Fx,τ is sequentially lower semicontinuous
with respect to the weak topology. The same applies to the norm (and hence its
square) by basic properties of weak convergence. Hence,

min{F (z) : z ∈ H} ≤ Fx,τ (m) ≤ liminf
n→∞

Fx,τ (xn) = min{F (z) : z ∈ H}.

This forces equality to hold throughout.
Finally, since m minimizes Fx,τ , we have m ∈ D(∂−Fx,τ ) and 0 ∈ ∂−(Fx,τ ). By

Lemma 5.8, this translates into m ∈ D(∂−E) and

0 ∈ ∂−E(m) + m− x

τ
. □

Remark 5.10 (Minimal norms). With a similar procedure by minimizing the strictly
convex norm ∥ · ∥ combined with Proposition 5.4, one can prove the following. If
x ∈ D(∂−E), there exists a unique element x∗ ∈ ∂−E(x) whose norm is minimal
among all elements in ∂−E(x). ■

Theorem 5.11 (Existence of gradient flow trajectories). Let o ∈ D(E) be given.
Then there exists a gradient flow trajectory of E starting at o.

Proof. We will present the proof for o ∈ D(E). The more general case o ∈ D(E)
will be addressed in Exercise 14.3.

Given any τ > 0, let (xτ(k))k∈N be the minimizing movement sequence with step
size τ constructed by (5.2) with initial datum xτ(0) := o. Here, the (unique) existence
of a minimizer from (5.2) is provided by Proposition 5.9. We define xτ : R+ → H
by xτ (kτ) := xτ(k) with affine interpolation on (kτ, (k + 1)τ), where k ∈ N0. More
precisely, it is explicitly given by the formula

x(t) = xτ(⌊t/τ⌋) +
[xτ(⌊t/τ⌋+1) + xτ(⌊t/τ⌋)

τ

] [
t− τ

⌊ t
τ

⌋]
.

The affine interpolation ensures that for every such k and every t ∈ (kτ, (k + 1)τ),

(xτ )′(t) =
xτ(k+1) − xτ(k)

τ
. (5.4)
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By the minimizing property from (5.2),

E(xτ(k+1)) +

∥∥xτ(k+1) − xτ(k)
∥∥2

2τ ≤ E(xτ(k)).

In particular, by a telescopic sum and since o ∈ D(E), we observe

1
2

∫ ∞

0

∥∥(xτ )′(t)
∥∥2 dt =

∑
k∈N0

∥∥xτ(k+1) − xτ(k)
∥∥2

2τ ≤ E(o) < ∞. (5.5)

Now we claim there exists a continuous curve x : R+ → H which is the uniform
limit of xτ as τ → 0. Since the space of H-valued continuous maps on R+ endowed
with the supremum norm is complete, it suffices to show

lim
τ→0,
η→0

sup
t∈R+

∥∥xτ (t) − xη(t)
∥∥ = 0. (5.6)

Let τ, η > 0 be fixed. Let t ∈ ((k− 1)τ, kτ) ∩ ((k′ − 1)η, k′η), where k, k′ ∈ N. Then

d
dt

∥∥xτ (t) − xη(t)
∥∥2

2 =
〈
(xτ )′(t) − (xη)′(t), xτ (t) − xη(t)

〉
=

〈
(xτ )′(t) − (xη)′(t), xτ (kτ) − xη(k′η)

〉
+

〈
(xτ )′(t) − (xη)′(t), (xτ (t) − xτ (kτ))

〉
−

〈
(xτ )′(t) − (xη)′(t), (xη(t) − xη(k′η))

〉
.

Here we used the standard differentiation formula for the squared norm on Hilbert
spaces and a simple zero addition. Combining (5.4) with the second part of Propo-
sition 5.9 and Proposition 5.4, we infer〈

(xτ )′(t) − (xη)′(t), xτ (kτ) − xη(k′η)
〉

≤ 0.

For the remaining terms, the Cauchy–Schwarz inequality and (5.4) again yield

d
dt

∥∥xτ (t) − xη(t)
∥∥2

2 ≤
[∥∥(xτ )′(t)

∥∥ +
∥∥(xη)′(t)

∥∥] [
τ

∥∥(xτ )′(t)
∥∥ + η

∥∥(xη)′(t)
∥∥]

= τ
∥∥(xτ )′(t)

∥∥2 + η
∥∥(xη)′(t)

∥∥2

+ (τ + η)
∥∥(xτ )′(t)

∥∥ ∥∥(xη)′(t)
∥∥

≤
∥∥(xτ )′(t)

∥∥2
[
τ + τ + η

2

]
+

∥∥(xη)′(t)
∥∥2

[
η + τ + η

2

]
.

In the last step, we used Young’s inequality. Integrating the preceding estimate over
[0, T ], where T > 0 is fixed, and employing (5.5) leads to∥∥xτ (T ) − xη(T )

∥∥2

2 ≤ 2E(o) (τ + η).

Since the right-hand side does not depend on T , this shows (5.6).
Next, we upgrade the regularity of the curve x : R+ → H thus obtained. Since

the estimate (5.6) is independent of τ , the set {(xτ )′ : τ > 0} is norm bounded in
the Hilbert space L2(R+;H), cf. Definition E.3. By the Banach–Alaoglu–Bourbaki
Theorem C.1, there are v ∈ L2(R+;H) and a sequence (τn)n∈N in (0,∞) decreasing
to zero such that (xτn)′ ⇀ v in L2(R+;H) as n → ∞. Let s, t ∈ (0,∞) with s < t.
By pairing the integral in question against an arbitrary vector from H, it is not
difficult to prove that, with respect to the weak topology of H,

lim
n→∞

∫ t

s

(xτn)′(r) dr =
∫ t

s

v(r) dr.
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On the other hand, by the above paragraph and the construction of our piecewise
affine interpolants we know

lim
n→∞

∫ t

s

(xτn)′(r) dr = lim
n→∞

[
xτn(t) − xτn(s)

]
= x(t) − x(s).

Uniqueness of weak limits implies

x(t) − x(s) =
∫ t

s

v(r) dr.

Using (E.2), this implies x is locally absolutely continuous on (0,∞) — in fact, it
belongs to AC2(R+, H) according to Definition E.5. In particular, by Remark 5.6
the map x is differentiable L1-a.e. with x′(t) = v(t) for L1-a.e. t > 0.

It remains to prove x obeys the differential inclusion (5.1). We claim for every
y ∈ H and every t0, t1 ∈ R0 with t0 < t1, we have∫ t1

t0

E(x(t)) dt+
∫ t1

t0

〈
x′(t), x(t) − y

〉
dt ≤ E(y) (t1 − t0).

Note that this is an integrated version of the claim. First, since E ◦ x is a piecewise
convex and nonnegative function and as x ∈ AC2(R+, H), both integrals on the
left-hand side are well-defined and finite. Without restriction, we may and will
assume y ∈ D(E). Using lower semicontinuity and Fatou’s lemma,∫ t1

t0

E(x(t)) dt+
∫ t1

t0

〈
x′(t), x(t) − y

〉
dt

≤ liminf
τ→0

[∫ t1

t0

E(xτ (t)) dt+
∫ t1

t0

〈
(xτ )′(t), xτ (t) − y

〉
dt

]
≤ liminf

τ→0

[∫ t1

t0

E(xτ (⌊τ−1t⌋ + 1) dt

+
∫ t1

t0

〈
(xτ )′(t), xτ (⌊τ−1t⌋ + 1) − y

〉
dt

]
≤

∫ t1

t0

E(y) dt

= E(y) (t1 − t0).

This shows the claim. The desired differential inclusion now follows by differentiating
this integral inequality at every t > 0 which is a Lebesgue point of both E ◦ x and
x′. This set is notably independent of y. □

Lecture 14.

5.2.2. Uniqueness, fundamental properties, and infinitesimal generator.

Theorem 5.12 (Uniqueness and properties of gradient flow trajectories). Let
x : R+ → H be a gradient flow trajectory of E. Then the following properties hold.

(i) Contraction. Given any other gradient flow trajectory y : R+ → H, every
t ∈ R+ satisfies the inequality∥∥x(t) − y(t)

∥∥ ≤
∥∥x(0) − y(0)

∥∥.
In particular, gradient flow trajectories with fixed initial points are unique.

(ii) Energy dissipation. The assignment t 7→ E(x(t)) is nondecreasing on R+
and locally Lipschitz continuous on (0,∞).
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(iii) A priori estimate. For every z ∈ H and every t > 0,

E(xt) ≤ E(z) +
∥∥x(0) − z

∥∥2

2t .

(iv) Laplacian. For every t > 0, the right derivative

x′+(t) := lim
h→0+

x(t+ h) − x(t)
h

exists in H. It is equal to minus the unique element of minimal norm in
∂−E(xt), cf. Remark 5.10. The same holds at zero if x(0) ∈ D(∂−E).

Proof. Exercises 14.2 and 14.4. □

The last item from the previous theorem motivates the following definition.

