MATH-383: Risk and Environmental Sustainability Anthony Davison/Linda Mhalla

Solution 1
(a) We assume throughout:
Y p~N(pl), p~N(01), 7e{-1,1} independent of (u,Y).
Then marginally, Y ~ N(0,2). as shown during the lecture.

o For the unfocused forecast Fj, we have that the predictive distribution is:

Fy = 3N (p,1) + SN (u+7,1).

Marginal calibration We compute the expected forecast cdf:
BIF ()] = Bur [30 (252) + 3o (24)]
= 5B [0y — )] + 1B [P(y —p— 1) + @y — p+ 1],

where the last equality is obtained using the fact that 7 € {—1, 1} with equal probability and
independently from p. Thus,

By {®(y—p—7)} =3B, {®(y—p— 1)} + 3B {®(y — p+ 1)},

Using derivations similar to the ones we used during the lecture to derive the marginal dis-
tribution of Y, i.e., derivations of a convolution of two normals, we can show that E,{®(y —
p—cst)} = Peg2(y), i.e. a Gaussian with mean the constant cst and variance 2 (that of V).
Thus,

E[F1(y)] = 5®o2(y) + 1 {P12(y) + 2-12(y)}
The expression of E[F}(y)] differs from P(Y <y) = ®g2(y).

Probabilistic calibration Define the probability integral transform:
Z=FY)=39Y —p) +32(Y —p—1).
Since Y | u ~ N(p1,1), Y — u ~ N(0,1). Hence:
Z=39(Z1)+ 3®(Z1 — 1), where Z; ~N(0,1),7 € {-1,1}.

Due to the added noise from the random shift 7, the PIT is smoothed, and simulations show
that Z ~ Uniform(0, 1) approximately. Thus, the forecast Fj is probabilistically calibrated.

e For the sign-reversed forecast Fb, the predictive distribution is:

F2 = N(—M, 1)

Marginal calibration

E[Fy(y)] = By [@ (H2)] =P(Z <y), where Z = —p+ 2,2 ~ N(0,1)
= 7 ~ N(0,2) = E[Fa(y)] = ®oa2(y) = P(Y <y).

Thus, the forecast F5 is marginally calibrated.



Probabilistic Calibration. The PIT is:
Z=F(Y)=2Y +p).

Since Y ~ N (u,1) = Y + u ~ N(2u, 1), the distribution of Z depends on u and hence is not
uniform. Thus, the forecast F5 is not probabilistically calibrated.

(b) set.seed(22)

N <- 10000

mu <- rnorm(N)

tau <- sample(c(-1, 1), N, replace = TRUE)
Y <- rnorm(N, mean = mu, sd = 1)

# compute PITs

# F1 <- pnorm(Y, mean = mu, sd = 1)

# F2 <- pnorm(Y, mean = 0, sd = sqrt(2))

F1 <- 0.5 * pnorm(Y, mean = mu, sd = 1) +
0.5 * pnorm(Y, mean = mu + tau, sd = 1)

F2 <- pnorm(Y, mean = -mu, sd = 1)

par (mfrow = c(1, 2))
# hist(F1, breaks = 20, main

"PIT: Perfect", xlab "PIT", freq FALSE)

# hist(F2, breaks = 20, main = "PIT: Climatological", xlab = "PIT", freq = FALSE)
hist (F1, breaks 20, main = "PIT: Unfocused", xlab "PIT", freq FALSE)
hist(F2, breaks = 20, main = "PIT: Sign-Reversed", xlab = "PIT", freq = FALSE)

### Assess marginal calibration empirically
y_grid <- seq(-5, 5, length.out = 200)

# Empirical CDF of Y
ecdf Y <- ecdf(Y)
empirical_probs <- sapply(y_grid, ecdf_Y)

# avgFl <- sapply(y_grid, function(y) mean(pnorm(y, mean = mu, sd = 1)))
# avgF2 <- sapply(y_grid, function(y) mean(pnorm(y, mean = 0, sd = sqrt(2))))
avgFl <- sapply(y_grid, function(y) mean(0.5 * pnorm(y, mean = mu, sd = 1) +
0.5 * pnorm(y, mean = mu + tau, sd = 1)))
avgF2 <- sapply(y_grid, function(y) mean(pnorm(y, mean = -mu, sd = 1)))

plot(y_grid, empirical_probs, type = "1", lwd = 2, col = "black", ylim = c(0,1),

ylab = "CDF", xlab = "y", main = " ")
# lines(y_grid, avgFl, col = "blue", 1lty = 2)
# lines(y_grid, avgF2, col = "green", 1ty = 3)
lines(y_grid, avgFl, col = "red", 1ty = 4)
lines(y_grid, avgF2, col "purple", 1ty = 5)
# legend("bottomright", legend = c("Empirical CDF", "F1 (Perfect)", "F2 (Climatological)",
# "F3 (Unfocused)", "F4 (Sign-Reversed)"),
# col = c("black", "blue", "green", "red", "purple"), 1ty = 1:5, cex = 0.8)
legend("bottomright", legend = c("Empirical CDF",

