
MATH-383: Risk and Environmental Sustainability Anthony Davison/Linda Mhalla

Solution 1

(a) The case λ → ∞ is straightforward. If λ → 0 and z2 > z1, then λ−1 log(z2/z1) → ∞ and
λ−1 log(z1/z2) → −∞, so V (z1, z2) → 1/z1 = 1/ min(z1, z2). Likewise, the limit is 1/z2 =
1/ min(z1, z2) if z1 > z2.
Here θ = V (1, 1) = 2Φ(λ/2) ∈ [1, 2) tends to 2 when λ → ∞ and equals 1 when λ = 0.

(b) Suppose without loss of generality that z1 > z2. Then

(zα
1 + zα

2 )−1/α = z−1
1 {1 + (z2/z1)α}−1/α,

where 1 + (z2/z1)α > 1, so {1 + (z2/z1)α}−1/α → 0 as α → 0. Hence V (z1, z2) → 1/z1 + 1/z2,
corresponding to independence.
Now suppose that α → ∞, and write

(zα
1 + zα

2 )−1/α = z−1
2 {1 + (z1/z2)α}−1/α → z−1

2 {(z1/z2)α}−1/α = z−1
1 .

Hence V (z1, z2) → 1/z2 = 1/ min(z1, z2), as required.
Here θ = V (1, 1) = 2 − 2−1/α ∈ (1, 2) tends to 2 when α → 0 and tends to 1 when α → ∞.

Solution 2 Independence of Z1 and Z2 gives

P(X1 ≤ z1, X2 ≤ z2) = P{Z1 ≤ z1, max(aZ1, Z2)/(a + 1) ≤ z2}
= P [Z1 ≤ min(z1, (a + 1)z2/a}, Z2 ≤ (a + 1)z2]
= P [Z1 ≤ min{z1, (a + 1)z2/a}] P {Z2 ≤ (a + 1)z2}
= exp [− max{1/z1, a/{a + 1)z2}] exp [−1/{(a + 1)z2}]] ,

resulting in the stated formula for V .
To compute the corresponding angular distribution we note that the Pickands function is

A(w) = V {1/w, 1/(1 − w)} = max
{

w,
a(1 − w)

a + 1

}
+ 1 − w

a + 1 , 0 ≤ w ≤ 1,

and then we use the formulae from the slide on the Pickands function (slide 191) to check that

ν[0, w] =


0, w < a/(2a + 1),
2a + 1

2(a + 1) , a/(2a + 1) ≤ w < 1,

1, w = 1,

corresponding to the stated distribution; this is discrete and puts mass at w = a/(2a + 1) and at w = 1.
Plots of the corresponding values of (z1, z2) lie on two rays out from the origin.

Solution 3 Notation is simplified by writing V = V (z1, . . . , zD), V1 = ∂V (z1, . . . , zD)/∂z1, V12 =
∂2V (z1, . . . , zD)/∂z1∂z2 and so on, and z′

1 = ∂z1(y1)/∂y1 and so forth.

(a) The first derivative is ∂P(Y1 ≤ y1, . . . , YD ≤ yD)/∂y1 = −z′
1V1e−V , and the second is therefore

∂P(Y1 ≤ y1, . . . , YD ≤ yD)
∂y1∂y2

= −z′
1 × z′

2V12 × e−V − z′
1V1 × −z′

2V2e−V = z′
1z′

2(V1V2 − V12)e−V ,

as given in the notes.
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(b) The third derivative is

z′
1z′

2(z′
3V13 × V2 + V1 × z′

3V23 − z′
3V123)e−V + z′

1z′
2(V1V2 − V12) × −z′

3V3e−V ,

and reduces to
z′

1z′
2z′

3{−V1V2V3 + (V12V3 + V13V2 + V23V1) − V123}e−V .

Recall that the set {1, 2, 3} can be partitioned in five different ways, as

123, 12 | 3, 13 | 2, 23 | 1, 1 | 2 | 3

where the successive partitions have 1, 2, 2, 2, 3 blocks. Thus the term in braces in the third
derivative is the sum over all possible partitions of {1, 2, 3}, with terms having sign (−1)b, where b
is the corresponding number of blocks. The same is true in general.
The number of terms in the sum increases very rapidly; there are over 105 terms when D = 10, so
computation of the likelihood (a product of such terms!) quickly becomes infeasible.