Definition 5.13 (Infinitesimal generator). We define the domain of the infinitesi-
mal generator L of E as D(L) := D(∂−E).

Given any x ∈ D(L), we define Lx ∈ H as minus the unique element of minimal
norm in ∂−E(x), cf. Remark 5.10.

In particular, given a gradient flow trajectory x : R+ → H of E, the last claim of
Theorem 5.12 implies for every t > 0, we have

x′+(t) = Lx(t). (5.7)
This looks much like the classical Euclidean heat equation. This correspondence is
not coincidental; making it rigorous is the objective of this lecture. This is a very
functional analytic approach to the heat equation, which extends to many other
settings without essential changes. The reader interested in the heat equation from
the PDE point of view is invited to consult Evans’ book [6]40.

5.3. Euclidean heat equation as gradient flow of the Dirichlet energy. We
will now devote our entire attention to the setting of Remark 5.1. That is, we take
H := L2(Rn,Ln), where n ∈ N, and we consider the Dirichlet energy E defined
there. We denote the standard Euclidean scalar product on Rn by ·.

Definition 5.14 (Laplacian). We say a function u ∈ L2(Rn,Ln) belongs to the
domain of the Laplacian, symbolically u ∈ D(∆), if u ∈ W 1,2(Rn) and there is a
function g ∈ L2(Rn,Ln) such that for every v ∈ W 1,2(Rn,Ln),∫

Rn

∇u · ∇v dLn = −
∫

Rn

g v dLn.

In this case, g is uniquely determined and we write ∆u in place of it.

Remark 5.15 (Symmetry). The Laplacian defined above is a symmetric operator, in
the sense that for every u, v ∈ D(∆),∫

Rn

u∆v dLn =
∫

Rn

v∆udLn.

This is a straightforward consequence of its definition. ■

Proposition 5.16 (Laplacian vs. infinitesimal generator). We have the identity
D(∆) = D(∂−E).

Moreover, if u ∈ L2(Rn,Ln) belongs to either set, the subdifferential ∂−E(u) is
single-valued and contains −∆u as its only element.

40We recommend this resource for complementary reading. As Evans points out in his introduc-
tion, the theory of PDEs should not be regarded as a subbranch of functional analysis, but as a
domain in its own right.
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Proof. As a preparation, we observe two simple facts given any u, v ∈ W 1,2(Rn).
First, convexity of E implies convexity of the assignment ε 7→ E(u+ ε v) on R. And
second, the bilinearity of the Euclidean scalar product easily implies

lim
ε→0

E(u+ ε v) − E(u)
ε

= lim
ε→0

1
2ε

[∫
Rn

[
|∇u|2 + 2ε∇u · ∇v + ε2 |∇v|2

]
dLn

−
∫

Rn

|∇u|2 dLn
]

=
∫

Rn

∇u · ∇v dLn.

(5.8)

We turn to the proof of the first claim. Assume u ∈ D(∆), so that u ∈ W 1,2(Rn)
by definition. We claim for every v ∈ W 1,2(Rn),

−
∫

Rn

v∆udLn ≤ E(u+ v) − E(u), (5.9)

from which the claim follows by noting D(E) = W 1,2(Rn). Given any ε ∈ (0, 1),
convexity of E readily implies

E(u+ ε v) = E
[
(1 − ε)u+ ε (u+ v)

]
≤ (1 − ε)E(u) + εE(u+ v).

Rearranging this inequality, dividing by ε, and using (5.8) yields

E(u+ v) − E(v) ≥ lim
ε→0+

E(u+ εv) − E(u)
ε

=
∫

Rn

∇u · ∇v dLn.

This shows (5.9) and hence −∆u ∈ ∂−E(u) by Definition 5.14.
Conversely, assume u ∈ D(∂−E). Let u∗ ∈ ∂−E(u). We claim that u∗ = −∆u,

which establishes the desired reverse inclusion and the single-valuedness of ∂−E(u)
simultaneously. Given any ε ∈ R and any v ∈ W 1,2(Rn), we have

ε

∫
Rn

v u∗ dLn ≤ E(u+ εv) − E(u).

Dividing this inequality by ε > 0 and ε < 0, respectively, and using (5.8) twice,∫
Rn

∇u · ∇v dLn = lim
ε→0+

E(u− ε v) − E(u)
−ε

≤
∫

Rn

v u∗ dLn

≤ lim
ε→0+

E(u+ ε v) − E(u)
ε

=
∫

Rn

∇u · ∇v dLn.

This forces equality to hold throughout and shows u∗ = −∆u, as desired. □

Since the L2-closure of W 1,2(Rn) coincides with L2(Rn,Ln), by Theorem 5.11
every u ∈ L2(Rn,Ln) forms the starting point of a unique gradient flow trajectory
denoted by h·u : R+ → L2(Rn,Ln). For every t ∈ R+, this procedure defines an
operator ht : L2(Rn,Ln) → L2(Rn,Ln), where h0 is simply the identity operator. It
is a semigroup of operators in the sense of Hille–Yosida, i.e. it obeys ht+s = ht ◦ hs
for every s, t ∈ R+. This elementary consequence of uniqueness of gradient flow
trajectories stipulated in Theorem 5.12 is left as an exercise to the reader.

Definition 5.17 (Heat flow). The above family h· of operators is called heat flow.

The rest of these notes establishes some very basic properties.
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Proposition 5.18 (Basic properties). The operator ht is linear for every t ∈ R+.
Also, ht is a contraction for every t ∈ R+. That is, for every u ∈ L2(Rn,Ln),∥∥htu

∥∥
L2(Rn,Ln) ≤ ∥u∥L2(Rn,Ln).

In particular, the heat operator ht is bounded, hence continuous.

Proof. The first claim is a direct consequence of Proposition 5.16 and the linearity
of the Laplacian ∆, which is a trivial consequence of its definition.

The second point follows from the first item of Theorem 5.12 and the trivial
observation that the heat flow starting at zero remains stationary. Moreover, linear
operators between Banach spaces are bounded if and only if they are continuous. □

Proposition 5.19 (Commutation). For every u ∈ D(∆) and every t ∈ R+, we
have the identity ht∆u = ∆htu.

Proof. This follows from the identities

∆htu = lim
ε→0+

ht(hεu) − htu
ε

= ht
[

lim
ε→0

hεu− u

ε

]
= htu.

Here we used (5.7) in the first, Proposition 5.18 in the second, and the last clause
from Theorem 5.12 in conjunction with Proposition 5.16 in the third identity. □

Corollary 5.20 (Symmetry). For every t ∈ R+, the heat operator ht is symmetric,
in the sense that for every u, v ∈ L2(Rn,Ln),∫

Rn

u htv dLn =
∫

Rn

v htu dLn.

Proof. We are employing a common trick by interpolation and differentiation. Given
any t > 0, define the function F : [0, t] → R by

F (s) :=
∫

Rn

hsu ht−s v dLn.

Since gradient flow trajectories are continuous on R+ with values in L2(Rn,Ln) and
since the scalar product is continuous, F is easily seen to be continuous. Moreover,
it is easily seen to be continuously differentiable on (0, t) with derivative

F ′(s) =
∫

Rn

∆hsu ht−sv dLn −
∫

Rn

hsu ht−sv dLn = 0.

The last identity follows from Remark 5.15. This, together with continuity on all of
[0, t], forces F to be constant; in particular, we have F (0) = F (t), as desired. □

Theorem 5.21 (Heat flow characterization of the Laplacian). Let u ∈ L2(Rn,Ln).
Then u ∈ D(∆) if and only if the limit

lim
t→0+

htu− u

t
(5.10)

exists in the strong topology of L2(Rn,Ln); in this case, (5.10) equals ∆u.

Proof. If u ∈ D(∆), existence of the limit (5.10) follows from the last statement of
Theorem 5.12. Moreover, its equality to ∆u follows from Proposition 5.16.

Conversely, suppose the limit (5.10) — which we call g — exists in L2(Rn,Ln).
We first claim u ∈ W 1,2(Rn). Given any ε > 0, Corollary 5.20 yields∫

Rn

hεu g dLn = lim
t→0+

∫
Rn

hεu
htu− u

t
dLn

= lim
t→0+

∫
Rn

u
ht(hεu) − hεu

t
dLn.
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By Proposition 5.19, Corollary 5.20 again, and Definition 5.14,∫
Rn

hεu g dLn =
∫

Rn

u∆hεu dLn

=
∫

Rn

hε/2u∆hε/2u dLn

= −
∫

Rn

∣∣∇hε/2u
∣∣2 dLn.

Lower semicontinuity of E then implies
E(u) ≤ liminf

ε→0+
E(hεu)

= 1
2 liminf
ε→0+

∫
Rn

∣∣∇hεu
∣∣2 dLn

= −1
2 limsup

ε→0+

∫
Rn

hεu g dLn

< ∞.