"F1 (Unfocused)", "F2 (Sign-Reversed)"),
col = c("black", "red", "purple"), lty = 1:5, cex = 0.8)

Sharpness refers to the concentration (narrowness) of predictive distributions, independent of cali-
bration and of the distribution of the observation. We will compare the sharpness of both forecasts
by comparing their unconditional variances.



e The forecast distribution Fj is a mixture of two normal distributions with equal variance but
different means. Specifically, it is defined as

FIZ%N(/JH]-)_{—%N(M—’_T:]-%

where p ~ N(0,1) and 7 € {—1,+1} is independent of p with equal probability.
Given p and 7, the conditional mean of Y/ ~ Fj is

EY' | p7)=p+5(n+7)=p+13,
and the conditional variance is
var(Y/ [ p,7) =1+ 5 =%,

using the formula for the variance of a mixture of two Gaussians with equal variances 02 = 1
and means p and pu + 7.

We then apply the law of total variance:
var(Y') = E[var(Y' | p, 7)] + var(E[Y" | u, 7]).

T

The first term is simply E[var(Y” |y, 7)] = 2. For the second term, since E[Y | i, 7] = p+ I,
and p and 7 are independent with the same variance of 1, we get:

var(p+ 7/2) = var(p) + var(r/2) = 1+ 1 = 2.
Therefore, the total variance of F} is

var(Y') = 2 +
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e The forecast Fy is
Fy = N(_M7 1)’

where p ~ N(0,1). Thus, the unconditional distribution of Y ~ F; is obtained by integrating
out p and corresponds to A(0,2) (same derivations as the ones we did in the lecture). Thus,
var(Y") = 2.

Hence, the forecast Fj is sharper than Fj, even though it may be miscalibrated (e.g., predicting
the wrong sign).

Solution 2 We will show that the linear score is not proper by constructing a counterexample where a
forecast p # q yields a better (i.e., lower) expected score under the true distribution q.
Let the true density ¢ be the standard normal:

1 ,-y%/2

q(y) = Var €
Let the forecast p be the uniform distribution on the interval (—¢,€), where € > 0. Then:

{216 ifye(_676)a

ply) = 0 otherwise.

LinS(p, q) — LinS(q, q)
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The last quantity will be negative for small enough € > 0 : in particular, for € < y/log 2, the integrand
in the above satisfies e=¥"/2 > 1/v/2, so

LinS(p, q) — LinS(q, q) < \/% (1/\/§ -4 /_6 1/\@dy) <0

This shows that the forecast p performs better than the true distribution ¢ under the linear score.
Thus, the linear score is not proper, because a forecaster can achieve a better expected score by forecasting
a distribution p # ¢. It therefore does not incentivise truthful reporting of the forecasters belief and is
not used in practice.

Solution 3

(a) e First note that

+o0 +o00
!X—y|=/ I(XSUSy)dU+/ Iy <u < X)du

—0o0

Yy +o0o
:/ I(XSu)du—#—/ I(u < X)du.
NS Y
Then, applying Fubini to switch expectation and integration, we get

B|X — y| = /yoo B{I(X < u)}bdu + /;o E{I(u < X)}du
y +00
_ /_oo F(u)du + /y {1 - F(u)}du.

o We use the same trick, i.e.,

“+oo
X — X' = / I(X <u< X))+ I(X' <u<X)du

oo

and the fact that X and X’ are independent and identically distributed.
o Expanding the initial expression of the CRPS, we get

CRPS(F, y) — / T (PGP - 2Py < 2} + Ty < 2}) dz

= F(z)2d2—2/ F(z)dz—i—/ ldz.
—00 y y

This is exactly what we get by computing Ep(|X —y|) — EF(|X — X’|) using the two results
derived above.

(b) Let:
N

F(zx)= Z W ® (I;‘im> ,

m=1

where wy, >0, > wy, =1, um € R, 0, > 0.

Let A(u,0;a) = E|X — al, for X ~ N (i, 02). Then, using the expression of the expectation of the
positive part of a random variable we derived above, we can show that A(u,o;a) satisfies:

A(p,05a) =209 (%) + (a—p) [2@ (%) — 1} .
Let X ~ F. Then:

N
m=1
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and

N N
ElX - X'| = Z ZwmwnA(Mm — Hny O+ 07).

m=1n=1
Thus,
N N N
CRPS(F,y) = Z WinA(fm, i y) — 3 Z Z WinWn Al — fin,\/ 02, + 02).
m=1 m=1n=1

Using the alternative expression of the CRPS, i.e.,

CRPS(F,y) =Ep(|X —y|) — 3Er(|1X — X']),

we observe that the first term measures how close the forecast is to the true observation which tells
us about its calibration, while the second term captures the spread (and hence the sharpness) of
the forecast. For instance, if the forecast is very sharp (say, a point mass), then |X — X’| will be
very small. However, if the forecast is highly dispersive (say, with both tails being very heavy),
that quantity can take large values.



