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Solution 1

(a) Clearly Y(n) ≤ y iff all the Yj ≤ y, and since the Yj are independent, P(Y(n) ≤ y) = F (y)n, so the
density function is nf(y)F (y)n−1.

Likewise Y(1) > y iff all the Yj > y, so P(Y(1) > y) = {1 − F (y)}n, giving P(Y(1) ≤ y) = 1 − {1 −
F (y)}n and density function nf(y){1 − F (y)}n−1.

(b) The probability density for a particular permutation of Y1, . . . , Yn to equal y1, . . . , yn is
∏n

j=1 f(yj).
But since there are n! such permutations, all with the same density, the density values for all n!
permutations must be added to give the joint density for the order statistics, i.e.,

fY(1),...,Y(n)
(y1, . . . , yn) = n!

n∏

j=1

f(yj), y1 < · · · < yn.

We obtain the marginal density of Y(n) by integration over y1, then y2, . . . , up to yn−1. The first
step gives that the joint density of Y(2), . . . , Y(n) is

∫ y2

−∞

n!
n∏

j=1

f(yj) dy1 = n!F (y2)
n∏

j=2

f(yj),

and then integration over y2 ∈ (−∞, y3) gives n!F (y3)2 ∏n
j=3 f(yj)/2!, and then similar integrations

over y3, . . . , yn−1 lead to

n!F (yn)n−1
n∏

j=n

f(yj)/(n − 1)! = nf(yn)F (yn)n−1.

The computation for the minimum is similar, integrating over yn ∈ (yn−1, ∞), then over yn−1 ∈
(yn−2, ∞), etc. and resulting in nf(y1){1 − F (y1)}n−1.

(c) The uniform density on (0, a) is 1/a for y ∈ (0, a), which gives n!/an for 0 < y1 < · · · < yn < a
when inserted into (b).

Solution 2

(a) As min(Y1, . . . , Yr) > x if and only if Y1 > x, . . . , Yr > x, we have

P{min(Y1, . . . , Yr) ≤ x} = 1 − P{min(Y1, . . . , Yr) > x} = 1 − P(Y1 > x)r = 1 − exp(−rλx), x > 0,

and for x, y > 0, P(Y − x > y | Y > x) equals

P(Y − x > y, Y > x)

P(Y > x)
=

P(Y > y + x)

P(Y > x)
= exp{−λ(x + y)}/ exp(−λx) = exp(−λy),

as required.

(b) As P(Ej/λ ≤ x) = P(Ej ≤ λx) = 1 − exp(−λx) = P(Yj ≤ x), we have Yj
D
= Ej/λ. We argue as

follows:

• Y(1) is the smallest of n independent exponential variables, so it is exponential with parameter

nλ and therefore we can write Y(1)
D
= E1/(nλ);

• the remaining n − 1 variables have the lack of memory property, so given that Y(1) = x the
remaining Yj − x have exponential distributions with parameter λ. Thus Y(2) − Y(1) is the

minimum of n − 1 exponential variables, i.e., Y(2) − Y(1)
D
= E2/{(n − 1)λ};
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• iterating the argument by successively conditioning on Y(2), . . . , Y(n−1) and obtaining the dis-
tributions of Y(3) − Y(2), . . . , Y(n) − Y(n−1) gives the stated representation.

(c) A standard exponential variable has mean and variance both equal to 1, so

E(Y(r)) =
1

λ

r∑

j=1

1

n + 1 − j
, cov(Y(r), Y(s)) =

1

λ2

m∑

j=1

1

(n + 1 − j)2
, r, s, ∈ {1, . . . , n},

with m = min(s, r) and the second formula giving the variance when r = s. These are useful in
assessing QQplots, since they give the expectation and variance of (individual) order statistics.

Solution 3

(a) We saw in the lectures that the joint density of the times of the n events is

e−µ(0,t0)
n∏

j=1

µ̇(tj), 0 < t1 < · · · < tn < t0,

and on setting µ̇(t) = λ this reduces to λne−λt0 . If we successively integrate over t1, then t2 etc.
we get the integral in the question, which reduces to (λt0)ne−λt0/n!, i.e., the density function of a
Poisson variable with mean λt0.

(b) The log likelihood based on the times has derivatives ℓ′(λ) = n/λ − t0 and ℓ′′(λ) = −n/λ2 and
the sole solution to the equation ℓ′(λ) = 0 is λ̂ = n/t0 (the empirical rate of events per unit of
time). The second derivative is negative (unless n = 0, in which case ℓ(λ) is maximised at λ = 0),
so λ̂ gives a maximum. The expected information is E{−ℓ′′(λ)} = E{N(t0)}/λ2 = λt0/λ2 = t0/λ,
where we have replaced the observed n by the corresponding random variable N(t0) to take the
expectation. The information increases linearly with the length of the observation period, which is
a surrogate for the sample size.

The log likelihood based on N(t0) would be

log P{N(t0) = n} = n log λ + n log t0 − λt0 − log n!, λ > 0,

which equals ℓ(λ) apart from additive constants, so the MLE and expected information will be
the same. It is clear from ℓ(λ) that under this model the number of events is a sufficient statistic
(statistique exhaustive — check this if unsure), so under this particular model the times are irrelevant
for inference; what matters is the number of events.

(c) This conditional density is

λne−λt0/
{

(λt0)ne−λt0/n!
}

=
n!

tn
0

, 0 < t1 < · · · < tn < t0.

Hence the conditional distribution of the event times, given that there are n events, is that of the
order statistics of a uniform sample on (0, t0).

(d) The plot clearly shows that the data are under the diagonal line that would correspond to a uniform
sample, and this is confirmed by the Kolmogorov–Smirnov test, which has a tiny P-value. Hence
there is strong evidence against the model. The connection with (c) is that the rescaled data tj/t0

should be a uniform sample on U(0, 1) if the model is correct, and clearly this is not the case.
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