Since the domain of E coincides with W 1,2(Rn), the claim is proven.
It remains to show u ∈ D(∆). Recall by Theorem 5.12 that E(hεu) ≤ E(u) for

every ε ∈ R+. Consequently, the family {hεu : ε ∈ R+} is bounded in W 1,2(Rn),
hence weakly precompact. However, since hεu → u strongly in L2(Rn,Ln), this
forces hεu ⇀ u weakly in L2(Rn,Ln). Thus, applying the version of Lebesgue’s
differentiation theorem for continuous functions, every v ∈ W 1,2(Rn) obeys∫

Rn

g v dLn = lim
t→0+

∫
Rn

htu− u

t
v dLn

= lim
t→0+

1
t

∫ t

0

∫
Rn

∆hsu v dLn ds

= − lim
t→0+

1
t

∫ t

0

∫
Rn

∇hsu · ∇v dLn ds

= −
∫

Rn

∇u · ∇v dLn.

This is the desired identity. □

Appendices41

Appendix A. Weak topologies induced by families of functions

The following presentation is loosely based on [3, §§3.1–3.4], to which we refer
for a deeper discussion with more advanced results.

Definition A.1 (Weak topology). Let X be a set, (Y, ρ) a topological space and
F := {fi : i ∈ I} constitute a collection of maps fi : X → Y . We define the
weak topology on X induced by F as the coarsest topology τF on X such that
fi : (X, τF) → (Y, ρ) is continuous for every i ∈ I.

Standard arguments from topology ensure τF exists and the above definition is
meaningful. Here are some known facts about τF; you may want to try to prove
them by yourself using the definitions.

• If τ is another topology on X such that fi : (X, τ) → (Y, ρ) is continuous
for every i ∈ I, then τF ⊂ τ .

41The content of these appendices is not examinable. It is only some extra material which we
hope is useful for you to understand weak topologies and their relevance for this course better, but
also their overall importance in functional analysis.
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• For every V ∈ ρ and every i ∈ I, we have f−1
i (V ) ∈ τF.

• A basis of the topology τF is given by sets of the form
⋂
i∈I0

f−1
i (Vi), where

I0 ⊂ I is finite and Vi ∈ ρ for every i ∈ I0. Analogously, a neighborhood
basis of x ∈ X is given by sets of the form

⋂
i∈I0

f−1
i (Vi), where I0 is a

finite subset of I and f i(x) ∈ Vi ∈ ρ for every i ∈ I0.
• A sequence (xn)n∈N in X converges to x with respect to τF if and only if

for every i ∈ I, the sequence (fi(xn))n∈N in the target space Y converges
to fi(x) with respect to ρ.

For simplicity, in the above we took Y to be fixed and independent of i. This
is not necessary, and everything generalizes to the case of varying {Yi : i ∈ I}; a
canonical example of this situation is the following.
Example A.2 (Product topology). Given an arbitrary family of topological spaces
(Xi, τi), recall that in the initial compendium we defined the product topology τ on
the product space X :=

∏
i∈I Xi. Then τ is nothing but the weak topology induced

by the family {πi : i ∈ I} of projection maps πi(x) := xi. Given I0 ⊂ I finite and
Vi ∈ τi for i ∈ I0, we see that⋂

i∈I0

π−1
i (Vi) = {x ∈ X : πi(x) ∈ Vi for every i ∈ I0}

defines an open set; the collection of all such sets constitutes a basis of τ (and a
neighborhood basis of x̄, respectively, if we additionally require Vi to contain x̄i).

A sequence (xn)n∈N in X converges to x ∈ X with respect to τ if and only if,
for every i ∈ I, (xni )n∈N converges to xi with respect to τi. ■

In all the next examples, for simplicity we restrict ourselves to the case where the
target space Y does not depend on i and is given by R with its Euclidean topology
(that we will not specify notationally).
Example A.3 (Metric spaces). Let (X, d) be a metric space. Given any x ∈ X, define
a function fx : (X, d) → R by fx(y) := d(x, y). Then the topology τd induced by d
corresponds to the weak topology induced by the family of functions {fx : x ∈ X}.

One can also look at it differently, by rather considering d as acting “globally”
on the product space X2. Then τd is equivalent to the coarsest topology τ on X
such that d : (X2, τ2) → R is a continuous map. ■

Example A.4 (LCTVS). Let X be a LCTVS with topology τ induced by the family
of seminorms {pi : i ∈ I}. Then τ is nothing but the weak topology on X induced
the family of maps {pi(x− ·) : i ∈ I, x ∈ X}.

Having presented these examples which connect the use of weak topologies to
all the relevant examples we have seen in the first lectures, we now discuss what is
truly usually referred to as “weak topologies”.

Given a LCTVS (X, τ), let X ′ := L(X,R) denote its topological dual, namely
the collection of all linear, continuous maps x′ : X → R. Note the definition of X ′

actually depends on τ .
Definition A.5 (Weak topology). The weak topology τw of (X, τ) is the weak
topology induced by the family {x′ : x′ ∈ X ′} — compare with Definition 1.38.
Remark A.6 (Basic properties). We can now rephrase several facts about weak
topologies and weak convergence.

• By definition, we always have τw ⊂ τ . (This justifies the terminology “weak
topology”, as opposed to the strong topology τ .)

• A sequence (xn)n∈N in X converges weakly to x ∈ X if and only if it
converges with respect to τw. That is, x′(xn) → x′(x) as n → ∞ as real
numbers for every x′ ∈ X ′.
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• Since τw ⊂ τ , if a sequence (xn)n∈N in X converges to x ∈ X with respect
to τ , it also converges weakly to x, namely with respect to τw. The converse
in general is not true. (This justifies the terminology “weak convergence”,
as opposed to the strong convergence induced by τ .)

• Given any x ∈ X, a basis of neighborhoods of x are sets of the form
Wε,J0(x) := {y ∈ X : |x′(x) − x′(y)| < ε for every x′ ∈ J0}

where ε > 0 and J0 ⊂ X ′ is finite; compare with Definition 1.8. ■

We recall (X, τw) is again a LCTVS by Corollary 1.39.
Consider now the dual space X ′, which has a natural vector space structure.

For any x ∈ X, we can define the evaluation map φx on X ′ by φx(x′) := x′(x).
Observe that φx is a linear map from X ′ to R.
Definition A.7 (Weak∗ topology). The weak∗ topology τw∗ of X ′ is defined as the
weak topology induced by the family {φx : x ∈ X} — compare with Definition 1.40.

It can be shown (X ′, τw∗) is again a LCTVS, cf. the proof of Corollary 1.39 and
the discussion around Definition 1.40. Thus far, we did not have any other candidate
topology on X ′; but the structure of X ′ inherited from being the dual of a LCTVS
naturally induces one. In particular, the weak∗ topology τw∗ can be regarded as the
topology induced on X ′ by the action of its predual X.
Example A.8 (Banach spaces). Suppose now X is a Banach space, with strong
topology τX induced by a norm ∥ · ∥X . In this case, we know X ′ also has a normed
structure: linear operators are continuous if and only if they are bounded, yielding
∥ · ∥X′ as defined by

∥x′∥X′ := sup
x∈X\{0}

|x′(x)|
∥x∥X

= sup
x∈X,

∥x∥X =1

|x′(x)|,

which turns (X ′, ∥ · ∥X′) into a Banach space. We can then iterate this procedure
and define X ′′ as the topological dual of X ′, which will also be a Banach space with
norm ∥ · ∥X′′ , and so on. In this situation, several topologies are available.

• We can endow X with either the strong topology τX or the weak topology
τw,X , which satisfy τw,X ⊂ τX .

• We can endow X ′ with either the strong topology τX′ induced by ∥ · ∥X′ ,
the weak topology τw,X′ induced by its dual X ′′, or the weak∗ topology τw∗

induced by the evaluations maps {φx : x ∈ X}.
We claim that

τw∗ ⊂ τw,X′ ⊂ τX′ . (A.1)
In other words, the weak∗ topology is weaker than the weak topology, which in
turn is weaker than the strong one. A similar statement holds when comparing
notions of convergence. One can produce examples of spaces X and X ′ where all
the inclusions appearing in (A.1) are strict.42

To prove (A.1), first observe that the inclusion τw,X′ ⊂ τX′ follows from the
properties of the weak topology. To prove τw∗ ⊂ τw,X′ , note that for any x ∈ X,
the evaluation map φx is a bounded linear function on X ′, since the relation

|φx(x′)| = |x′(x)| ≤ ∥x′∥X′ ∥x∥X
valid for every x′ ∈ X ′, implies

∥φx∥X′′ ≤ ∥x∥X . (A.2)

42For the interested reader, a basic example is given by X = L1 and X′ = L∞. Time permitting,
we will discuss this deeper in a later version of these notes.
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In particular, {φx : x ∈ X} ⊂ X ′′, which implies φx is continuous under τw,X′ for
every x ∈ X. Since by definition, τw∗ is the coarsest topology with this property,
we deduce τw∗ ⊂ τw,X′ . ■

Appendix B. Weak topologies and infinite dimensional Banach spaces

We now aim for a better understanding of weak topologies τw on Banach spaces
X, their key properties and their relations to the aforementioned τw∗ and τw,X′ .
Throughout this section, we will always tacitly assume (X, ∥ · ∥X) is a Banach space.
We start with some basic facts about X, X ′, and X ′′.

