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Solution 1

(a) Since G(y) = exp{−Λ(y)}, G(y)T = exp{−T Λ(y)}, so we need to consider T Λ(y). This equals
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where ηT = η + τ(T ξ − 1)/ξ, τT = τT ξ and ξT = ξ. This proves the result.

(b) We can write

G(y; η, τ, ξ) = exp

[

− exp

{

−
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ξ
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}]

.

and since log(1 + a) = a − a2/2 + · · · as a → 0, we have

lim
ξ→0
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ξ
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as 1 + ξ(y − η)/τ > 0 for small enough ξ and any (y − η)/τ . The function exp{− exp(−x)} is
continuous for all x, so

lim
ξ→0

G(y; η, τ, ξ) = exp [− exp {−(y − η)/τ}] .

Furthermore, ηT = η + τ(T ξ − 1)/ξ → η + τ log T , τT → τ and ξT → 0 as ξ → 0.

(c) As T → ∞, we have ηT →











+∞, ξ > 0
+∞, ξ = 0
η − τ/ξ, ξ < 0

, τT →











+∞, ξ > 0
τ, ξ = 0
0, ξ < 0

and ξT → ξ.

Increasing T corresponds to taking maxima over a larger block of variables, and the maximum of
100 random variables is always higher than the maximum over only 10 of them. Intuitively, we
therefore expect the distribution to shift to the right as we increase T , so the behaviour of ηT makes
sense. The behaviour of τT is less intuitive, but when T → ∞ and ξ > 0 we see that τT increases,
i.e., the GEV becomes more dispersed, and when ξ < 0, τT → 0. i.e., the limiting distribution
becomes less dispersed, because the largest values bunch up near the finite upper support point.

(d) The support of Y ∼ G corresponds to the set of values S = {y : 0 < G(y) < 1}.

When ξ > 0, G(y) > 0 ⇐⇒
(

1 + ξ y−η
τ

)

> 0 ⇐⇒ y > η − τ/ξ, so S = (η − τ/ξ, +∞).

When ξ < 0, G(y) < 1 ⇐⇒
(

1 + ξ y−η
τ

)

> 0 ⇐⇒ y < η − τ/ξ, so S = (−∞, η − τ/ξ).

When ξ = 0, 0 < G(y) < 1 for all values of y ∈ R, so S = R.

Solution 2
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(a) X ∼ GEV(0, 1, ξ) has CDF G0(x) = exp{−Λ0(x)}, say, where Λ0(x) = (1 + ξx)
−1/ξ
+ , and

P(η + τX ≤ y) = P{X ≤ (y − η)/τ} = exp [−Λ0{(y − η/τ}] = exp{−Λ(y)} = P(Y ≤ y),

and hence Y
D
= η + τX. This implies that E(Y ) = η + τE(X) and var(Y ) = τ2var(X).

(b) The PDF of X is
dG0(x)

dx
= {−Λ̇0(x)} exp{−Λ0(x)},

so

E {XrG0(X)s} =

∫

xr exp{−sΛ0(x)}{−Λ̇0(x)} exp{−Λ0(x)} dx.

If we write z = (s + 1)Λ0(x), we need expressions for x and {−Λ̇0(x)} in terms of z. The second is
easy, because dz/dx = (s + 1){−Λ̇0(x)}, and

x = ξ−1

{

(

z

s + 1

)

−ξ

− 1

}

.

Hence

E {XrG(X)s} =
1

s + 1

∫

∞

0
ξ−r

{

(

z

s + 1

)

−ξ

− 1

}r

e−z dz.

Setting s = 0 and r = 1, and provided ξ < 1 so the gamma function is finite, we have

E(X) =
1

ξ

∫

∞

0

(

z−ξ − 1
)

e−zdz =
1

ξ

(
∫

∞

0
z−ξe−zdz − 1

)

=
Γ(1 − ξ) − 1

ξ
.

With s = 0 and r = 2, we have, provided ξ < 1/2,

E
(

X2
)

=
1

ξ2

∫

∞

0

(

z−ξ − 1
)2

e−zdz =
1

ξ2

∫

∞

0

(

z−2ξ − 2z−ξ + 1
)

e−zdz

=
1

ξ2

(
∫

∞

0
z−2ξe−zdz − 2

∫

∞

0
z−ξe−zdz + 1

)

=
Γ(1 − 2ξ) − 2Γ(1 − ξ) + 1

ξ2
.

Note that E(X2) exists if and only if ξ < 1/2, which is therefore also a condition for var(X) to be
finite. In fact the computations above yield

var(X) = E
(

X2
)

− E(X)2 =
Γ(1 − 2ξ) − Γ(1 − ξ)2

ξ2
.

Solution 3

(a) As Y2 < Y1, knowledge that Y1 = y1 means that Y2 < y1. Hence

P(Y2 < y2 | Y1 = y1) = P(Y2 < y2 | Y2 < y1) = P(Y2 < y2)/P(Y2 < y1), y2 < y1.

