
Risk and Environmental Sustainability: Dummy

Examination

11 March 2011

Instructions: The time allotted for the examination is 180 minutes. You may answer in either
English or French. No written material may be brought into the examination. Full marks may
be obtained with complete answers to four questions. The final mark will be based on the best
four solutions.
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Solution 1

(a) [3, seen] Slides 51 and 54.

(b) [4, unseen] We first check the conditions of the mapping theorem. With Aq = {(r, w) :
rw = q},

µ∗({q}) =

∫

Aq

µ̇(r, w) dwdr = 0,

since the integral is over a set of measure zero. Now if A∗ ⊂ E∗ is compact, then
A∗ ⊂ [a, b]D for some 0 < a < b < ∞, and

µ∗(A∗) ≤ µ∗([a, b]D)

≤ µ ({(r, w) : a ≤ rwd, d = 1, . . . , D})

= µ

({
(r, w) : a/ min

d
wd ≤ r

})

=

∫
ν̇(w)

∫
∞

a/ min wd

r−2dr dw

= a−1E

(
min

d
Wd

)

≤ a−1E(W1)

is finite, because E(W1) = 1. Hence the mapping theorem applies. The new mean
measure µ∗ is simply part of the statement of the theorem.

(c) [3, unseen] The intensity of P∗ is

µ̇∗(q) =

∫

Aq

µ̇(r, w) dr =

∫

Aq

µ̇(r, q/r)

∣∣∣∣
∂w

∂q

∣∣∣∣ dr

so we need the Jacobian matrix

∂q

∂w
=

(
∂qd

∂wd′

)

d,d′

= rID;

note that qd = rwd. Hence |∂q/∂w| = rD, and thus

µ̇∗(q) =

∫
∞

0

r−2ν̇(q/r)r−D dr =

∫
∞

0

uDν̇(uq) du,

after setting r = 1/u, because dr = −u−2du.

Solution 2

(a) [3, seen] Slides 76 and 79

(b) [1, seen] Problem 1, week 5.

(c) [3, seen/unseen] The plots show clear steps due to rounding, but these are not problematic.
Over the fit appears to be very good though (bonus for this comment) the top two plots
ought to have confidence bands for better interpretation. Still the lower left one shows
no evidence of a problem with the fit. Its shape suggests that ξ < 0.

(d) [3, seen/unseen] The 95% confidence interval based on the asymptotic normal distribution

of the MLE is ξ̂ ± 1.96v
1/2

ξ = −0.217 ± 1.96 × 0.064 = (0.342, −0.091), so there is strong
evidence that ξ < 0. This seems reasonable, since wave heights are not unbounded, and
having ξ ≥ 0 would correspond to an (in principle) unbounded maximum height.
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Solution 3

(a) [3, seen/unseen] Slides 58 and 62. The given result implies that as n → ∞,
{

1 −
nP(X > bn + anx)

n

}n

=

{
1 −

Λn(x)

n

}n

→ exp
{

−(1 + ξx)
−1/ξ
+

}
,

so
Λn(x) = nP(X > bn + anx) → (1 + ξx)

−1/ξ
+ .

Hence provided the denominator is positive, the conditional probability can be written
as

P{X > bn + an(u + x)}

P(X > bn + anu)
=

Λn(u + x)

Λn(u)
→

(1 + ξx + ξu)
−1/ξ
+

(1 + ξu)
−1/ξ
+

,

and a little algebra gives that this is (1 + ξx/σ)
−1/ξ
+ , where σ = 1 + ξu must be positive.

This implies that the limiting distribution of a threshold exceedance for X, suitably
rescaled, is generalized Pareto.

(b) [3, seen/unseen] This is the law of small numbers applied to the binomial variables Nu,n,
which have denominator n and success probability P(X > bn + anx), and if E(Nu,n) =

Λn(x) converges to a finite limit (1 + ξx)
−1/ξ
+ , the limiting variable Nu is Poisson with

mean (1 + ξx)
−1/ξ
+ .

(c) [2, seen] Brief description of POT analysis of threshold exceedances.

(d) [2, seen] Problem 2 of sheet 8.

Solution 4 [10, seen] Section 4.3 of the notes, plus the extra notes provided. We expect
mention of the extremogram, discussion of maxima under the D(um) condition, local depen-
dence and clustering, the extremal index (including a little about its estimation), clustering
and return levels.

Solution 5

(a) [3, seen] Slide 181. We write z = (z1, z2) and recall that the exponent function is defined
as V in the expression G(z) = exp{−V (z)}. Having unit Fréchet margins means that

G(z, ∞) = exp{−V (z, ∞)} = exp(−1/z),

so V (z, ∞) = 1/z, and likewise V (∞, z) = 1/z by symmetry. Moreover G is max-stable,
so there exist functions at and bt such that for every z ∈ (0, ∞)2,

G(bt + atz) = G(z)t, t > 0.

But we know that if z = (z1, ∞), then bt = 0 and at = 1/t, so

G(bt + atz) = exp{−V (z/t)} = G(z)t = exp{−tV (z)},

which gives tV (tz) = V (z) for all t > 0 and all z ∈ (0, ∞). Hence V is homogeneous of
order −1.

(b) [2, seen/unseen] We have

P{max(Z1, Z2) ≤ z} = P(Z1 ≤ z, Z2 ≤ z) = exp{−V (z, z)} = exp{−V (1, 1)/z},

so M has a Fréchet distribution with parameter θ = V (1, 1).

The two special cases have V (1, 1) = 2 and V (1, 1) = 1, and correspond to independent
maxima and totally dependent maxima, so θ could be interpreted as ‘the number of
independent maxima underlying the distribution of (Z1, Z2)’.
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(c) [1, seen] This is the probability integral transform. Using bare hands and for 0 < u < 1,
we have

P{F (X) ≤ u} = P{exp(−1/X) ≤ u} = P(X ≤ −1/ log u) = exp{−1/(−1/ log u)} = u,

as required.

(d) [4, unseen] The hint gives

E(T ) = 2E[max{F (Z1), F (Z2)}] − E{F (Z1)} − E{F (Z2},

and we saw in (c) that F (Z1) and F (Z2) are uniform, so their expectations are 1/2. Note
also that as F is monotone, max{F (Z1), F (Z2)} = F{max(Z1, Z2)} = F (M), so

E[max{F (Z1), F (Z2)}] = E{F (M)}

=

∫
∞

0

exp(−1/m) ×
θ

m2
exp(−θ/m) dm

=
θ

θ + 1

∫
∞

0

θ + 1

m2
exp{−(θ + 1)/m} dm

=
θ

θ + 1
.

Hence E(T ) = 2θ/(1 + θ) − 1 = (θ − 1)/(θ + 1). This could be used by computing
the average t of a sample t1, . . . , tn of values of T , and then solving the equation t =
(θ − 1)/(θ + 1) to get a moment estimate of θ.
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