Lemma B.1 (Isometry). Let X be a Banach space and consider the map J : X →
X ′′ given by J(x) := φx, where φx is the evaluation map defined before Defini-
tion A.7. Then J is an injective linear isometry from X to a closed subspace of X ′′;
in particular, every x ∈ X satisfies

∥φx∥X′′ = sup
∥x′∥X′ =1

|x′(x)| = ∥x∥X . (B.1)

Proof. It is easy to check J is linear. We already showed in (A.2) that ∥φx∥X′′ ≤
∥x∥X for every x ∈ X, so it remains to prove the reverse estimate. Fix x̄ ∈ X \ {0}
and define a linear functional x̄′ on the line Rx̄ by x̄′(λx̄) = λ∥x̄∥X . By the analytic
version of the Hahn–Banach Theorem 1.35, we can extend x̄′ to a nonrelabeled
linear functional on all of X. For every x ∈ X, it satisfies

|x′(x)| ≤ ∥x∥X .
This implies ∥x̄′∥X′ ≤ 1 and x̄′(x̄) = ∥x̄∥X , so that ∥x̄′∥X′ = 1. But then

φx̄(x̄′) = x̄′(x̄) = ∥x̄∥X = ∥x̄∥X∥x̄′∥X′ ;
by the definition of the X ′′-norm, this implies ∥φx̄∥X′′ ≥ ∥x̄∥X . □

The map J defined in Lemma B.1 is sometimes refereed to as the canonical
injection of X into X ′′.

Corollary B.2 (Invariance of infinite dimensionality). Let X be a Banach space.
Then X is infinite dimensional if and only if X ′ is infinite dimensional.

Proof. If X is finite-dimensional, then by Remark 1.34 it is isomorphic to Rd with
equivalent norm. By basic linear algebra, its dual X ′ is isomorphic to (Rd)′ = Rd

and thus finite-dimensional.
Now assume X ′ is finite-dimensional, then so is X ′′ by the above argument. By

Lemma B.1, X ′′ contains an isometric copy J(X) of X, which implies X must be
finite-dimensional as well. □

Similarly to the situation presented in §2, in practical applications the notion
of convergence of sequences in weak topologies is the most useful to use. This is
because weak topologies often have a lot of compact (or sequentially compact) sets,
cf. the Banach–Alaoglu–Bourbaki Theorem C.1. At the same time, one has to be
careful about it: sequentially closed sets need not be closed.

Therefore we aim to better understand properties encoded by weak convergence.
We start with a basic yet useful fact: if a sequence (xn)n∈N in X converges

weakly to x ∈ X — namely with respect to τw —, it is bounded with respect to
∥ · ∥X . In the following, we will sometimes denote weak convergence by “xn ⇀ x”
(contrary to strong convergence with respect to ∥ · ∥X , denoted by “xn → x”.

Lemma B.3 (Boundedness). Let (xn)n∈N be a sequence in X and x ∈ X such that
xn ⇀ x as n → ∞. Then supn∈N ∥xn∥X < ∞ and

∥x∥X ≤ liminf
n→∞

∥xn∥X . (B.2)



64 MATHIAS BRAUN

Property (B.2) is often refereed to as the lower semicontinuity of the norm in
question in the weak(∗) topology43.

The proof is based on the Banach–Steinhaus theorem. For its proof (on the Baire
category theorem), we refer to [3, Thm. 2.2].

Theorem B.4 (Banach–Steinhaus theorem viz. uniform boundedness principle).
Let E and F be Banach spaces and let {Ti : i ∈ I} be a family of continuous linear
operators from E into F . Assume that for every x ∈ E,

sup
i∈I

∥Tix∥F < ∞.

Then the family {Ti : i ∈ I} is bounded in the operator norm; in other words, there
exists a constant C > 0 such that for every i ∈ I and every x ∈ E,

∥Tix∥F ≤ C ∥x∥E .

This theorem is arguably one of the most surprising yet powerful elements of
functional analysis. It derives uniform boundedness out of pointwise boundedness,
which is per se strictly weaker.

Proof of Lemma B.3. Since xn ⇀ x as n → ∞, for any x′ ∈ X ′ we have φxn
(x′) =

x′(xn) → x′(x) as n → ∞. Since any convergent sequence in R is bounded, we
deduce that, for any fixed x′ ∈ X ′, we have supn∈N |φxn

(x′)| < ∞. By the uniform
boundedness principle (applied with E = X ′, F = R, and {Tn : n ∈ N} = {φxn :
n ∈ N} ⊂ X ′′) we deduce

sup
n∈N

∥xn∥X = sup
n∈N

∥φxn∥X′′ < ∞

where the first equality comes from Lemma B.1.
Since xn ⇀ x as n → ∞, the same holds for any subsequence we can extract. In

particular, we may extract (xnk
)k∈N with limk→∞ ∥xnk

∥X = liminfn→∞ ∥xn∥X . It
follows that, given any x′ ∈ X ′ with ∥x′∥X′ = 1,

|x′(x)| = lim
k→∞

|x′(xnk
)| ≤ lim

k→∞
∥x′∥X′ ∥xnk

∥X = liminf
n→∞

∥xn∥X .

Taking the supremum over x′ ∈ X ′ with ∥x′∥X′ = 1 in this inequality and applying
(B.1), one gets (B.2). □

Remark B.5 (Boundedness in the weak∗ topology). The same argument gives the
following fact: given a sequence (x′

n)n∈N in X ′ which converges weakly∗ to x′ ∈ X ′,
we have supn∈N ∥x′

n∥X′ < ∞ and ∥x∥X′ ≤ liminfn→∞ ∥x′
n∥X′ . ■

The next result gives simple conditions to verify a set E ⊂ X is weakly closed
(thus also weakly sequentially closed).

Lemma B.6 (Closedness). Let E ⊂ X be convex. Then E is strongly closed if and
only if it is weakly closed.

Proof. Since τw ⊂ τX , weakly closed sets are always strongly closed. Thus we only
need to show that a convex, strongly closed set E is also weakly closed. Let E
be convex and strongly closed, x ∈ Ec. We apply the geometric version of the
Hahn–Banach Theorem 1.36 to A = {x} and B = E to find x′ ∈ X ′ such that
x′(x) < α < β < x′(y) for all y ∈ E. Observing that the set Ux = {z ∈ X : x′(z) <
α} is open in the weak topology and that x ∈ Ux ⊂ Ec, we conclude Ec is open in
τw and thus E is weakly closed. □

43It is also naturally related to the Fatou property that many function spaces and spaces of
distributions have, which — as the name suggests — is linked to Fatou’s lemma in measure theory,
which asserts lower semicontinuity of the Lebesgue integral.
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The simplest example of a weakly closed set in X is the closed ball B1(0), by
virtue of Lemma B.6. Similarly, the set Br(x0) is weakly closed for every r > 0 and
every x0 ∈ X.

There is another natural class of weakly closed sets, which are of fundamental
importance in the direct method of calculus of variations. To introduce them,
we need to define a class of functionals first.

Definition B.7 (Lower semicontinuous functionals). Let (Y, τY ) designate a topo-
logical space and let F : Y → R.

a. We call F lower semicontinuous if its sublevel sets are closed. Namely,
given any λ ∈ R, Eλ := {y ∈ Y : F (y) ≤ λ} is closed with respect to τY .

b. We call F sequentially lower semi-continuous if for every sequence
(yn)n∈N convergent to y ∈ Y with respect to τY , F (y) ≤ liminfn→∞ F (yn).

It can be shown F is sequentially lower semicontinuous if and only if its level
sets are sequentially closed. As a consequence, lower semicontinuous functionals are
always sequentially lower semicontinuous, but the converse might not be true. If
the topology τY is metrizable, then both notions of lower semicontinuity coincide.

Recall F : X → R is convex if for every x, y ∈ X and every λ ∈ [0, 1],
F ((1 − λ)x+ λy) ≤ (1 − λ)F (x) + λF (y).

By Lemma B.6, we can characterize weakly lower semicontinuous functionals on X
as soon as we additionally impose the geometric constraint of convexity.

Corollary B.8 (Characterizations of lower semicontinuity). Let F : X → R be a
convex functional. Then the following are equivalent.

a. F is strongly lower semicontinuous, i.e. lower semicontinuous with respect
to ∥ · ∥X or equivalently the strong topology τX .

b. F is weakly lower semicontinuous, i.e. lower semicontinuous with respect to
the weak topology τw.

c. F is weakly sequentially lower semicontinuous with respect to the weak
topology τw.

