MATH-383: Risk and Environmental Sustainability Anthony Davison/Linda Mhalla

Solution 1

(a)

We have P(S <s)=0for s<0and P(S<0)=1-6,s0P(S=0)=1-—6. Hence

E(S)=0x(1—-0)+ [ sx0\e M ds=0(\)""=1/),
0+

and

E(S|S>0)= /: s X ONe % ds/P(S > 0) = O(N0) "1 /0 = 1/(\9),

s0 0 =E(S)/E(S | S > 0).

If S*/m has approximately the distribution of S, then P(S* > s) = P(5*/m > s/m) ~ P(S >
s/m) = O exp(—Afs/m), for s > 0, and
n=ly" Sx/m

= ~E(S)/E(S | S
W TSI m > 1Jm)S: fm = i S 15 m > 1m) - DOVES 15>0)

5:

for large n and m, so we might hope that the ratio is a reasonable estimator of 6. Proving this
mathematically would require the asymptotic dependence between the 5’; to be weak enough for

the sums in 6 to converge in probability to their expectations.

The conditional distribution of S | S > 0 is exponential with parameter A0, so S—u | S > u ~ exp(A\d)
using the lack of memory of the exponential distribution. If you doubt this, note that for z,u > 0,

P(S>u+z) exp{—-A(u-+z)}
P(S>u)  exp(—\u)

PS—u>z|S>u)=PS>u+x|S>u)= = exp(—\0z).

For any u > 0, therefore, the positive values of ST —u,..., S} —u, are a random sample from the

exponential distribution with mean A0/m. If X1,..., Xx Y exp(A0@/m) for known \/m, then the
log likelihood is

K
0(0) = Klog(A0/m) — A\0/m x Z Xk, 6>0,
k=1
so the MLE is 6 = Km/(AY, Xi). In the present case K is replaced by n, = 251 I(S7 > u) and
Yohey Xp is replaced by 01 I(S7 > u)(S} — u), so

A0 IS > u) (S —u)’

)

and if we replace A/m by its estimator n/ 37| S, we (almost) get the estimator in (b), with u = 1.

Solution 2

(a)

As F, Fx, Fy are distributions, they are monotone increasing, and thus C(u,v) is also monotone
increasing in each of its arguments. Moreover C'(u,v) > 0 since F'(x,y) > 0, and it is straightforward
to show that lim,—0.4—0 C(u,v) = 0 and limy 1 1 C(u,v) = 1, so C(u,v) is a distribution function.
Now, let (U, V') be distributed according to C(u,v). Since Fx(z) = F(x,00) and Fy (y) = F(o0,y),
we have

P(U <u) = lim P(U < u,V < v) = lim C(u,v) = lim F {F!(w), iy (0)}

v—1
_F {F;(u),m F;l(u)} — F{Fy'(u), 00} = Fx{F5'(u)} = u.

and P(V <w) = v by symmetry: the margins of C(u,v) are uniform.



(b) Recall that log(14a) ~aasa—0,s0logp=1log{l+ (p—1)} ~p—1asp— 1. Hence
P{X > Fy'(u),Y > Fy'(w)}
P{X > Fy'(w)}

P{Y > F'(u) | X > Fl(w)} =

1 —2u+C(u,u) _ 5 1—C(u,u)
a 1—u a 1—u
1
~ o logCluw)
log u

The limit x can be interpreted as a measure of extremal dependence. If y = 0, then the variables X
and Y (and thus also U and V') are asymptotically independent. If x > 0, then the variables are
asymptotically dependent. In practice, it often happens that dependence weakens at higher levels,
casting doubt on the validity of asymptotically dependent models.

(c) Here Fx(x) = exp(—1/z) and Fy (y) = exp(—1/y), so Fx'(u) = —1/logu, Fy,*(v) = —1/logwv, and

C(u,v) =F {F;}l(u),Fgl(v)} = exp [— {(—1/logu)_1/o‘ + (—l/logv)_l/o‘}a} , O<u,v<l

Thus,
log C'(u, u) —{(—1/logu)—1/a+ (—1/logu)—1/a}
x(w) =2 - B o
logu logu
—{2(-1/1ogu)~V/}" —{(=1/10gu) "1/}
=2~ :272CM :2—2a,
log u log u

and therefore y = 2 — 2% When o = 1 the variables are asymptotically independent (in fact, exactly
independent) and y = 0, whereas x — 1 as a — 0.

(d) The model in (c) has x = x(u) = 2 — 2% for all u € [0,1], so x(u) = 2 —2°3 ~ 0.77 when a = 0.3
and x(u) = 0 when a = 1. The left- and right-hand graphs correspond to these models, so the
middle one must correspond to the bivariate normal distribution. For the latter we see that there
is dependence for all u but that the dependence reduces towards zero when v — 1. In fact the
bivariate normal model is asymptotically independent, ie., x = 0.

