
MATH-383: Risk and Environmental Sustainability Anthony Davison/Linda Mhalla

Solution 1

(a) We assume throughout:

Y | µ ∼ N (µ, 1), µ ∼ N (0, 1), τ ∈ {−1, 1} independent of (µ, Y ).

Then marginally, Y ∼ N (0, 2). as shown during the lecture.

• For the unfocused forecast F1, we have that the predictive distribution is:

F1 = 1
2N (µ, 1) + 1

2N (µ + τ, 1).

Marginal calibration We compute the expected forecast cdf:

E[F1(y)] = Eµ,τ

[
1
2Φ

(
y−µ

1

)
+ 1

2Φ
(

y−µ−τ
1

)]
= 1

2Eµ [Φ(y − µ)] + 1
4Eµ [Φ(y − µ − 1) + Φ(y − µ + 1)] ,

where the last equality is obtained using the fact that τ ∈ {−1, 1} with equal probability and
independently from µ. Thus,

Eµ,τ {Φ(y − µ − τ)} = 1
2Eµ {Φ(y − µ − 1)} + 1

2Eµ {Φ(y − µ + 1)} ,

Using derivations similar to the ones we used during the lecture to derive the marginal dis-
tribution of Y , i.e., derivations of a convolution of two normals, we can show that Eµ{Φ(y −
µ − cst)} = Φcst,2(y), i.e. a Gaussian with mean the constant cst and variance 2 (that of Y ).
Thus,

E[F1(y)] = 1
2Φ0,2(y) + 1

4 {Φ1,2(y) + Φ−1,2(y)}

The expression of E[F1(y)] differs from P(Y ≤ y) = Φ0,2(y).

Probabilistic calibration Define the probability integral transform:

Z = F1(Y ) = 1
2Φ(Y − µ) + 1

2Φ(Y − µ − τ).

Since Y | µ ∼ N (µ, 1), Y − µ ∼ N (0, 1). Hence:

Z = 1
2Φ(Z1) + 1

2Φ(Z1 − τ), where Z1 ∼ N (0, 1), τ ∈ {−1, 1}.

Due to the added noise from the random shift τ , the PIT is smoothed, and simulations show
that Z ∼ Uniform(0, 1) approximately. Thus, the forecast F1 is probabilistically calibrated.

• For the sign-reversed forecast F2, the predictive distribution is:

F2 = N (−µ, 1).

Marginal calibration

E[F2(y)] = Eµ

[
Φ

(
y+µ

1

)]
= P(Z ≤ y), where Z = −µ + ε, ε ∼ N (0, 1)

⇒ Z ∼ N (0, 2) ⇒ E[F2(y)] = Φ0,2(y) = P(Y ≤ y).

Thus, the forecast F2 is marginally calibrated.
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Probabilistic Calibration. The PIT is:

Z = F2(Y ) = Φ(Y + µ).

Since Y ∼ N (µ, 1) ⇒ Y + µ ∼ N (2µ, 1), the distribution of Z depends on µ and hence is not
uniform. Thus, the forecast F2 is not probabilistically calibrated.

(b) set.seed(22)
N <- 10000
mu <- rnorm(N)
tau <- sample(c(-1, 1), N, replace = TRUE)
Y <- rnorm(N, mean = mu, sd = 1)

# compute PITs
# F1 <- pnorm(Y, mean = mu, sd = 1)
# F2 <- pnorm(Y, mean = 0, sd = sqrt(2))
F1 <- 0.5 * pnorm(Y, mean = mu, sd = 1) +

0.5 * pnorm(Y, mean = mu + tau, sd = 1)
F2 <- pnorm(Y, mean = -mu, sd = 1)

par(mfrow = c(1, 2))
# hist(F1, breaks = 20, main = "PIT: Perfect", xlab = "PIT", freq = FALSE)
# hist(F2, breaks = 20, main = "PIT: Climatological", xlab = "PIT", freq = FALSE)
hist(F1, breaks = 20, main = "PIT: Unfocused", xlab = "PIT", freq = FALSE)
hist(F2, breaks = 20, main = "PIT: Sign-Reversed", xlab = "PIT", freq = FALSE)