Proof. (i) =⇒ (ii). Fix λ ∈ R and consider the level set Eλ. Since F is convex,
Eλ is convex. Since F is strongly lower semicontinuous, Eλ is strongly closed. By
Lemma B.6, we deduce Eλ is weakly closed, which shows (ii).

(ii) =⇒ (iii). This follows from the aforementioned facts.
(iii) =⇒ (i). It suffices to show Eλ is sequentially closed in the strong topology.

Let (xn)n∈N be a sequence in Eλ such that ∥xn − x∥X → 0 as n → ∞. This forces
xn ⇀ x as n → ∞. Since F is weakly sequentially lower semicontinuous, we deduce
F (x) ≤ liminfn→∞ F (xn) ≤ λ. This gives x ∈ Eλ, which terminates the proof. □

We now turn our attention to open sets in weak topologies. They suffer the
pathology of being naturally unbounded.

Lemma B.9 (Unboundedness). Let X be an infinite-dimensional Banach space
and let τw denote its weak topology. Then every open set U ∈ τw is unbounded, both
with respect to the weak topology τw and the strong topology τX .

Proof. As τw ⊂ τX , it suffices to show unboundedness in τw. Up to a translation,
we may and will assume 0 ∈ U . Since 0 ∈ U ∈ τw, there must exist x′

1, . . . x
′
n ∈ X ′

and ε > 0 such that
Bε,{x′

1,...,x
′
n}(0) := {x ∈ X : |x′

i(x)| < ε for every i ∈ {1, . . . , n}} ⊂ U.

We claim there exists x̄ ∈ X \ {0} such that x′
i(x̄) = 0 for every i ∈ {1, . . . , n}.

Suppose to the contrary this claim is false. The continuous linear map Φ: X → Rn
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given by Φ(x) := (x′
1(x), . . . x′

n(x)) would then be injective. Denoting by Φ(X) ⊂ Rn

its range, applying Proposition 1.33 one then deduces Φ: X → Φ(X) is a linear
isomorphism, contradicting the infinite-dimensionality of X.

Next, given such a point x̄, arguing as in Lemma B.1, one can construct x̄′ ∈ X ′

such that x̄′(x̄) = 1. Let us define

V := {x ∈ X : |x′
i(x)| < ε for every i ∈ {1, . . . , n}, |x̄′(x)| < 1}.

Clearly, V is open in τw. We claim there exists no s > such that U ⊂ sV , yielding
unboundedness. Indeed, by construction λx̄ ∈ Bε,{x′

1,...,x
′
n}(0) ⊂ U for every λ ∈ R,

but λx̄ ∈ sV if and only if |λ| < s. □

As a byproduct of Lemma B.9, if a set E is strongly bounded, then it cannot be
weakly open! The standard example is the open unit ball B1(0).

This contrast between boundedness of convergent sequences and unboundedness
of open sets is the cause of several pathologies concerning weak topologies. In
particular, it implies their lack of metrizability.

Lemma B.10 (Weak metrizability). Let (X, ∥ · ∥X) be a Banach space. Then the
weak topology τw is metrizable if and only if X is finite-dimensional.

Proof. If X is finite-dimensional, it is isomorphic to Rd and its weak topology τw
coincides with the strong topology induced by ∥ · ∥X , which is equivalent to the
Euclidean one.

Conversely, assume X is infinite-dimensional and assume by contradiction there
exists a metric d inducing τw. Consider the sets Un := B1/n(0), where n ∈ N.
By construction, Un ∈ τw and hence Lemma B.9 implies it is unbounded in both
the weak and strong topologies. In turn, by Exercise 3.1, for every n ∈ N we can
find xn ∈ Un such that ∥xn∥X ≥ n. On the other hand, the sequence (xn)n∈N
constructed in this way must converge weakly to 0 since d(xn, 0) < 1/n. But by
Lemma B.3, the sequence (xn)n∈N is bounded in (X, ∥ · ∥X), which contradicts the
property ∥xn∥X ≥ n coming from the construction. □

The same kind of issue applies to the weak∗ topology.

Lemma B.11 (Weak∗ metrizability). Let X be a Banach space with dual space X ′.
Then the weak∗ topology τw∗ is metrizable if and only if X is finite-dimensional.

Proof. If X is finite-dimensional, the same argument as in Lemma B.10 applies.
Conversely, assume τw∗ is metrizable. By Exercise 5.1 X ′ admits an at most

countable algebraic base. We claim this implies X ′ is finite-dimensional, from which
the conclusion will follow by Corollary B.2.

To see the claim, consider an at most countable algebraic base {yn : n ∈ N} of
X ′, and define the increasing subspaces Yn := Ry1 + · · · + Ryn. Since Yn is finite-
dimensional by construction, Proposition 1.33 ensures it is closed in X. Moreover,
since {yn : n ∈ N} is an algebraic base, we have

X ′ =
⋃
n∈N

Yn. (B.3)

Now there are two options, namely
• the set {yn : n ∈ N} is finite, so X ′ = Yn0 for some n0 ∈ N, which shows

finite-dimensionality of X ′, or
• the sequence is countably infinite, in which case Yn is a proper subspace of
X ′ for every n ∈ N.

In the second, since proper linear subspaces in a TVS always have empty interior
(prove this as an exercise), by (B.3) it would follow X ′ can be written as a countable
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union of closed sets with empty interior. By the Baire category theorem, this would
imply X ′ has empty interior, which is a contradiction. □

Appendix C. Weak compactness, separability, and reflexivity

This section contains some of the most classical results at the heart of functional
analysis. The first one we need to mention is the following.

Theorem C.1 (Banach–Alaoglu–Bourbaki theorem). Let X be a Banach space, X ′

its dual. Then the closed unit ball {x′ ∈ X ′ : ∥x′∥X′ ≤ 1} is compact with respect to
the weak∗ topology.

See [3, Thm. 3.16] for a proof. The compactness of the unit ball is the most
essential property of the weak∗ topology, and the main reason for its introduction.
Compare it to Remark 1.34: if X is infinite-dimensional, the same can never be true
in the strong topology induced by ∥ · ∥X !

Theorem C.1 tells us there are many compact sets in (X ′, τw∗). This is useful in
optimization problems: if K is a compact set in (X ′, τw∗) and F : (X ′, τw∗) → R is
a continuous function, then there exists x̄ ∈ K with

inf
x′∈K

F (x′) = min
x′∈K

F (x′) = F (x̄).

Indeed, the set F (K) is compact in R, thus of the form [minK F (x),maxK F (x)].
Compactness therefore yields the existence of minimizers in optimization problems.

There are some adjacent remarks about Theorem C.1:
• Our original space was X, on which we defined the weak topology (X, τw).

So we would like to obtain compactness results in (X, τw).
• In applications, one would often like to construct approximate minimizers

in an algorithmic way. This often results in an approximation sequence
(xn)n∈N. While compactness is useful, we would like to understand sequential
compactness as well, as to guarantee the sequence (xn)n∈N in fact converges
to a minimizer.

• By Lemma B.11, the weak∗ is not metrizable. Therefore, compact sets and
sequentially compact sets might not coincide, possibly heavily limiting the
effect of Theorem C.1. A similar issue applies for the weak topology, in light
of Lemma B.10.

To overcome these issues, we need to introduce some concepts.

Definition C.2 (Reflexivity). A Banach space X is reflexive if the canonical
injection J : X → X ′′ from Lemma B.1 is surjective.

Remark C.3 (Weak vs. weak∗ convergence). Reflexivity allows to link weak conver-
gence in X to weak∗ convergence in X ′′. A sequence (xn)n∈N converges weakly to
x ∈ X if and only if (Jxn)n∈N converges weakly∗ to Jx, since for every x′ ∈ X ′,

lim
n→∞

(Jxn)(x′) = lim
n→∞

x′(xn) = x′(x) = (Jx)(x′).

Similarly, the weak topology on X and the weak∗ topology on X ′′ coincide. One can
then apply Theorem C.1 (with X ′′ in place of X) we deduce that, if X is reflexive,
the closed unit ball {x ∈ X : ∥x∥X ≤ 1} is compact in the weak topology! ■

In the following, we will not rely on Theorem C.1 or its consequences due to
Remark C.3. Instead, the main goal of this appendix is to provide a sufficiently
self-contained proof of the following fundamental result.

Theorem C.4 (Boundedness implies sequential precompactness). Let X be a
reflexive Banach space. Let (xn)n∈N be a bounded sequence in X. Then there exists
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a subsequence (xnk
)k∈N and a point x ∈ X such that the subsequence converges to

x in the weak topology of X.
In other words, if X is reflexive, then bounded sequences in X are weakly sequen-

tially precompact.

Before delving into the proof, let us briefly mention to other fundamental results
from Functional Analysis which are closed related to Theorem C.4, although we will
not use them.

The Eberlein–Smulian theorem states that, on an arbitrary Banach space X,
weakly compact and sequentially weakly compact sets coincide.