Solution 3

(a) We first simulate the moving maximum process with Fréchet margins from the code below and
inspect the plots in Figure 1.

n <- 10000; a <- 1; i <- c(1:n) # we saw this before
z <- 1/rexp(n+l) # independent Frechet variables

x <- pmax(axz[i],z[i+1])/(a+1) # moving maximum series
par (mfrow=c(1,2)) # two adjacent panels for figures

chi.lag <- function( x, lag=0) chiplot(cbind(x[1:(n-lag)],x[(1+lag):n]), which=1)
chi.lag( %, 1)
chi.lag( x, 2)

The processes X;4+1 and X; are asymptotically dependent by construction and because of the
standard Fréchet margins. Note that X, ; and X; have no noise variables Z in common for A > 2,
so they are independent for such lags, as shown by the right plot of Figure 1 and the plots in
Figure 2. Here we see that yj(u) behaves similarly for A > 2.

Figure 3 provides plots of x(u) for the moving maximum for a € {0.5,0.1}, showing that the
weakening dependence is reflected in a lower xp(u).
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Figure 1: Plots of x;(u) for a =1 and the lags h = 1 (left) and h = 2 (right) for the moving maximum
process.
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Figure 2: Plots of xp(u) for a = 1 and the lags h = 3 (left) and h = 4 (right) for the moving maximum
process.

(b) For the Gaussian autoregressive process, we use bi-linearity of the covariance operator to compute
cov(Xj, Xji1) = cov(Xy, pXj + (1= p*)ej41)

= peov(Xj, X;) + cov(X;, (1 — p*)/%e;11)

— prar(X;),
since X; is independent of €j41. As var(X;) = 1, we find corr(X;, X;41) = p.
You were not asked to find the corresponding result for general h, but to do so write &; = (1—p?)/2¢;.
Note that cov(Xjis, X;) = cov(pXjip—1 + Ejn, X;) = pcov(Xjip_1,X;) for h > 1, so one can
start from h = 1 and use that cov(Xj;4, X;) = p to show that cov(X;i2, X;) = pcov(Xji1, Xj).
Proceeding similarly, and using that var(X;) = 1 gives cov(Xjn, X;) = p". Applying a similar
argument for h < 0 gives that cov(X,p, X;) = pll.
In contrast to the moving maximum process with Fréchet margins, the Gaussian autoregressive
process exhibits so-called asymptotic independence: while low levels of thresholds u show dependence,
larger values of u lead to a decrease in x, eventually giving lim, o x(u) = 0. Figure 6 shows plots
of xn(u) for different lags h, indicating that convergence of x(u) to zero is very slow.

(c) We inspect the moving average process X1 = €41 + pej, and compute

var(ej11 + pej) = var(ejy1) + pPvar(e;) = 1+ p2.
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Figure 3: Plots of xp,(u) for a = 0.5 and the lags h = 1 (left) and h = 2 (right) for the moving maximum
process.
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Figure 4: Plots of xp(u) for a = 0.1 and the lags h =1 (left) and h = 2 (right) for the moving maximum
process.

where we have used the independence of the z—:;s and that they have standard normal distributions.
We then compute the covariance between X; 1 and X

cov(gjr1 + pgj, €5 + pej-1) = cov(gj1,€5) + cov(gjn, pej-1) + cov(pej, ;) + cov(pej, pej-1)
= peov(eje) = .
Division by the variance leads to corr(X,;41, X;) = p/(1 + p?).

For lags h > 2 the indices of the white noise ¢ involved in the computation of the covariance of
Xj+n and X; differ, and since the noise is independent, the processes X;; and X; are independent
for such h, implying that cov(X;44, X;) = 0. The dependence for the Gaussian process is illustrated
by the left plot in Figure 7, exhibiting asymptotic independence similar to what we observed in
Figure 6. The plot on the right on Figure 7 shows independence similar to what we observed for
lags h > 2 in (a).

To evaluate the impact of non-stationarity one must take into account both the availability of the
data and the extent or frequency of the non-stationarity episodes relative to the observed data. For
instance, if we observe daily data and non-stationary behaviour occurs on a yearly basis, we can
expect its effect to be negligible. However, if we observe monthly or seasonal data, then we can
expect the effect of such non-stationarity to be more significant.
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Figure 5: Plots of x(u) for a = 2 and the lags h = 1 (left) and h = 2 (right) for the moving maximum

process.
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Figure 6: Plots of xp,(u) for a = 0.9 and the lags h =

process.
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(left) and h = 2 (right) for the autoregressive
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Figure 7: Plots of xp(u) for a = 0.9 and the lags h = 1 (left) and h = 2 (right) for the moving average

process.