### Assess marginal calibration empirically
y_grid <- seq(-5, 5, length.out = 200)

# Empirical CDF of Y
ecdf_Y <- ecdf(Y)
empirical_probs <- sapply(y_grid, ecdf_Y)

# avgF1 <- sapply(y_grid, function(y) mean(pnorm(y, mean = mu, sd = 1)))
# avgF2 <- sapply(y_grid, function(y) mean(pnorm(y, mean = 0, sd = sqrt(2))))
avgF1 <- sapply(y_grid, function(y) mean(0.5 * pnorm(y, mean = mu, sd = 1) +

0.5 * pnorm(y, mean = mu + tau, sd = 1)))
avgF2 <- sapply(y_grid, function(y) mean(pnorm(y, mean = -mu, sd = 1)))

plot(y_grid, empirical_probs, type = "l", lwd = 2, col = "black", ylim = c(0,1),
ylab = "CDF", xlab = "y", main = " ")

# lines(y_grid, avgF1, col = "blue", lty = 2)
# lines(y_grid, avgF2, col = "green", lty = 3)
lines(y_grid, avgF1, col = "red", lty = 4)
lines(y_grid, avgF2, col = "purple", lty = 5)
# legend("bottomright", legend = c("Empirical CDF", "F1 (Perfect)", "F2 (Climatological)",
# "F3 (Unfocused)", "F4 (Sign-Reversed)"),
# col = c("black", "blue", "green", "red", "purple"), lty = 1:5, cex = 0.8)
legend("bottomright", legend = c("Empirical CDF",

"F1 (Unfocused)", "F2 (Sign-Reversed)"),
col = c("black", "red", "purple"), lty = 1:5, cex = 0.8)

(c) Sharpness refers to the concentration (narrowness) of predictive distributions, independent of cali-
bration and of the distribution of the observation. We will compare the sharpness of both forecasts
by comparing their unconditional variances.
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• The forecast distribution F1 is a mixture of two normal distributions with equal variance but
different means. Specifically, it is defined as

F1 = 1
2N (µ, 1) + 1

2N (µ + τ, 1),

where µ ∼ N (0, 1) and τ ∈ {−1, +1} is independent of µ with equal probability.
Given µ and τ , the conditional mean of Y ′ ∼ F1 is

E(Y ′ | µ, τ) = 1
2µ + 1

2(µ + τ) = µ + τ
2 ,

and the conditional variance is

var(Y ′ | µ, τ) = 1 + 1
4 = 5

4 ,

using the formula for the variance of a mixture of two Gaussians with equal variances σ2 = 1
and means µ and µ + τ .
We then apply the law of total variance:

var(Y ′) = E[var(Y ′ | µ, τ)] + var(E[Y ′ | µ, τ ]).

The first term is simply E[var(Y ′ | µ, τ)] = 5
4 . For the second term, since E[Y ′ | µ, τ ] = µ + τ

2 ,
and µ and τ are independent with the same variance of 1, we get:

var(µ + τ/2) = var(µ) + var(τ/2) = 1 + 1
4 = 5

4 .

Therefore, the total variance of F1 is

var(Y ′) = 5
4 + 5

4 = 5
2 = 2.5.

• The forecast F2 is
F2 = N (−µ, 1),

where µ ∼ N (0, 1). Thus, the unconditional distribution of Y ′′ ∼ F2 is obtained by integrating
out µ and corresponds to N (0, 2) (same derivations as the ones we did in the lecture). Thus,
var(Y ′′) = 2.

Hence, the forecast F2 is sharper than F1, even though it may be miscalibrated (e.g., predicting
the wrong sign).

Solution 2 We will show that the linear score is not proper by constructing a counterexample where a
forecast p ̸= q yields a better (i.e., lower) expected score under the true distribution q.

Let the true density q be the standard normal:

q(y) = 1√
2π

e−y2/2.