The Kakutani theorem states that the unit ball BX in X is weakly compact if
and only if X is reflexive. We see in particular that the reflexivity assumption in
Theorem C.4 is actually not just a sufficient condition, but also a necessary one, in
order to guarantee the existence of a weak limit (after extraction of subsequence, as
usual). These theorems also nicely address the third issue from the above list.

To prove Theorem C.4, we need some preparations. We start by collecting some
basic properties of reflexive spaces.

Lemma C.5 (Properties of reflexive spaces). The following hold.
(i) If (X, ∥ · ∥X) is reflexive and M is a closed linear subspace of X, then

(M, ∥ · ∥X) is reflexive.
(ii) X is reflexive if and only if its dual X ′ is reflexive.

Proof. For detailed proofs, we refer to [3, Prop. 3.20, Cor. 3.21]. Here are the main
ideas in order to get a simple self-contained proof.

(i) Given any x′ ∈ X ′, we define an element of m′ ∈ M ′ by considering its
restriction x′

∣∣
M

to M . Given m′′ ∈ M ′′, by duality we can define m̃′′ ∈ X ′′ by
m̃′′(x′) = m′′(x′

∣∣
M

). By reflexivity of X, this implies the existence of x̄ ∈ X such
that JX x̄ = m̃′′. To complete the proof, it remains to show x̄ ∈ M and JM x̄ = m′′.

For the first claim, if by contradiction x̄ /∈ M , by the analytic Hahn–Banach
theorem and some additional technical work, one can construct a linear functional
x′ ∈ X such that x′ ≡ 0 on M and x′(x̄) = 1. But then by construction

1 = x′(x) = (JX x̄)(x′) = m̃′′(x′) = m′′(x′∣∣
M

) = m′′(0) = 0,
which is a contradiction.

For the second claim, again by the analytic Hahn–Banach theorem, any m′ ∈ M ′

admits an extension x′ ∈ X ′ such that x′
∣∣
M

= m′, so that
(JM x̄)(m′) = m′(x̄) = x′(x̄) = (JX x̄)(x′) = m̃′′(x′) = m′′(x′∣∣

M
) = m′′(m′);

as the identity holds for every m′ ∈ M ′, we conclude JM x̄ = m′′.
(ii) Let us show that, if X is reflexive, so is X ′. Given φ ∈ X ′′′, we need to find

x′ ∈ X ′ such that φ = JX′x′, i.e. φ(x′′) = x′′(x′). By assumption, any x′′ ∈ X ′′ is
of the form JXx for some x ∈ X, so this is equivalent to constructing x′ with the
following property for every x ∈ X:

x′(x) = (JXx)(x′) = φ(JXx).
Since φ and JX are continuous, we can define x′ ∈ X ′ by the relation x′ = φ ◦ JX ,
which concludes the proof.

By the above, if X ′ is reflexive, so is X ′′; but then by part (i) so is X, since we
can identify it with JX(X) which is a closed linear subspace of X ′′. □

Definition C.6 (Separability). A Banach space X is separable if there exists a
countable D ⊂ X which is dense in X with respect to ∥ · ∥X .

We recall the not entirely obvious fact that if X is separable and Y ⊂ X, then Y
is also separable [3, Prop. 3.25].
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Lemma C.7 (Characterization of separability). X is separable if and only if it
admits a countable linearly dense subset, namely there exists D ⊂ X whose linear
span is dense in X.

Proof. Clearly if D is dense, it is also linearly dense.
Conversely, if D is countable and linearly dense, then

E :=
{ n∑
i=1

λi yi : n ∈ N, yi ∈ D, λi ∈ Q
}

is still countable (since we restricted to rational coefficients). Since elements in
spanD can be approximated arbitrarily well by E, we get X = spanD ⊂ E. □

The next lemma provides an easy-to-check condition for a set to be linearly dense.

Lemma C.8 (Characterization of linear density). A set D ⊂ X is linearly dense
in X if and only if for every x′ ∈ X, the following holds. If x′ vanishes on all of D

— i.e. x′(y) = 0 for every y ∈ D — then x′ = 0.

Proof. One implication is trivial. Suppose D is linearly dense. Since any x′ ∈ X ′ is
linear and continuous, x′ is entirely determined by its values in D. In particular if
x′(y) = 0 for every y ∈ D, it must be 0 everywhere.

Conversely, suppose D is not linearly dense, so that Y := spanD is a closed,
proper linear subspace of X. Then there exists a point x ∈ X \ Y . By the analytic
Hahn–Banach theorem we can construct x′ ∈ X ′ such that x′(y) = 0 for all y ∈ Y
(in particular for y ∈ D), but x′(x) = 1, a contradiction. □

Proposition C.9 (A sufficient condition for separability). Let X be a Banach space
such that X ′ is separable. Then X is separable.

The converse statement is not true. The space L1(Rd,Ld) is separable, but its
dual L∞(Rd,Ld) is not.

Proof of Proposition C.9. Let E = {x′
n : n ∈ N} be a dense subset in X ′. By

definition of ∥ · ∥X′ , for each x′
n, there exists xn ∈ X such that ∥xn∥X = 1 and

x′
n(xn) > ∥x′

n∥X′/2. We claim D := {xn : n ∈ N} is linearly dense in X, which
gives the conclusion by Lemma C.7. By Lemma C.8, it suffices to show that, given
any x′ ∈ X such that x′(xn) = 0 for all xn, we have x′ ≡ 0. Given such an x′, by
separability we can find a sequence (x′

m)m∈N in E such that ∥x′
m − x′∥X′ → 0 as

m → ∞. But then by construction

∥x′ − x′
m∥X′ ≥ |x′(xm) − x′

m(xm)| = |x′
m(xm)| ≥ ∥x′

m∥X′

2
so that sending m → ∞ we find 0 ≥ ∥x′∥X′/2, yielding x′ = 0. □

Theorem C.10 (Reflexivity and separability combined). Let X be a Banach space.
Then X is reflexive and separable if and only if X ′ is reflexive and separable.

Proof. By Lemma C.5 and Proposition C.9, if X is separable and reflexive, so if X ′.
By the first implication, if X ′ is separable and reflexive, then so is X ′′; but if X ′ is
reflexive, so is X, meaning J : X → X ′′ is an isometry. Therefore X is separable
since it is isometric to the separable space X ′′. □

Our main interest in separability is due to the following result.

Theorem C.11 (Topological consequences of separability). Let X be a Banach
space with dual X ′. Then the following hold.

(i) The closed unit ball BX′ := {x′ ∈ X ′ : ∥x′∥X′ ≤ 1}, endowed with the weak
topology τw∗ , is metrizable if and only if X is separable.
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(ii) If X is separable, then BX′ is sequentially compact w.r.t. τw∗ .

Remark C.12 (About Theorem C.11). We invite the reader to compare item (i) to
Lemma B.11. Even though (X ′, τw∗) is not metrizable, the restriction of the topology
to the unit ball (in fact, to any ball of arbitrary but finite radius) is metrizable!
Additionally, we know by Lemma B.3 that, if (x′

n)n∈N converges weakly∗ to x′ ∈ X ′,
there exists R > 0 large enough such that (x′

n)n∈N ⊂ {x′ ∈ X ′ : ∥x′∥ ≤ R}, a set
on which the topology is metrizable. Thus, if X is separable, the weak∗ topology is
(roughly speaking) “locally metrizable”. ■

Proof of Theorem C.11. We start by showing separately the two implications from
(i), following [3, Thm 3.28].

Assume first X is reflexive and let D = {xn : n ∈ N} be a countable dense set in
its closed unit ball BX := {x ∈ X : ∥x∥X ≤ 1}. Define a metric d on BX′ by

d(x′, y′) :=
∑
n∈N

2−n |(x′ − y′)(xn)|.

The d is well-defined since ∥x′ − y′∥X′ ≤ 2 for every x′, y′ ∈ BX′ and ∥xn∥X ≤ 1 for
every n ∈ N. Moreover, d is translation-invariant by definition.

We claim this metric induces the weak∗ topology on BX′ . We do not give a full
proof here; let us only show a simpler fact, namely that if d(x′

m, 0) → 0 as m → ∞,
then (x′

m)m∈N converges to 0 in the weak∗ topology. Indeed, by definition of d, one
readily checks limn→∞ d(x′

m, 0) = 0 as m → ∞ if and only if limm→∞ x′
m(xn) = 0

for every fixed n ∈ N. Now let x ∈ X \ {0} and set x̄ := x/∥x∥X . Given any ε > 0,
there exists n ∈ N such that ∥xn − x̄∥X ≤ ε/∥x∥X . We deduce

|x′
m(x)| = ∥x∥X |x′(x̄)|

≤ ∥x∥X
[
|x′
m(xn)| + |x′

m(x̄− xn)|
]

≤ ∥x∥X
[
|x′
m(xn)| + ∥x′

m∥X′∥x̄− xn∥X
]

≤ ∥x∥X |x′
m(xn)| + ε.

Sending m → ∞, we find
limsup
m→∞

|x′
m(x)| ≤ ε.

