MATH-383: Risk and Environmental Sustainability Anthony Davison/Linda Mhalla

Solution 1

(a) Since G(y) = exp{—A(y)}, G(y)T = exp{—TA(y)}, so we need to consider T'A(y). This equals
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where ny =0+ 7(T¢ — 1)/¢, 70 = 7T and &7 = €. This proves the result.

G(y, 7777—’5) = exXp l— exp{_%log <1 +£y;77>+}‘| .

and since log(1 +a) = a —a?/2+--- as a — 0, we have

1 y—n) )
f—gtos (1+€17) =22,

(b) We can write

as 14+ &(y —n)/7 > 0 for small enough ¢ and any (y — n)/7. The function exp{—exp(—=x)} is
continuous for all z, so

%13(1) G(y;n, 7,§) = exp [—exp{—(y —n)/T}.

Furthermore, ny = n 4+ 7(T¢ —1)/6 = n+7logT, 70 — 7 and &7 — 0 as € — 0.

00, £E>0 +o0, £€>0
(¢) As T — oo, we have np — { 400, E=0 ,7p— ¢ T, E=0 and &p — €.
77_7-/57 §<0 07 §<O

Increasing T' corresponds to taking maxima over a larger block of variables, and the maximum of

100 random variables is always higher than the maximum over only 10 of them. Intuitively, we

therefore expect the distribution to shift to the right as we increase T', so the behaviour of 17 makes

sense. The behaviour of 77 is less intuitive, but when T" — oo and £ > 0 we see that 7 increases,

i.e., the GEV becomes more dispersed, and when & < 0, 70 — 0. i.e., the limiting distribution

becomes less dispersed, because the largest values bunch up near the finite upper support point.
(d) The support of Y ~ G corresponds to the set of values S = {y: 0 < G(y) < 1}.

When € > 0, G(y) >0 <= (1—1—5@) >0 < y>n—71/§s08=(n—r1/& +0).

When £ <0, G(y) <1 < <1+£@) >0 < y<n—71/& s0S=(—o0,n—T1/E).
When £ =0, 0 < G(y) < 1 for all values of y € R, so S =R.

Solution 2



(a) X ~ GEV(0,1,¢) has CDF Gy(x) = exp{—Ao(z)}, say, where Ag(z) = (1 + £x)7 /¢, and
Pin+7X <y) =P{X < (y —n)/7} = exp [-Ao{(y — n/7}] = exp{-A(y)} =P(Y <),
and hence Y 2 5+ 7X. This implies that E(Y) = n + 7E(X) and var(Y) = r2var(X).
(b) The PDF of X is

ACO) _ 1 Ao(@)) exp o)),

SO

E{X"Gy(X)’} = /xr exp{—sAo(z)H—Ao(x)} exp{—Ag(z)} dz.

If we write z = (s + 1)Ag(z), we need expressions for z and {—Ag(z)} in terms of z. The second is
easy, because dz/dz = (s + 1){—Ag(z)}, and

Hence

E{X"G(X)*} = 5—|1—1 /war{(sil)_g— 1}rezdz.

Setting s = 0 and r = 1, and provided £ < 1 so the gamma function is finite, we have

E(X) = %/OOO (2_5 — 1) e “dz = % (/OOO 2S¢ dz — 1) = %

With s = 0 and r = 2, we have, provided £ < 1/2,

E <X2) = 5%/000 (zfg — 1)267'2(12 = 5%/000 (2725 -2 ¢ 4 1) e ?dz

1 o —26 —z o £ —z
== / z e dz—2/ z e Fdz+1
£ \Jo 0
N1-25)—-2r(1-¢)+1
= 52 .
Note that E(X?) exists if and only if & < 1/2, which is therefore also a condition for var(X) to be
finite. In fact the computations above yield

var(X) = E (XQ) —B(X)? = ra- 25)5_2F(1 —9°

Solution 3
(a) As Yy <Yy, knowledge that Y7 = y; means that Y5 < y;. Hence
PYoa<y | YVi=y1) =PYo<y | Yo <y) =P(Yo <y2)/P(Ya <wy1), w2 <ur