Now Y2 is the limiting variable corresponding to the maximum of an infinite number of rescaled
variables (Xj − bm)/am, so it must have the same distribution as Y1, except that Y2 < Y1. (Note
for later use that the same argument applies to all the Yj, with the ordering imposing constraints.)
Hence

P(Y2 < y2 | Y1 = y1) = P(Y2 < y2)/P(Y2 < y1) = e−Λ(y2)/e−Λ(y1) = exp{Λ(y1) − Λ(y2)}, y2 < y1.
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Differentiating the conditional distribution with respect to y2 yields

f(y2 | y1) = {−Λ̇(y2)} exp{Λ(y1) − Λ(y2)}, y2 < y1,

and clearly f(y1) = {−Λ̇(y1)} exp{−Λ(y1)}. Hence

f(y1, y2) = f(y2 | y1)f(y1) = {−Λ̇(y2)} exp{Λ(y1) − Λ(y2)} × {−Λ̇(y1)} exp{−Λ(y1)},

which reduces to the given density. For the induction, suppose the expression in the question holds
for the first r − 1 order statistics. Then for y1 > · · · > yr we have

P(Yr < yr | Y1 = y1, Y2 = y2, . . . , Yr−1 = yr−1) = P(Yr < yr | Yr < yr−1) = P(Yr < yr)/P(Yr < yr−1)

= exp{Λ(yr) − Λ(yr−1)}

and

f(yr | Y1 = y1, . . . , Yr−1 = yr−1) = {−Λ̇(yr)} exp{Λ(yr−1) − Λ(yr)}.

The inductive hypothesis gives

f(y1, . . . , yr−1) = exp{−Λ(yr−1)}
r−1
∏

i=1

{−Λ̇(yi)},

which yields the required expression, i.e.,

f(y1, . . . , yr) = f(yr | Y1 = y1, . . . , Yr−1 = yr−1)f(y1, . . . , yr−1) = exp{−Λ(yr)}
r

∏

i=1

{−Λ̇(yi)}. (1)

(b) To obtain the marginal density of Yr we must integrate the joint density over the set S = {(y1, . . . , yr−1) :
yr < yr−1 < · · · < y1}. So we first integrate over y1 ∈ (y2, ∞), then over y2 ∈ (y3, ∞), and so on
up to integration over yr−1 ∈ (yr, ∞). Note that Λ(∞) = 0, since P(Y1 ≤ ∞) = exp{−Λ(∞)} = 1.
Using the density in (1) we obtain

f(yr) =

∫

∞

yr

. . .

∫

∞

y3

∫

∞

y2

exp{−Λ(yr)}
r

∏

j=1

{−Λ̇(yj)} dy1 · · · dyr−1

= exp{−Λ(yr)}{−Λ̇(yr)}

∫

∞

yr

. . .

∫

∞

y3

∫

∞

y2

r−1
∏

j=1

{−Λ̇(yj)} dy1 · · · dyr−1. (2)

The innermost integral (over y1) gives

r−1
∏

j=2

{−Λ̇(yj)}

∫

∞

y2

{−Λ̇(y1)} dy1 =
r−1
∏

j=2

{−Λ̇(yj)} × [−Λ(u)]∞y2
=

r−1
∏

j=2

{−Λ̇(yj)} × Λ(y2).

The next integral (over y2) gives

r−1
∏

j=3

{−Λ̇(yj)}

∫

∞

y3

{−Λ̇(y2)}Λ(y2) dy2 =
r−1
∏

j=3

{−Λ̇(yj)} ×
[

−Λ(u)2/2!
]

∞

y3

=
r−1
∏

j=3

{−Λ̇(yj)} × Λ(y3)2/2!,

and repeating the argument leads to the entire integral in (2) being Λ(yr)r−1/(r − 1)!, giving

f(yr) = exp{−Λ(yr)}{−Λ̇(yr)} × Λ(yr)r−1/(r − 1)!, yr ∈ R,

as required.
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(c) Given the joint density from (a) and the density of yr+1 from (b) we compute

f(y1, . . . , yr | yr+1 = u) =
f(y1, . . . , yr+1)

f(yr+1)

=

∏r+1
i=1 {−Λ̇(yi)} exp{−Λ(yr+1)}

{−Λ̇(yr+1)}
Λ(yr+1)r

r!
exp{−Λ(yr+1)}

= r!
r

∏

i=1

{−Λ̇(yi)}

Λ(u)
, y1 > · · · > yr > u.

Let X1, . . . , Xr be i.i.d. random variables with distribution function H(y) = 1 − Λ(y)/Λ(u) for
y > u. Then by independence

h(y1, . . . , yr) =
r

∏

i=1

h(yi) =
r

∏

i=1

{−Λ̇(yi)}

Λ(u)
.

Note that the distribution H(y) = 1 − Λ(y)/Λ(u) corresponds to a generalized Pareto distribution,

because Λ(y) = {1 + ξ(y − η)/τ}
−1/ξ
+ , so

H(y) =

{

1 − (1 + ξx/σu)
−1/ξ
+ , ξ 6= 0,

1 − exp(−x/σu), ξ = 0,

where σu = τ + ξ(u − η).
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