By the arbitrariness of ε, as the argument holds for any x ∈ X, we conclude that
|x′
m(x)| → 0 as m → ∞, namely (x′

m)m∈N converges to 0 in the weak∗ topology.
We turn to the converse implication from (i). Suppose BX′ is metrizable with

distance d. Given any n ∈ N, consider the set Un := {x′ ∈ BX′ : d(x′, 0) < 1/n}.
Since d induces τw∗ , there exists a sequence {En : n ∈ N} of finite subsets of X —
say En = {xn1 , . . . , xnNn

} — and a sequence (εn)n∈N of positive real numbers with
Vn := {x′ ∈ BX′ : |x′(xni )| < εn for every i ∈ {1, . . . , Nn}} ⊂ Un.

Define the countable set D :=
⋃
n∈N En.

We claim it is linearly dense, which will terminate the proof. Indeed, let x′ ∈ X ′

be such that x′(y) = 0 for every y ∈ D. Either ∥x′∥X′ = 0, or x̃′ := x′/∥x′∥X′ ∈ BX′

and x̃′(y) = 0 for all y ∈ D; but then by construction x̃′ ∈ Un for all n ∈ N, i.e.
d(x̃′, 0) = 0, implying x̃′ = 0, contradiction. We deduce x′ = 0, so that D is linearly
dense by Lemma C.8.

(ii) In view of the arguments from (i) — in particular, the construction of D
and the choice of the metric d —, it is enough to show that, given a sequence
(x′
m)m∈N in BX′ , there exist a subsequence (x′

mk
)k∈N and x′ ∈ BX′ with the

property limk→∞ x′
mk

(xn) = x′(xn) for every n ∈ N. This is a classical and general
procedure called Cantor’s diagonal argument. To construct the subsequence, we
will actually inductively define a countable family of subsequences. To make the
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notation more manageable, it is convenient to denote subsequences by (x′
f(n))n∈N,

or simply (f(n))n∈N, for suitable increasing functions f : N → N.
We start by looking at (x′

m(x1))m∈N. Because |x′
m(x1)| ≤ ∥x′

m∥X′∥x1∥X ≤ 1 for
every m ∈ N, the sequence is bounded in R. By the Bolzano–Weierstraß theorem,
there exist a subsequence f1 and c1 ∈ R such that limm→∞ x′

f1(m)(x1) = c1. We
can now run the same argument by looking at (x′

f1(m)(x2))m∈N. Then we find
a subsequence f2 of f1 and c2 ∈ R such that limm→∞ x′

f2(m)(x2) = c2. By an
inductive procedure, starting from f j , where j ∈ N, we find a subsequence f j+1 and
cj+1 ∈ R with the property limm→∞ x′

fj+1(m)(xj+1) = cj+1. This defines a family
{f j : j ∈ N} of increasing maps from N to N, where f j+1 is a subsequence of f j
for every j ∈ N. Finally, we define the sequence

F (m) := fm(m)

which is the diagonalization step. By construction, F is eventually a subsequence of
f j for every j ∈ N, therefore the limit of (x′

F (m)(xj))m∈N exists and coincides with
that of (x′

fj(m)(xj))m∈N. In other words, every n ∈ N satisfies

lim
m→∞

x′
F (m)(xn) = cn.

We now define a linear operator A on spanD by

A
[ k∑
n=1

λnxn

]
:=

k∑
n=1

λncn. (C.1)

Since the functionals x′
m belong to BX′ as hypothesized, they are uniformly Lipschitz

continuous with constant 1. This property is inherited by A: for every y ∈ spanD,

∥A(y)∥X = lim
m→∞

∥x′
F (m)(y)∥X ≤ limsup

m→∞
∥x′

F (m)∥X′ ∥y∥X ≤ ∥y∥X .

By a classical extension theorem, A admits a unique linear and Lipschitz continuous
extension to SpanD = X that we will denote by x′. By the same argument, we
have ∥x′∥X ≤ 1, implying x′ ∈ BX′ . By (C.1), all in all we have constructed a
subsequence (x′

F (m))m∈N and x′ ∈ BX′ such that for every n ∈ N,

lim
m→∞

x′
F (m)(xn) = x′(xn).

This implies (x′
F (m))m∈N converges to x′ in the weak∗ topology, as desired. □

Remark C.13 (Bounded sets). The second part of Theorem C.11 is stated for BX′ ,
but one can extend it as follows. Given a bounded set E ⊂ X ′ and a sequence
(x′
n)n∈N in E, there exists a subsequence (x′

nk
)k∈N which converges weakly∗ to

some point x′ ∈ X. In other words, if X is separable, then bounded sets in x′ are
sequentially precompact with respect to τw∗ . This is because, by dilations,
one can immediately show RBX′ = {x′ ∈ X ′ : ∥x′∥X′ ≤ R} is sequentially compact
with respect to τw∗ for every R > 0. ■

Proof of Theorem C.4. Let (xn)n∈N be a bounded sequence in X and let Y denote
the closure of the linear span of that sequence. By construction, Y is a closed linear
subspace of X and (Y, ∥ · ∥X) is a separable Banach space. By Lemma C.5, Y is
reflexive. By Theorem C.10, Y ′ and Y ′′ are separable and reflexive. Let JY be
the canonical injection from Y to Y ′′. Then the sequence (JY xn)n∈N constitutes
a bounded sequence in Y ′′. By Theorem C.11, we can extract a subsequence
(JY xnk

)k∈N which converges weakly∗ in Y ′′, thus by reflexivity to some JY y, where
y ∈ Y . This means that, given any y′ ∈ Y ′,

lim
k→∞

y′(xnk
) = lim

k→∞
JY xnk

(y′) = JY y(y′) = y′(y).



72 MATHIAS BRAUN

In other words, the sequence (xnk
)k∈N converges weakly in Y to y ∈ Y . Since any

x′ ∈ X ′ defines an element of Y ′ by its restriction y′ := x′
∣∣
Y

, we conclude (xnk
)k∈N

converges to y in the weak topology of X as well. □

Thus far, we have considered the abstract property of reflexivity, but given a
Banach space X it might be quite hard to say whether it is reflexive or not. Many
standard classes however have been extensively studied, cf. [3].

• Every Hilbert space H is reflexive. Indeed, in this case H is even isomorphic
to its dual H ′ by the Riesz–Fréchet Theorem.

• Let (M,m) be a measure space with m σ-finite. Let Lp(M,m) denote the
associated Lebesgue space, where p ∈ [1,∞]. Then Lp(M,m) is reflexive
provided p ∈ (1,∞). In this situation, one can identify its dual space with
Lq(M,m), where 1/p + 1/q = 1. Applying this identification twice yields
Lp(M,m)′′ = Lp(M,m). In the extremal case, L1(M,m) can still be identified
with L∞(M,m), but the converse is not true. Neither space is reflexive in
general. (And L∞(M,m) is not even separable in general.)

• Let Ω ⊂ Rd be an open set, endowed with the Lebesgue measure. Denote
the corresponding Lebesgue spaces by Lp(Ω,Ld), where p ∈ [1,∞]. Then
for every p ∈ [1,∞), Lp(Ω,Ld) is separable and C∞

c (Ω) is dense in it (by
convolution).

• Let Ω ⊂ Rd be an open and bounded set. Let C(Ω) denote the Banach
space of continuous functions defined on its closure with the supremum
norm. Then C(Ω) is separable by the Stone–Weierstrass theorem. Its dual
can be identified with the space of signed Radon measures on Ω. Neither
this set nor C(Ω) are reflexive.

Applying the results from this section, one can then deduce the following.
• On Hilbert spaces, closed bounded balls are weakly compact and sequentially

compact. The same applies for Lebesgue spaces with exponents in (1,∞).
• L∞(M,m) is the dual of the separable space L1(M,m), thus closed bounded

balls in L∞(M,m) are sequentially compact in the weak∗ topology.
• If Ω is bounded, the space of signed Radon measures on Ω is the dual

of the separable space C(Ω), thus closed bounded balls in the former are
sequentially compact in the weak∗ topology.

• On the other hand, in the above situations boundedness is not a sufficient
condition for weak precompactness in L1(M,m) or C(Ω). A characterization
of weak compactness in L1(M,m) is given by the celebrated Dunford–Pettis
theorem, cf. [3, Thm. 4.30].

Appendix D. Schauder–Tychonoff in Banach spaces

As mentioned in Remark 4.6, let us show the proof of Theorem 4.5 when X is a
Banach space. The statement goes as follows.

Theorem D.1 (Schauder–Tychonoff in Banach spaces). Let X be a Banach space
and K ⊂ X be closed, convex, and nonempty. Let F : K → K be continuous such
that F (K) is compact. Then F has a fixed point in K.

Proof. Let ε > 0. Since S := F (K) is compact, we know there exists a finite subset
{y1, . . . , yn} ⊂ S such that S ⊂

⋃n
i=1 Bε(yi)44. Define the functions g1, . . . , gn as

gi(x) :=
{
ε− ∥x− yi∥ if ∥x− yi∥ ≤ ε,

0 otherwise.