Now Y3 is the limiting variable corresponding to the maximum of an infinite number of rescaled
variables (X; — by,)/am, so it must have the same distribution as Y7, except that Y» < Y;. (Note
for later use that the same argument applies to all the Y;, with the ordering imposing constraints.)
Hence

P(Ya < y2 | Y1 =y1) = P(Ya <12)/P(Ya < 1) = e 202 e 20 = oxp{A(y1) — A(2)},  v2 < v1.



Differentiating the conditional distribution with respect to yo yields

Flyz 1) = {=Al2)exp{A(y1) — Ay2)}, w2 < w1,
and clearly f(y1) = {—A(y1)} exp{—A(y1)}. Hence

Flyy2) = fy2 | y) f (1) = {=A(y2)exp{A(y1) — A(y2)} x {—A(y1)}exp{—A(y1)},

which reduces to the given density. For the induction, suppose the expression in the question holds
for the first » — 1 order statistics. Then for y; > --- > y, we have

P(Y;’ < Yr | Y, = yl,Y2 =Y2,... >Yvr71 = yrfl) = P(Y;’ < Yr | Y, < yrfl) = P(Y;" < yr)/P(Yvr < yrfl)
= exp{A(yr) — A(yr—1)}

and

Flyr 1 Yi=y1,. Yoo = yro1) = {=Ay)} exp{A(y,-1) — A(y)}-
The inductive hypothesis gives
r—1 .
- yr1) = exp{—A(y,—1)} [T{—Awi)},
i=1
which yields the required expression, i.e.,
F oy = F@e 1 Yi =y, Yoo =y ) f (1, ye—1) = exp{=A(y,)} [[{-Aw:)}. (1)

i=1

To obtain the marginal density of Y, we must integrate the joint density over theset S = {(y1,...,¥r-1) :
Yr < Yp—1 < -+ < y1}. So we first integrate over y; € (y2,00), then over ys € (y3,00), and so on
up to integration over y,_1 € (y,,00). Note that A(oco) = 0, since P(Y] < 00) = exp{—A(c0)} = 1.
Using the density in (1) we obtain

f(r) :/yoo/: /: eXp{_A(yr)}E{_A(yj)}dyl"'dyr—l

: /yoo/yoorﬂl{ Aly)ydyr -+~ dyr—1. (2)

3 2

= expl A H-Aw)} [

Yr

The innermost integral (over y;) gives
r—1 . 0o . r—1 . r—1 .
H{_A(yj)}/ {=Aly)}dyr = [T{-Aly)} x [FA@)]; = TT{-Ay;)} x Alye).
j=2 Y2 j=2 j=2

The next integral (over y2) gives

H{ At | { Aly2) A (y2) dys = H{ Ry = [~Aw?/21] H{ Alyy)} x Alys)*/2,
7=3
and repeating the argument leads to the entire integral in (2) being A(y,)"~1/(r — 1)!, giving

Fyr) = exp{=A(yr) H-A)} x A(y,)" " /(r = 1), yr €R,

as required.



(c) Given the joint density from (a) and the density of y,4+1 from (b) we compute

f(yl?“"yf'+1)
f(yr+1) _
I { A} exp{-A(yr41)}

A 2 e A )

ZIE% hi> oy >

f(yla"'ayr‘yT-f—l:u):

Let Xi,...,X, be i.i.d. random variables with distribution function H(y) = 1 — A(y)/A(u) for
y > u. Then by independence

- oA}
h(yrs--sye) = || 0yi) = || ——7 57—
oo =155
Note that the distribution H(y) =1 — A(y)/A(u) corresponds to a generalized Pareto distribution,
because A(y) = {1+ €£(y —n)/7} "7, so
1 —exp(—x/oy), £=0,

where o, = 7+ {(u — n).