Solution 4

(a) We start modelling extremal dependence by fitting the logistic model using the code

(ModelD1<-fbvevd(cbind(NO2, PM10), model="log"))
Call: fbvevd(x = cbind(NO2, PM10), model = "log")
Deviance: 9167.191
AIC: 9181.191
Dependence: 0.4369681

Estimates
loc1 scale1 shape1 loc2 scale2 shape2 dep

32.4008 10.1389 -0.0286 29.8827 12.4332 0.2925 0.6443

Standard Errors
loc1 scale1 shape1 loc2 scale2 shape2 dep

0.45986 0.31545 0.02202 0.57992 0.48408 0.03487 0.02499

We initially inspect the marginal fit of the model using

# marginal fits
par(mfrow=c(2,4)); plot(ModelD1, mar=1)
plot(ModelD1, mar=2)

Figure 1 shows reasonable fits for both air pollutants; however the fitted margins tend to respectively
underestimate and overestimate the high quantiles of NO2 and PM10.
We now check the bivariate fit using

# bivariate fit
par(mfrow=c(2,3)); plot(ModelD1)

The fit of the logistic model in Figure 2 seems reasonable. The plot illustrating the Pickands
dependence function reveals certain discrepancies between the empirical and the fitted dependence
function, which may arise from the presence of asymmetry in extremal dependence.

(b) We now model the bivariate extremal dependence via the asymmetric logistic model using the code
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Figure 1: Diagnostic plots of marginal fits for NO2 (top panel) and PM10 (bottom panel).

(ModelD2<-fbvevd(cbind(NO2, PM10), model="alog"))
Call: fbvevd(x = cbind(NO2, PM10), model = "alog")

Deviance: 9165.467
AIC: 9183.467
Dependence: 0.4418221

Estimates
loc1 scale1 shape1 loc2 scale2 shape2 asy1 asy2

32.32013 10.12205 -0.03254 30.02608 12.57328 0.28636 0.99990 0.89178
dep

0.61477

Standard Errors
loc1 scale1 shape1 loc2 scale2 shape2 asy1

4.603e-01 3.152e-01 2.127e-02 5.931e-01 4.948e-01 3.606e-02 2.005e-06
asy2 dep

8.331e-02 3.081e-02

The strength of extremal dependence is similar to that for the logistic model. Figure 3 shows a
reasonable fit, although differences between the empirical and fitted Pickands dependence functions
subsist.
Since the logistic model is a particular case of the asymmetric logistic, we rely on a likelihood ratio
test and compare between the models using the code

cp<-ModelD1$dev-ModelD2$dev
1-pchisq(cp, df=2)
0.422309

This is larger than 0.05, so it appears that the dependence can be modelled by a logistic dependence
structure; there is little evidence for asymmetry,

(c) We only proceed here with the Hüsler–Reiss model as the fits from other models differ only slightly
and do not provide any improvements. We use again the code
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Figure 2: Diagnostic plots of the fit of the bivariate logistic model for daily maxima.

(ModelD3<-fbvevd(cbind(NO2, PM10), model="hr"))

Call: fbvevd(x = cbind(NO2, PM10), model = "hr")
Deviance: 9179.674
AIC: 9193.674
Dependence: 0.4168728

Estimates
loc1 scale1 shape1 loc2 scale2 shape2 dep

32.35193 10.12590 -0.02004 29.80346 12.43712 0.31536 1.23174

Standard Errors
loc1 scale1 shape1 loc2 scale2 shape2 dep

0.45893 0.31604 0.02024 0.57933 0.48909 0.03347 0.07125

Figure 4 shows a reasonable fit, but both the deviance and AIC for this fit are appreciably larger
than those in (a) and (b), indicating that those may be better models.

(d) In this part we work with weekly maxima of NO2 and PM10, obtained using

# We want to split 578 observations into blocks of 7,
# so we initially add zero observations at the end of the vectors
NO2[578:581]<-0; PM10[578:581]<-0;

NO2_w<-apply(matrix(NO2, ncol=7, byrow=F), 1, function(x)max(x))
PM10_w<-apply(matrix(PM10, ncol=7, byrow=F), 1, function(x)max(x))

We model extremal dependence via the logistic dependence structure and obtain the following fit:

(ModelW1<-fbvevd(cbind(NO2_w, PM10_w), model="log"))
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Figure 3: Diagnostic plots of the fit of the bivariate asymmetric logistic model for daily maxima.

Call: fbvevd(x = cbind(NO2_w, PM10_w), model = "log")
Deviance: 1395.31
AIC: 1409.31
Dependence: 0.4604533

Estimates
loc1 scale1 shape1 loc2 scale2 shape2 dep

45.5834 9.7346 0.1019 51.4028 20.2904 0.2448 0.6225

Standard Errors
loc1 scale1 shape1 loc2 scale2 shape2 dep

1.20519 0.88295 0.08197 2.57124 2.07558 0.10188 0.06447

The strength of extremal dependence is similar to that for the daily data.
Figure 5 shows a reasonable fit for the dependence structure, although we see again similar problems
to the daily data with the Pickands dependence function.
We also check the asymmetric logistic model and obtain

(ModelW2<-fbvevd(cbind(NO2_w, PM10_w), model="alog"))

Call: fbvevd(x = cbind(NO2_w, PM10_w), model = "alog")
Deviance: 1395.579
AIC: 1413.579
Dependence: 0.4389836

Estimates
loc1 scale1 shape1 loc2 scale2 shape2 asy1 asy2

45.84077 9.75481 0.09113 51.95000 20.55651 0.22959 0.99944 0.93725
dep
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Figure 4: Diagnostic plots of the fit of the bivariate Hüsler–Reiss model for daily maxima.