44The balls are replacing the sets yi + U from the proof of Theorem 4.5. Indeed, Bε(yi) =
yi +Bε(0) and Bε(0) is clearly a convex, balanced and open neighborood of the origin.
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Each gi is continuous, gi(x) ≥ 0 and, since the balls are a covering of S, their sum
is always strictly positive on S45.

Define C := co {y1, . . . , yn} and g : S → C by46

g(x) :=
[ n∑
j=1

gj(x)
]−1 n∑

i=1
gi(x) yi. (D.1)

This function is continuous and, since for any x ∈ S we can write

x =
[ n∑
j=1

gj(x)
]−1 n∑

i=1
gi(x)x

we deduce ∥g(x) − x∥ ≤ ε from the definition of g1, . . . , gn.
Consider now the function G := g ◦ F

∣∣
C

: C → C. Since C is a compact and
convex subset of a finite-dimensional space and G is continuous, we can apply
Brouwer’s fixed point theorem to find c0 ∈ C such that c0 = G(c0) = g(F (c0)).
Hence, by the inequality above, we know that

∥F (c0) − c0∥ = ∥F (c0) − g(F (c0))∥ ≤ ε.

Replacing ε by 1/m, given any m ∈ N there exists cm such that

∥F (cm) − cm∥ ≤ 1
m
.

Since {F (cm) : m ∈ N} is a sequence in the compact space S, there is a subsequence
{cmk

: k ∈ N} such that F (cmk
) → x0 as k → ∞ for some x0 ∈ S. Moreover,

∥cmk
− x0∥ ≤ ∥F (cmk

) − cmk
∥ + ∥F (cmk

) − x0∥ ≤ 1
mk

+ ∥F (cmk
) − x0∥.

Sending mk → ∞ we see cmk
→ x0 since F (cmk

) → x0. By the continuity of F , we
conclude F (cmk

) → F (x0) and therefore F (x0) = x0. □

Appendix E. Bochner integration on Banach spaces

In this part, we collect some properties of integration of Banach-space valued
functions. For a detailed account, we refer to e.g. the book of Diestel–Uhl [5]. Much
of the material to follow should be strongly reminiscent of integration theory from
measure theory for R ∪ {−∞,∞}-valued functions, modulo some peculiarities from
the fact that the functions we study here take values in Banach spaces.

Let X be a Banach space. As usual, we denote its norm by ∥ · ∥ and its dual
space by X ′.

A function x : [0, 1] → X47 is called simple if it assumes only finitely many values
in X. More precisely, there exist k ∈ N, Borel subsets E1, . . . , Ek ⊂ [0, 1], and
v1, . . . , vk ∈ X such that for every t ∈ [0, 1],

x(t) =
k∑
i=1

1Ei
(t) vi. (E.1)

A map x : [0, 1] → X is called
• strongly measurable if there is a sequence (xn)n∈N of simple functions

such that (∥xn − x∥)n∈N converges to zero L1-a.e. and
• weakly measurable if for every x′ ∈ X ′, the map f : [0, 1] → R given by
f(t) := x′(x(t)) is Borel measurable.

45This is the analog the lower bound on the sum of the distances in Lemma 4.4.
46Notice the analogy with the function F defined in Lemma 4.4.
47We choose the domain [0, 1] to simplify the presentation. It could also be taken to be R or

any nontrivial subinterval thereof.
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Linear combinations of strongly measurable functions are strongly measurable; the
analog holds for weak measurability. Moreover, if the map x : [0, 1] → X is strongly
measurable, then its norm ∥x∥ is a Borel measurable map from [0, 1] to R+.

A precise relation between strong and weak measurability is the following.
Theorem E.1 (Pettis). A map x : [0, 1] → X is strongly measurable if and only
if it is weakly measurable and almost separably valued, i.e. there exists a Borel set
N ⊂ [0, 1] with L1[N ] = 0 such that x([0, 1] \N) is a separable subset of X.

In particular, if X is separable, strong and weak measurability are equivalent.
Now we turn to integration of such functions, the so-called Bochner integrals.

Given a simple function x : [0, 1] → X of the form (E.1), we set∫ 1

0
x(t) dt :=

k∑
i=1

L1[Ei] vi.

Note this integral is X-valued by definition. It does not depend on the particular
way (E.1) is written. Given x : [0, 1] → X strongly measurable, we then say x
is Bochner integrable if there exists a sequence (xn)n∈N of simple functions such
that

∫ 1
0 ∥x(t) − xn(t)∥ dt → 0 as n → ∞. In this case, (

∫ 1
0 xn(t) dt)n∈N is a Cauchy

sequence in X, hence the following quantity is well-defined:∫ 1

0
x(t) dt := lim

n→∞

∫ 1

0
xn(t) dt.

This integral is independent of the choice of the sequence (xn)n∈N with the above
properties. Moreover, the following “triangle inequality” holds:∥∥∥∫ 1

0
x(t) dt

∥∥∥ ≤
∫ 1

0

∥∥x(t)
∥∥ dt. (E.2)

Given any Bochner integrable map x : [0, 1] → X and any Borel measurable set
B ⊂ [0, 1], we also define ∫

B

x(t) dt :=
∫ 1

0
1B(t)x(t) dt.

The following is a convenient characterization of Bochner integrability.
Theorem E.2 (Bochner). A strongly measurable function x : [0, 1] → X is Bochner
integrable if and only if ∫ 1

0

∥∥x(t)
∥∥ dt < ∞.

Armed with an integration theory for X-valued functions, we can now introduce
Lebesgue and Sobolev spaces. Moreover, it allows us to define absolute continuity.
Definition E.3 (Lebesgue spaces). Given any p ∈ [1,∞], the space Lp([0, 1];X) is
the space of (equivalence classes up to L1-a.e. equality of ) those strongly measurable
maps x : [0, 1] → X such that ∥x∥Lp([0,1];X) < ∞, where

∥x∥Lp([0,1];X) :=


[∫ 1

0

∥∥x(t)
∥∥p dt

]1/p
provided p < ∞,

L1-esssup
t∈[0,1]

∥∥x(t)
∥∥ otherwise.

Definition E.4 (Sobolev spaces). Given any p ∈ [1,∞], the space W 1,p([0, 1];X)
consists of those x ∈ Lp([0, 1];X) such that there exists an element x′ ∈ Lp([0, 1];X)
such that for every φ ∈ C∞

c ((0, 1)),∫ 1

0
φ′(t)x(t) dt = −

∫ 1

0
φ(t)x′(t) dt. (E.3)
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For every p ∈ [1,∞], the Sobolev space W 1,p([0, 1];X) becomes a Banach space
with respect to the norm

∥x∥W 1,p([0,1];X) :=
[
∥x∥Lp([0,1];X) + ∥x′∥Lp([0,1];X)

]1/p
.

In quite general settings, there is a one-to-one correspondence between Sobolev
functions and absolutely continuous functions in Banach spaces.
Definition E.5 (Absolutely continuous curves). Given any p ∈ [1,∞], the space
ACp([0, 1];X) consists of all maps x : [0, 1] → X such that there is f ∈ Lp([0, 1];L1)
such that for every s, t ∈ [0, 1] with s < t,∥∥x(t) − x(s)

∥∥ ≤
∫ t

s

f(r) dr.

In particular, AC∞([0, 1];X) is the set of Lipschitz continuous maps x : [0, 1] → X.
The following two general results, stated without proof, verify the one-to-one

correspondence outlined above.
Proposition E.6 (Absolutely continuous representative). Given any p ∈ [1,∞]
and any x ∈ W 1,p([0, 1];X), there exists x̃ ∈ ACp([0, 1];X) with x = x̃ L1-a.e.

Moreover, for every s, t ∈ [0, 1] with s < t, the representative x̃ satisfies

x̃(t) − x̃(s) =
∫ t

s

x′(r) dr.

In general Banach spaces, absolute continuity does not imply a.e. differentiability.
In other words, the fundamental theorem of calculus cannot be turned into a
statement about the derivative of the function in question. This property is connected
to the so-called Radon–Nikodým property of Banach spaces. A simple sufficient
criterion is separability; therefore, the one-to-one correspondence holds e.g. on every
Hilbert space, the main setting of §5.
Theorem E.7 (Sobolev representative and a.e. differentiability). Assume X is
reflexive. Given any p ∈ [1,∞] and any x ∈ ACp([0, 1];X), for L1-a.e. t ∈ [0, 1] the
following limit exists in X:

x′(t) := lim
h→0

x(t+ h) − x(t)
h

.

The function x′ thus defined — with e.g. constant extension beyond the set of
all t ∈ [0, 1] for which the above limit does not exist — belongs to Lp([0, 1];X) and
satisfies (E.3) for every φ ∈ C∞

c ((0, 1)); in particular, x ∈ W 1,p([0, 1];X).
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