Let the forecast p be the uniform distribution on the interval (−ϵ, ϵ), where ϵ > 0. Then:

p(y) =
{ 1

2ϵ if y ∈ (−ϵ, ϵ),
0 otherwise.

LinS(p, q) − LinS(q, q) =
∫

q(y)2dy − 1
2ϵ

∫ ϵ

−ϵ
q(y)dy

= 1
2π

∫
e−y2

dy − 1√
2π

1
2ϵ

∫ ϵ

−ϵ
e−y2/2dy

= 1√
2π

(
1/

√
2 − 1

2ϵ

∫ ϵ

−ϵ
e−y2/2dy

)
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The last quantity will be negative for small enough ϵ > 0 : in particular, for ϵ <
√

log 2, the integrand
in the above satisfies e−y2/2 > 1/

√
2, so

LinS(p, q) − LinS(q, q) < 1√
2π

(
1/

√
2 − 1

2ϵ

∫ ϵ

−ϵ
1/

√
2dy

)
< 0

This shows that the forecast p performs better than the true distribution q under the linear score.
Thus, the linear score is not proper, because a forecaster can achieve a better expected score by forecasting
a distribution p ̸= q. It therefore does not incentivise truthful reporting of the forecasters belief and is
not used in practice.

Solution 3

(a) • First note that

|X − y| =
∫ +∞

−∞
I(X ≤ u ≤ y)du +

∫ +∞

−∞
I(y ≤ u ≤ X)du

=
∫ y

−∞
I(X ≤ u)du +

∫ +∞

y
I(u ≤ X)du.

Then, applying Fubini to switch expectation and integration, we get

E|X − y| =
∫ y

−∞
E{I(X ≤ u)}du +

∫ ∞

y
E{I(u ≤ X)}du

=
∫ y

−∞
F (u)du +

∫ +∞

y
{1 − F (u)}du.

• We use the same trick, i.e.,

|X − X ′| =
∫ +∞

−∞
[I(X ≤ u ≤ X ′) + I(X ′ ≤ u < X)]du

and the fact that X and X ′ are independent and identically distributed.
• Expanding the initial expression of the CRPS, we get

CRPS(F, y) =
∫ ∞

−∞

(
F (z)2 − 2F (z)I{y ≤ z} + I{y ≤ z}

)
dz

=
∫ ∞

−∞
F (z)2dz − 2

∫ ∞

y
F (z)dz +

∫ ∞

y
1 dz.

This is exactly what we get by computing EF (|X − y|) − 1
2EF (|X − X ′|) using the two results

derived above.

(b) Let:

F (x) =
N∑

m=1
ωmΦ

(
x−µm

σm

)
,

where ωm > 0,
∑

ωm = 1, µm ∈ R, σm > 0.
Let A(µ, σ; a) = E|X − a|, for X ∼ N (µ, σ2). Then, using the expression of the expectation of the
positive part of a random variable we derived above, we can show that A(µ, σ; a) satisfies:

A(µ, σ; a) = 2σφ
(

a−µ
σ

)
+ (a − µ)

[
2Φ

(
a−µ

σ

)
− 1

]
.

Let X ∼ F . Then:

E|X − y| =
N∑

m=1
ωmA(µm, σm; y),
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and

E|X − X ′| =
N∑

m=1

N∑
n=1

ωmωnA(µm − µn,
√

σ2
m + σ2

n).

Thus,

CRPS(F, y) =
N∑

m=1
ωmA(µm, σm; y) − 1

2

N∑
m=1

N∑
n=1

ωmωnA(µm − µn,
√

σ2
m + σ2

n).

(c) Using the alternative expression of the CRPS, i.e.,

CRPS(F, y) = EF (|X − y|) − 1
2EF (|X − X ′|),

we observe that the first term measures how close the forecast is to the true observation which tells
us about its calibration, while the second term captures the spread (and hence the sharpness) of
the forecast. For instance, if the forecast is very sharp (say, a point mass), then |X − X ′| will be
very small. However, if the forecast is highly dispersive (say, with both tails being very heavy),
that quantity can take large values.
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