0.62872

Standard Errors
loc1 scale1 shape1 loc2 scale2 shape2 asy1

1.215e+00 8.841e-01 8.084e-02 2.701e+00 2.116e+00 1.085e-01 2.001e-06
asy2 dep

3.930e-01 9.031e-02

The fitted Pickands dependence function in Figure 6 fits its empirical counterpart better than for
the logistic model; nevertheless the deviances are very similar, so the logistic model still seems
reasonable.

Solution 5

(a) We first fit the logistic dependence structure to the exceedances of NO2 and PM10 using the code

airpollutants<-cbind(NO2, PM10)
(POT1 <- evd::fbvpot(airpollutants, apply(airpollutants, 2, quantile, 0.95),
model="log"))

Call: evd::fbvpot(x = airpollutants, threshold = apply(airpollutants, 2, quantile,
0.95), model = "log")

Likelihood: censored
Deviance: 851.0401
AIC: 861.0401
Dependence: 0.2399396

Threshold: 58 84.15
Marginal Number Above: 26 29
Marginal Proportion Above: 0.045 0.0502
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Figure 5: Diagnostic plots of the fit of the bivariate logistic model for weekly maxima.

Number Above: 8
Proportion Above: 0.0138

Estimates
scale1 shape1 scale2 shape2 dep

11.79466 0.01502 26.85926 0.04004 0.81562

Standard Errors
scale1 shape1 scale2 shape2 dep

3.63755 0.25698 7.86268 0.23691 0.06329

The estimated extremal dependence is weaker than for daily maxima, perhaps because selecting a
high threshold means that we only consider large exceedances.
We inspect the marginal fits using

par(mfrow=c(2,4)); plot(POT1, mar=1)
plot(POT1, mar=2)

Figure 7 seems reasonable, in particular for PM10, but problems may arise from the presence of ties
and from the small number of exceedances, as shown in the top panel for NO2.
We now check the bivariate fit using

par(mfrow=c(1,4)); plot(POT1)

Figure 8 shows a reasonable fit for the logistic model, and we notice from the third plot that there
are rather few extreme observations jointly in both pollutants.

(b) We repeat the same steps as in part (a) for the asymmetric logistic model using the code
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Figure 6: Diagnostic plots of the fit of the bivariate asymmetric logistic model for weekly maxima.

(POT2 <- evd::fbvpot(airpollutants, apply(airpollutants, 2, quantile, 0.95),
model="alog"))

Call: evd::fbvpot(x = airpollutants, threshold = apply(airpollutants, 2, quantile,
0.95), model = "alog")

Likelihood: censored
Deviance: 842.7556
AIC: 856.7556
Dependence: 0.2295116

Threshold: 58 84.15
Marginal Number Above: 26 29
Marginal Proportion Above: 0.045 0.0502
Number Above: 8
Proportion Above: 0.0138

Estimates
scale1 shape1 scale2 shape2 asy1 asy2 dep

12.444427 -0.070632 28.987009 0.002408 0.735653 0.242493 0.367385

Standard Errors
scale1 shape1 scale2 shape2 asy1 asy2 dep

3.82401 0.24100 8.66101 0.25969 0.18538 0.08982 0.11088

In contrast to the previous exercise, here we notice that the presence of stronger asymmetry in the
fitted model, indicated by the large difference between the asy1 and asy2 parameters.
The plots of the bivariate fits in Figure 9 confirm that the fitted dependence structure is highly
asymmetric, and the corresponding deviance is much lower than for the logistic model. The likelihood
ratio test between the logistic and asymmetric logistic models gives
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Figure 7: Diagnostic plots of marginal fits for NO2 (top panel) and PM10 (bottom panel).
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Figure 8: Diagnostic plots of the fit of the bivarite logistic model for exceedances of daily maxima.

cp2<-POT1$dev-POT2$dev
1-pchisq(cp2, df=2)
0.01588705

which suggests a fairly strong departure from symmetry.

9



Density Plot

NO2

P
M

1
0

0 20 40 60 80 100 120

0
5

0
1

0
0

1
5

0
2

0
0

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Dependence Function

t

A
(t

)

20 40 60 80 100

5
0

1
0

0
1

5
0

Quantile Curves

NO2

P
M

1
0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Spectral Density

t

h
(t

)

Figure 9: Diagnostic plots of the fit of the bivarite asymmetric logistic model for exceedances of daily
maxima.
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